Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merged v20161226 as the latest release |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | release | v20161226 |
Files: | files | file ages | folders |
SHA1: |
0415aa0e8f082cb11241908b462c12c7 |
User & Date: | tangent 2016-12-26 22:04:45.624 |
Context
2017-01-06
| ||
00:15 | Merged v20170105 changes into release branch check-in: 9cde1575d1 user: tangent tags: release, v20170105 | |
2016-12-26
| ||
22:19 | Merged release changes in check-in: 6e66483574 user: tangent tags: no-lamp-simulator | |
22:04 | Merged v20161226 as the latest release check-in: 0415aa0e8f user: tangent tags: release, v20161226 | |
22:04 | Release v20161226 check-in: 242018031d user: tangent tags: trunk | |
2016-12-23
| ||
17:24 | Moved the new "disable competing services" install step above the "enable pidp8i service" step, and using parallel methods to enable the latter as we do to disble the former. check-in: cbbee9c080 user: tangent tags: release | |
Changes
Added .fossil-settings/crlf-glob.
> > > > | 1 2 3 4 | src/sim_*.[ch] src/sim_*.in src/PDP8/pdp8_*.[ch] src/PDP8/pdp8_*.in |
Changes to ChangeLog.md.
1 2 3 4 5 6 7 8 | # PiDP-8/I Changes ## Version 2016.12.18 * The entire software stack now runs without explicit root privileges. It now runs under the user and group of the one who built the software. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | # PiDP-8/I Changes ## Version 2016.12.26 (The Boxing Day release) * Updated SIMH to the latest upstream version. This represents about 15 months worth of work in the [upstream project][simh], so I will only summarize the improvements affecting the PDP-8 simulator here: * Many improvements to the internal handling of timers. The most user-visible improvement is that you can now clock your emulated PDP-8 down to well below the performance of a real PDP-8 via `SET THROTTLE`, which can be useful for making blinkenlights demos run at human speeds without adding huge delay loops to the PDP-8 code implementing that demo. * Increased the number of supported terminals from four to either twelve or sixteen, depending on how you look at it. Eight of the additional supported terminal devices are conflict-free, while the final four variously conflict with one or more of the other features of the simulated PDP-8. If you want to use all 16, you will be unable to use the FPP, CT, MT and TSC features of the system. This limitation reflects the way the PDP-8 worked. It is not an arbitrary limitation of SIMH. * Added support for the LS8E printer interface option used by the WPS8 word processing system. * The simulator's command console now shows the FPP register descriptions when using it as a PDP-8 debugger. * Added the `SHOW TTIX/TTOX DEVNO` SIMH command to display the device numbers used for TTIX and TTOX. * The `SHOW TTIX SUMMARY` SIMH command is now case-insensitive. * Upstream improvements to host OS/compiler compatibility. This increases the chances that this software will build out of the box on random non-Raspbian systems such as your development laptop running some uncommon operating system. * When you `make install`, we now disable Deeper Thought 2 and the legacy `pidp8` service if we find them, since they conflict with our `pidp8i` service. * Added the install user to the `gpio` group if you `make install` if that group is present at install time. This is useful when building and installing the software on an existing Raspbian SD card while logged in as a user other than `pi` or `pidp8i`. [simh]: https://github.com/simh/simh/ ## Version 2016.12.18 * The entire software stack now runs without explicit root privileges. It now runs under the user and group of the one who built the software. |
︙ | ︙ |
Changes to README.md.
︙ | ︙ | |||
146 147 148 149 150 151 152 | else you can do with the simulator command language, or read the [SimH Users' Guide][sdoc]. 5. To shut the simulator down from the Raspbian command line: $ sudo systemctl stop pidp8i | | | < | | > | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | else you can do with the simulator command language, or read the [SimH Users' Guide][sdoc]. 5. To shut the simulator down from the Raspbian command line: $ sudo systemctl stop pidp8i There are [other major differences][mdif] between the upstream distribution and this one. See that linked wiki article for details. [smod]: http://obsolescence.wixsite.com/obsolescence/2016-pidp-8-building-instructions [usd]: http://obsolescence.wixsite.com/obsolescence/pidp-8-details [dt2]: https://github.com/VentureKing/Deeper-Thought-2 [sdoc]: http://simh.trailing-edge.com/pdf/simh_doc.pdf [prj]: http://obsolescence.wixsite.com/obsolescence/pidp-8 [rmt]: https://tangentsoft.com/pidp8i/doc/trunk/README-test.md [rmsc]: https://tangentsoft.com/pidp8i/doc/trunk/README-single-core.md [mdif]: https://tangentsoft.com/pidp8i/wiki?name=Major+Differences |
Changes to src/PDP8/pdp8_clk.c.
︙ | ︙ | |||
43 44 45 46 47 48 49 | int32 clk_tps = 60; /* ticks/second */ int32 tmxr_poll = 16000; /* term mux poll */ int32 clk (int32 IR, int32 AC); t_stat clk_svc (UNIT *uptr); t_stat clk_reset (DEVICE *dptr); | | | | | | | | 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | int32 clk_tps = 60; /* ticks/second */ int32 tmxr_poll = 16000; /* term mux poll */ int32 clk (int32 IR, int32 AC); t_stat clk_svc (UNIT *uptr); t_stat clk_reset (DEVICE *dptr); t_stat clk_set_freq (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat clk_show_freq (FILE *st, UNIT *uptr, int32 val, CONST void *desc); /* CLK data structures clk_dev CLK device descriptor clk_unit CLK unit descriptor clk_reg CLK register list */ DIB clk_dib = { DEV_CLK, 1, { &clk } }; UNIT clk_unit = { UDATA (&clk_svc, UNIT_IDLE, 0), 16000 }; REG clk_reg[] = { { FLDATAD (DONE, dev_done, INT_V_CLK, "device done flag") }, { FLDATAD (ENABLE, int_enable, INT_V_CLK, "interrupt enable flag") }, { FLDATAD (INT, int_req, INT_V_CLK, "interrupt pending flag") }, { DRDATAD (TIME, clk_unit.wait, 24, "clock interval"), REG_NZ + PV_LEFT }, { DRDATA (TPS, clk_tps, 8), PV_LEFT + REG_HRO }, { NULL } }; MTAB clk_mod[] = { { MTAB_XTD|MTAB_VDV, 50, NULL, "50HZ", &clk_set_freq, NULL, NULL }, |
︙ | ︙ | |||
137 138 139 140 141 142 143 | } /* end switch */ } /* Unit service */ t_stat clk_svc (UNIT *uptr) { | < < | < < < < | | < | | | 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | } /* end switch */ } /* Unit service */ t_stat clk_svc (UNIT *uptr) { dev_done = dev_done | INT_CLK; /* set done */ int_req = INT_UPDATE; /* update interrupts */ tmxr_poll = sim_rtcn_calb (clk_tps, TMR_CLK); /* calibrate clock */ sim_activate_after (uptr, 1000000/clk_tps); /* reactivate unit */ return SCPE_OK; } /* Reset routine */ t_stat clk_reset (DEVICE *dptr) { dev_done = dev_done & ~INT_CLK; /* clear done, int */ int_req = int_req & ~INT_CLK; int_enable = int_enable & ~INT_CLK; /* clear enable */ if (!sim_is_running) { /* RESET (not CAF)? */ tmxr_poll = sim_rtcn_init_unit (&clk_unit, clk_unit.wait, TMR_CLK);/* init 100Hz timer */ sim_activate_after (&clk_unit, 1000000/clk_tps); /* activate 100Hz unit */ } return SCPE_OK; } /* Set frequency */ t_stat clk_set_freq (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { if (cptr) return SCPE_ARG; if ((val != 50) && (val != 60)) return SCPE_IERR; clk_tps = val; return SCPE_OK; } /* Show frequency */ t_stat clk_show_freq (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { fprintf (st, (clk_tps == 50)? "50Hz": "60Hz"); return SCPE_OK; } |
Changes to src/PDP8/pdp8_cpu.c.in.
1 2 | /* pdp8_cpu.c: PDP-8 CPU simulator | | | 1 2 3 4 5 6 7 8 9 10 | /* pdp8_cpu.c: PDP-8 CPU simulator Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
︙ | ︙ | |||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 | Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. cpu central processor 28-Apr-07 RMS Removed clock initialization 30-Oct-06 RMS Added idle and infinite loop detection 30-Sep-06 RMS Fixed SC value after DVI overflow (Don North) 22-Sep-05 RMS Fixed declarations (Sterling Garwood) 16-Aug-05 RMS Fixed C++ declaration and cast problems 06-Nov-04 RMS Added =n to SHOW HISTORY 31-Dec-03 RMS Fixed bug in set_cpu_hist | > > | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. cpu central processor 18-Sep-16 RMS Added alternate dispatch table for non-contiguous devices 17-Sep-13 RMS Fixed boot in wrong field problem (Dave Gesswein) 28-Apr-07 RMS Removed clock initialization 30-Oct-06 RMS Added idle and infinite loop detection 30-Sep-06 RMS Fixed SC value after DVI overflow (Don North) 22-Sep-05 RMS Fixed declarations (Sterling Garwood) 16-Aug-05 RMS Fixed C++ declaration and cast problems 06-Nov-04 RMS Added =n to SHOW HISTORY 31-Dec-03 RMS Fixed bug in set_cpu_hist |
︙ | ︙ | |||
198 199 200 201 202 203 204 | #define UNIT_V_MSIZE (UNIT_V_UF + 1) /* dummy mask */ #define UNIT_MSIZE (1 << UNIT_V_MSIZE) #define OP_KSF 06031 /* for idle */ #define HIST_PC 0x40000000 #define HIST_MIN 64 #define HIST_MAX 65536 | | | 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | #define UNIT_V_MSIZE (UNIT_V_UF + 1) /* dummy mask */ #define UNIT_MSIZE (1 << UNIT_V_MSIZE) #define OP_KSF 06031 /* for idle */ #define HIST_PC 0x40000000 #define HIST_MIN 64 #define HIST_MAX 65536 #define DECAY 0.01 typedef struct { int32 pc; int32 ea; int16 ir; int16 opnd; int16 lac; |
︙ | ︙ | |||
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | int32 UB = 0; /* User mode Buffer */ int32 UF = 0; /* User mode Flag */ int32 OSR = 0; /* Switch Register */ int32 tsc_ir = 0; /* TSC8-75 IR */ int32 tsc_pc = 0; /* TSC8-75 PC */ int32 tsc_cdf = 0; /* TSC8-75 CDF flag */ int32 tsc_enb = 0; /* TSC8-75 enabled */ int16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */ int32 pcq_p = 0; /* PC queue ptr */ REG *pcq_r = NULL; /* PC queue reg ptr */ int32 dev_done = 0; /* dev done flags */ int32 int_enable = INT_INIT_ENABLE; /* intr enables */ int32 int_req = 0; /* intr requests */ int32 stop_inst = 0; /* trap on ill inst */ int32 (*dev_tab[DEV_MAX])(int32 IR, int32 dat); /* device dispatch */ int32 hst_p = 0; /* history pointer */ int32 hst_lnt = 0; /* history length */ InstHistory *hst = NULL; /* instruction history */ | > | < < < < < < < < < | | < < < | < < < < < | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 | int32 UB = 0; /* User mode Buffer */ int32 UF = 0; /* User mode Flag */ int32 OSR = 0; /* Switch Register */ int32 tsc_ir = 0; /* TSC8-75 IR */ int32 tsc_pc = 0; /* TSC8-75 PC */ int32 tsc_cdf = 0; /* TSC8-75 CDF flag */ int32 tsc_enb = 0; /* TSC8-75 enabled */ int32 cpu_astop = 0; /* address stop */ int16 pcq[PCQ_SIZE] = { 0 }; /* PC queue */ int32 pcq_p = 0; /* PC queue ptr */ REG *pcq_r = NULL; /* PC queue reg ptr */ int32 dev_done = 0; /* dev done flags */ int32 int_enable = INT_INIT_ENABLE; /* intr enables */ int32 int_req = 0; /* intr requests */ int32 stop_inst = 0; /* trap on ill inst */ int32 (*dev_tab[DEV_MAX])(int32 IR, int32 dat); /* device dispatch */ int32 hst_p = 0; /* history pointer */ int32 hst_lnt = 0; /* history length */ InstHistory *hst = NULL; /* instruction history */ /* ---PiDP add--------------------------------------------------------------------------------------------- */ extern float brtval[96]; void setleds(uint32 sPC, uint32 sMA, uint16 sMB, uint16 sIR, int32 sLAC, int32 sMQ, int32 sIF, int32 sDF, int32 sTT); uint16 lctr=0; int swStop = 0, swExam = 0, swDep = 0, swCont2 = 0, swStart = 0, swSingStep = 0, swAttach = 0; char mountedFiles[8][CBUFSIZE]; char swDevCode[4]; int awfulHackFlag=0; // truly terrible even for me - break out of sim and start new script in scp.c #include <dirent.h> // for USB stick searching int mountUSBStickFile(int devNo, char *devCode, char *sPath); char xcbuf[CBUFSIZE], *xcptr; /* ---PiDP end---------------------------------------------------------------------------------------------- */ t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); t_stat cpu_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); t_stat cpu_reset (DEVICE *dptr); t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat cpu_set_hist (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_bool build_dev_tab (void); /* CPU data structures cpu_dev CPU device descriptor cpu_unit CPU unit descriptor cpu_reg CPU register list cpu_mod CPU modifier list */ UNIT cpu_unit = { UDATA (NULL, UNIT_FIX + UNIT_BINK, MAXMEMSIZE) }; REG cpu_reg[] = { { ORDATAD (PC, saved_PC, 15, "program counter") }, { ORDATAD (AC, saved_LAC, 12, "accumulator") }, { FLDATAD (L, saved_LAC, 12, "link") }, { ORDATAD (MQ, saved_MQ, 12, "multiplier-quotient") }, { ORDATAD (SR, OSR, 12, "front panel switches") }, { GRDATAD (IF, saved_PC, 8, 3, 12, "instruction field") }, { GRDATAD (DF, saved_DF, 8, 3, 12, "data field") }, { GRDATAD (IB, IB, 8, 3, 12, "instruction field buffter") }, { ORDATAD (SF, SF, 7, "save field") }, { FLDATAD (UB, UB, 0, "user mode buffer") }, { FLDATAD (UF, UF, 0, "user mode flag") }, { ORDATAD (SC, SC, 5, "EAE shift counter") }, { FLDATAD (GTF, gtf, 0, "EAE greater than flag") }, { FLDATAD (EMODE, emode, 0, "EAE mode (0 = A, 1 = B)") }, { FLDATAD (ION, int_req, INT_V_ION, "interrupt enable") }, { FLDATAD (ION_DELAY, int_req, INT_V_NO_ION_PENDING, "interrupt enable delay for ION") }, { FLDATAD (CIF_DELAY, int_req, INT_V_NO_CIF_PENDING, "interrupt enable delay for CIF") }, { FLDATAD (PWR_INT, int_req, INT_V_PWR, "power fail interrupt") }, { FLDATAD (UF_INT, int_req, INT_V_UF, "user mode violation interrupt") }, { ORDATAD (INT, int_req, INT_V_ION+1, "interrupt pending flags"), REG_RO }, { ORDATAD (DONE, dev_done, INT_V_DIRECT, "device done flags"), REG_RO }, { ORDATAD (ENABLE, int_enable, INT_V_DIRECT, "device interrupt enable flags"), REG_RO }, { BRDATAD (PCQ, pcq, 8, 15, PCQ_SIZE, "PC prior to last JMP, JMS, or interrupt; most recent PC change first"), REG_RO+REG_CIRC }, { ORDATA (PCQP, pcq_p, 6), REG_HRO }, { FLDATAD (STOP_INST, stop_inst, 0, "stop on undefined instruction") }, { ORDATAD (WRU, sim_int_char, 8, "interrupt character") }, { NULL } }; MTAB cpu_mod[] = { { UNIT_NOEAE, UNIT_NOEAE, "no EAE", "NOEAE", NULL }, { UNIT_NOEAE, 0, "EAE", "EAE", NULL }, { MTAB_XTD|MTAB_VDV, 0, "IDLE", "IDLE", &sim_set_idle, &sim_show_idle }, |
︙ | ︙ | |||
352 353 354 355 356 357 358 | int32 IR, MB, IF, DF, LAC, MQ; uint32 PC, MA; int32 device, pulse, temp, iot_data; t_stat reason; /* Restore register state */ | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 | int32 IR, MB, IF, DF, LAC, MQ; uint32 PC, MA; int32 device, pulse, temp, iot_data; t_stat reason; /* Restore register state */ if (build_dev_tab ()) /* build dev_tab */ return SCPE_STOP; PC = saved_PC & 007777; /* load local copies */ IF = saved_PC & 070000; DF = saved_DF & 070000; LAC = saved_LAC & 017777; MQ = saved_MQ & 07777; int_req = INT_UPDATE; reason = 0; /* ---PiDP add--------------------------------------------------------------------------------------------- */ int swDevice; char sScript[256]; MA = MB = IR = 0; // have to add this to avoid crash when stop switch is set at start - MA would be undefined in setleds setleds(PC, MA, MB, MB, LAC, MQ, IF, DF, 0); // note MB used // light up leds for 1st time, only needed when stop switch set at start /* ---PiDP end---------------------------------------------------------------------------------------------- */ /* Main instruction fetch/decode loop */ while (reason == 0) { /* loop until halted */ /* ---PiDP add--------------------------------------------------------------------------------------------- */ awfulHackFlag = 0; // no do script pending. Did I mention awful? /* ---PiDP end---------------------------------------------------------------------------------------------- */ if (sim_interval <= 0) { /* check clock queue */ if ((reason = sim_process_event ())) break; } /* ---PiDP add--------------------------------------------------------------------------------------------- */ // this bit of code detects SING_INST as the special features switch. // when DF switches are set, that raises a hacked-in-to-simh signal to ATTACH PTR <filename> // when IF switches are set, that raises a hacked-in-to-simh signal to DO <filename> (boot script) if (pidp8i_gpio_present && (switchstatus[2] & SS2_S_STEP)==0) { if (swAttach==0) // if this is the first time we detect it, { swAttach=1; // make this a momentary switch in software // 1. Scan DF to see if any devices need to be mounted (DF=0 --> nothing to mount) swDevice = (((switchstatus[1] >> 11) & 1)==0?4:0) +(((switchstatus[1] >> 10) & 1)==0?2:0) +(((switchstatus[1] >> 9) & 1)==0?1:0); if (swDevice!=0) { switch(swDevice) { case 1: strcpy(swDevCode,"ptr"); break; // PTR paper tape reader case 2: strcpy(swDevCode,"ptp"); break; // High speed paper tape punch case 3: strcpy(swDevCode,"dt0"); break; // TC08 DECtape (#8 is first!) case 4: strcpy(swDevCode,"dt1"); break; case 5: strcpy(swDevCode,"rx0"); break; // RX8E (8/e peripheral!) case 6: strcpy(swDevCode,"rx1"); break; case 7: strcpy(swDevCode,"rl0"); break; // RL8A } xcptr=&xcbuf[0]; // set string pointer to start mountUSBStickFile(swDevice, swDevCode, xcptr); } // 2. Scan IF to see if we need to reboot with a new bootscript swDevice = (((switchstatus[1] >> 8) & 1)==0?4:0) +(((switchstatus[1] >> 7) & 1)==0?2:0) +(((switchstatus[1] >> 6) & 1)==0?1:0); if (swDevice!=0) { sprintf(sScript,"@BOOTDIR@/%d.script", swDevice); // make filename printf("\r\n\nRebooting %s\r\n\n", sScript); reason = STOP_HALT; awfulHackFlag = swDevice; // this triggers a do command after leaving the simulator run. PC = saved_PC = 0; /* Clear all registers */ IF = saved_PC = 0; DF = saved_DF = 0; LAC = saved_LAC = 0; MQ = saved_MQ = 0; int_req = 0; } } } if (swAttach==1) // Sing_Step switch is back to off again if ((switchstatus[2] & SS2_S_STEP)!=0) // switch deactivated swAttach=0; // reset 'avoid repeat' indicator // 3. Scan for host poweroff command (Sing_Step + Sing_Inst + Stop) if (pidp8i_gpio_present && ((switchstatus[2] & (SS2_S_STEP | SS2_S_INST | SS2_STOP))==0)) { printf("\r\nShutdown\r\n\r\n"); reason = STOP_HALT; awfulHackFlag = 8; // this triggers an exit command after leaving the simulator run. if(spawn_cmd (0, "sudo /bin/systemctl poweroff")!=SCPE_OK) printf("\r\n\r\npoweroff failed\r\n\r\n"); } // 4. Scan for host reboot command (Sing_Step + Sing_Inst + Start) if (pidp8i_gpio_present && ((switchstatus[2] & (SS2_S_STEP | SS2_S_INST | SS2_START))==0)) { printf("\r\nReboot\r\n\r\n"); reason = STOP_HALT; awfulHackFlag = 8; // this triggers an exit command after leaving the simulator run. if(spawn_cmd (0, "sudo /bin/systemctl reboot")!=SCPE_OK) printf("\r\n\r\nreboot failed\r\n\r\n"); } #if 0 // 5. Sing_Step + Sing_Inst + Load Add if (pidp8i_gpio_present && ((switchstatus[2] & (SS2_S_STEP | SS2_S_INST | SS2_L_ADD))==0)) { } // 6. Sing_Step + Sing_Inst + Deposit if (pidp8i_gpio_present && ((switchstatus[2] & (SS2_S_STEP | SS2_S_INST | SS2_DEP))==0)) { } #endif /* ---PiDP end---------------------------------------------------------------------------------------------- */ /* ---PiDP add--------------------------------------------------------------------------------------------- */ if (pidp8i_gpio_present && (switchstatus[2] & SS2_START)==0) // START switch activated if (swStart==0) { int_req = int_req & ~INT_ION; // disable ION. says so in handbook, true? LAC = 0; // Clear LAC; // IR = 0 // clear IR (handbook says so but would be weird) MB = 0; // clear MB. MA = PC & 07777; // transfer PC into MA (not necessary because IR is redone in code below? swStop = 0; swStart = 1; // single shot } if (swStart==1) if ((switchstatus[2] & SS2_START)!=0) // START switch deactivated swStart=0; // reset 'avoid repeat' indicator if (pidp8i_gpio_present && (switchstatus[2] & SS2_CONT)==0) // CONT switch activated if (swCont2==0) { swStop = 0; // meaning resume execution // ? is this done: MB contains instruction to be executed after CONT is pressed swCont2 = 1; // single shot goto contPoint; // note: only for cont not for start } if (swCont2==1) if ((switchstatus[2] & SS2_CONT)!=0) // CONT switch deactivated swCont2=0; // reset 'avoid repeat' indicator if (pidp8i_gpio_present && (switchstatus[2] & SS2_L_ADD)==0) // LOAD_ADD switch activated { PC = switchstatus[0] ^ 07777; // copy SR into PC // copy DF and IF too DF = (((switchstatus[1] >> 11) & 1)==0?4:0) +(((switchstatus[1] >> 10) & 1)==0?2:0) +(((switchstatus[1] >> 9) & 1)==0?1:0); DF = DF<<12; // DF is saved in oct digit 5, so it's easy to add to PC IF = (((switchstatus[1] >> 8) & 1)==0?4:0) +(((switchstatus[1] >> 7) & 1)==0?2:0) +(((switchstatus[1] >> 6) & 1)==0?1:0); IF = IF<<12; // DF is saved in oct digit 5, so it's easy to add to PC } if (pidp8i_gpio_present && (switchstatus[2] & SS2_DEP)==0) // DEP switch activated { if (swDep==0) { M[PC] = switchstatus[0] ^ 07777; /* ??? in 66 handbook: strictly speaking, SR goes into AC, then AC into MB. Does it clear AC afterwards? If not, needs fix */ MB = M[PC]; MA = PC & 07777; // 20150315: MA trails PC on FP PC = (PC + 1) & 07777; // increment PC swDep=1; // avoid repeat } } if (swDep==1) if ((switchstatus[2] & SS2_DEP)!=0) // DEP switch deactivated swDep=0; // reset 'avoid repeat' indicator if (pidp8i_gpio_present && (switchstatus[2] & SS2_EXAM)==0) // EXAM switch activated { if (swExam==0) { MB = M[PC]; MA = PC & 07777; // 20150315: MA trails PC on FP PC = (PC + 1) & 07777; // increment PC swExam=1; // avoid repeat } } if (swExam==1) if ((switchstatus[2] & SS2_EXAM)!=0) // EXAM switch deactivated swExam=0; // reset 'avoid repeat' indicator // do what needs to be done in STOP mode: if (swStop==1) { setleds(PC, MA, M[MA] , IR, LAC, MQ, IF, DF, 0); // note M[MA] used in this call, not MB sim_interval = sim_interval - 1; // otherwise, CTRL-E will never be acted upon in stop mode // WARNING: THIS MAY LEAD TO TROUBLE. MAYBE? goto skip; // a goto is period correct methinks } /* ---PiDP end---------------------------------------------------------------------------------------------- */ if (int_req > INT_PENDING) { /* interrupt? */ int_req = int_req & ~INT_ION; /* interrupts off */ SF = (UF << 6) | (IF >> 9) | (DF >> 12); /* form save field */ IF = IB = DF = UF = UB = 0; /* clear mem ext */ PCQ_ENTRY; /* save old PC */ M[0] = PC; /* save PC in 0 */ PC = 1; /* fetch next from 1 */ } MA = IF | PC; /* form PC */ if (sim_brk_summ && sim_brk_test (MA, (1u << SIM_BKPT_V_SPC) | SWMASK ('E'))) { /* breakpoint? */ reason = STOP_IBKPT; /* stop simulation */ break; } IR = M[MA]; /* fetch instruction */ //PC increment was moved down before, bad idea? now is where it originally was. setleds(PC, MA, M[MA], IR, LAC, MQ, IF, DF, 0); // State=0:Fetch int_req = int_req | INT_NO_ION_PENDING; /* clear ION delay */ sim_interval = sim_interval - 1; /* ---PiDP add--------------------------------------------------------------------------------------------- */ if (pidp8i_gpio_present && (switchstatus[2] & SS2_STOP)==0) // STOP switch activated { swStop = 1; goto skip; } /* ---PiDP end---------------------------------------------------------------------------------------------- */ //--------------- moved to here: //no longer PC = (PC + 1) & 07777; /* increment PC */ //--------------- /* ---PiDP add--------------------------------------------------------------------------------------------- */ contPoint: ; // goto here if CONT has been pressed to finish current instruction // SING_STEP: swStop=0 if we're here. If SingStep then this time, let it go but trigger a stop on the next pass if (pidp8i_gpio_present && (switchstatus[2] & SS2_S_INST)==0) // SING_INST switch activated { if (swSingStep==0) // allow it this time, swSingStep=1; // but note to block it next time! else // else: this is the next time... { swSingStep=0; // reset flipflop swStop=1; // and do what you do when STOP is pressed. goto skip; } } /* ---PiDP end---------------------------------------------------------------------------------------------- */ PC = (PC + 1) & 07777; /* increment PC */ /* Instruction decoding. |
︙ | ︙ | |||
645 646 647 648 649 650 651 | Autoindex calculations always occur within the same field as the instruction fetch. The field must exist; otherwise, the instruction fetched would be 0000, and indirect addressing could not occur. Note that MA contains IF'PC. */ | < < < < < | 632 633 634 635 636 637 638 639 640 641 642 643 644 645 | Autoindex calculations always occur within the same field as the instruction fetch. The field must exist; otherwise, the instruction fetched would be 0000, and indirect addressing could not occur. Note that MA contains IF'PC. */ if (hst_lnt) { /* history enabled? */ int32 ea; hst_p = (hst_p + 1); /* next entry */ if (hst_p >= hst_lnt) hst_p = 0; |
︙ | ︙ | |||
1183 1184 1185 1186 1187 1188 1189 | else { if (IR & 04){ /* OSR */ //--- PiDP bug fix 20150822---------------------------------------------------------------- //OSR never got updated when PDP-8 is running //separate bug, not fixed yet: OSR should be updated by DEP and LOAD_ADD switch handlers I think // OSR should probably be loaded with switchstatus[0] in every cycle. Doing it here is just a temp fix. //----------------------------------------------------------------------------------------- | < | | | | < | 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 | else { if (IR & 04){ /* OSR */ //--- PiDP bug fix 20150822---------------------------------------------------------------- //OSR never got updated when PDP-8 is running //separate bug, not fixed yet: OSR should be updated by DEP and LOAD_ADD switch handlers I think // OSR should probably be loaded with switchstatus[0] in every cycle. Doing it here is just a temp fix. //----------------------------------------------------------------------------------------- OSR = switchstatus[0] ^ 07777; LAC = LAC | OSR; } if (IR & 02) /* HLT */ //--- PiDP change-------------------------------------------------------------------------- // reason = STOP_HALT; //----------------------------------------------------------------------------------------- swStop=1; // don't step out of simulation, just do STOP //--- end of PiDP change-------------------------------------------------------------------------- } break; } /* end if group 2 */ /* OPR group 3 standard MQA!MQL exchanges AC and MQ, as follows: |
︙ | ︙ | |||
1627 1628 1629 1630 1631 1632 1633 | default: /* I/O device */ if (dev_tab[device]) { /* dev present? */ /* --------------------------------------------------------------------------------------------------------- */ // Any other device will trigger IOP --> light pause: /* --------------------------------------------------------------------------------------------------------- */ | | | | | | | | | 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 | default: /* I/O device */ if (dev_tab[device]) { /* dev present? */ /* --------------------------------------------------------------------------------------------------------- */ // Any other device will trigger IOP --> light pause: /* --------------------------------------------------------------------------------------------------------- */ setleds(PC, MA, MB, IR, LAC, MQ, IF, DF, 2); // State 2:Pause iot_data = dev_tab[device] (IR, iot_data); LAC = (LAC & 010000) | (iot_data & 07777); if (iot_data & IOT_SKP) PC = (PC + 1) & 07777; /* --------------------------------------------------------------------------------------------------------- */ else { // simh does not distinguish between the various Data Break types. // WC, CA and Break are lit up jointly on the PiDP. Although this can be improved upon. //ledstatus[5] |= 1<<0; // set WC led //ledstatus[6] |= 1<<11; // set CA led //ledstatus[6] |= 1<<10; // set Break led } /* --------------------------------------------------------------------------------------------------------- */ if (iot_data >= IOT_REASON) reason = iot_data >> IOT_V_REASON; } else reason = stop_inst; /* stop on flag */ break; } /* end switch device */ /* --------------------------------------------------------------------------------------------------------- */ //ledstatus[5] &= ~(1<<0); // clear WC led //ledstatus[6] &= ~(1<<11); // clear CA led //ledstatus[6] &= ~(1<<10); // clear Break led /* --------------------------------------------------------------------------------------------------------- */ break; /* end case IOT */ } /* end switch opcode */ /* ------------------------------------------------------------------------- */ if (IR<05000) setleds(PC, MA, MB, IR, LAC, MQ, IF, DF, 1); // State 1:Execute /* ------------------------------------------------------------------------- */ /* ------------------------------------------------------------------------- */ skip: ; // goto label /* ------------------------------------------------------------------------- */ } /* end while */ /* Simulation halted */ saved_PC = IF | (PC & 07777); /* save copies */ |
︙ | ︙ | |||
1693 1694 1695 1696 1697 1698 1699 | int_req = (int_req & ~INT_ION) | INT_NO_CIF_PENDING; saved_DF = IB = saved_PC & 070000; UF = UB = gtf = emode = 0; pcq_r = find_reg ("PCQ", NULL, dptr); if (pcq_r) pcq_r->qptr = 0; else return SCPE_IERR; | > | > | 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 | int_req = (int_req & ~INT_ION) | INT_NO_CIF_PENDING; saved_DF = IB = saved_PC & 070000; UF = UB = gtf = emode = 0; pcq_r = find_reg ("PCQ", NULL, dptr); if (pcq_r) pcq_r->qptr = 0; else return SCPE_IERR; sim_brk_types = SWMASK ('E') | SWMASK('I'); sim_brk_dflt = SWMASK ('E'); return SCPE_OK; } /* Set PC for boot (PC<14:12> will typically be 0) */ void cpu_set_bootpc (int32 pc) { saved_PC = pc; /* set PC, IF */ saved_DF = IB = pc & 070000; /* set IB, DF */ return; } /* Memory examine */ t_stat cpu_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw) { if (addr >= MEMSIZE) return SCPE_NXM; if (vptr != NULL) |
︙ | ︙ | |||
1728 1729 1730 1731 1732 1733 1734 | return SCPE_NXM; M[addr] = val & 07777; return SCPE_OK; } /* Memory size change */ | | | | 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 | return SCPE_NXM; M[addr] = val & 07777; return SCPE_OK; } /* Memory size change */ t_stat cpu_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { int32 mc = 0; uint32 i; if ((val <= 0) || (val > MAXMEMSIZE) || ((val & 07777) != 0)) return SCPE_ARG; for (i = val; i < MEMSIZE; i++) mc = mc | M[i]; if ((mc != 0) && (!get_yn ("Really truncate memory [N]?", FALSE))) return SCPE_OK; MEMSIZE = val; for (i = MEMSIZE; i < MAXMEMSIZE; i++) M[i] = 0; return SCPE_OK; } /* Change device number for a device */ t_stat set_dev (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { DEVICE *dptr; DIB *dibp; uint32 newdev; t_stat r; if (cptr == NULL) |
︙ | ︙ | |||
1773 1774 1775 1776 1777 1778 1779 | return r; dibp->dev = newdev; /* store */ return SCPE_OK; } /* Show device number for a device */ | | | 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 | return r; dibp->dev = newdev; /* store */ return SCPE_OK; } /* Show device number for a device */ t_stat show_dev (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { DEVICE *dptr; DIB *dibp; if (uptr == NULL) return SCPE_IERR; dptr = find_dev_from_unit (uptr); |
︙ | ︙ | |||
1817 1818 1819 1820 1821 1822 1823 | for (i = 0; i < DEV_MAX; i++) /* clr table */ dev_tab[i] = NULL; for (i = 0; i < ((uint32) sizeof (std_dev)); i++) /* std entries */ dev_tab[std_dev[i]] = &bad_dev; for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* add devices */ dibp = (DIB *) dptr->ctxt; /* get DIB */ if (dibp && !(dptr->flags & DEV_DIS)) { /* enabled? */ | > > | | | | > > > > > > > > > | | | | | | | | > | | 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 | for (i = 0; i < DEV_MAX; i++) /* clr table */ dev_tab[i] = NULL; for (i = 0; i < ((uint32) sizeof (std_dev)); i++) /* std entries */ dev_tab[std_dev[i]] = &bad_dev; for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { /* add devices */ dibp = (DIB *) dptr->ctxt; /* get DIB */ if (dibp && !(dptr->flags & DEV_DIS)) { /* enabled? */ if (dibp->dsp_tbl) { /* dispatch table? */ DIB_DSP *dspp = dibp->dsp_tbl; /* set ptr */ for (j = 0; j < dibp->num; j++, dspp++) { /* loop thru tbl */ if (dspp->dsp) { /* any dispatch? */ if (dev_tab[dspp->dev]) { /* already filled? */ sim_printf ("%s device number conflict at %02o\n", sim_dname (dptr), dibp->dev + j); return TRUE; } dev_tab[dspp->dev] = dspp->dsp; /* fill */ } /* end if dsp */ } /* end for j */ } /* end if dsp_tbl */ else { /* inline dispatches */ for (j = 0; j < dibp->num; j++) { /* loop thru disp */ if (dibp->dsp[j]) { /* any dispatch? */ if (dev_tab[dibp->dev + j]) { /* already filled? */ sim_printf ("%s device number conflict at %02o\n", sim_dname (dptr), dibp->dev + j); return TRUE; } dev_tab[dibp->dev + j] = dibp->dsp[j]; /* fill */ } /* end if dsp */ } /* end for j */ } /* end else */ } /* end if enb */ } /* end for i */ return FALSE; } /* Set history */ t_stat cpu_set_hist (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { int32 i, lnt; t_stat r; if (cptr == NULL) { for (i = 0; i < hst_lnt; i++) hst[i].pc = 0; |
︙ | ︙ | |||
1868 1869 1870 1871 1872 1873 1874 | hst_lnt = lnt; } return SCPE_OK; } /* Show history */ | | | < < | 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 | hst_lnt = lnt; } return SCPE_OK; } /* Show history */ t_stat cpu_show_hist (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { int32 l, k, di, lnt; const char *cptr = (const char *) desc; t_stat r; t_value sim_eval; InstHistory *h; if (hst_lnt == 0) /* enabled? */ return SCPE_NOFNC; if (cptr) { lnt = (int32) get_uint (cptr, 10, hst_lnt, &r); if ((r != SCPE_OK) || (lnt == 0)) return SCPE_ARG; |
︙ | ︙ | |||
1918 1919 1920 1921 1922 1923 1924 | /* ------------------------------------------------------------------------------------ */ uint32 tempLeds=0; void setleds(uint32 sPC, uint32 sMA, uint16 sMB, uint16 sIR, int32 sLAC, int32 sMQ, int32 sIF, int32 sDF, int32 sTT) { int row,col,msk,m; float *p; | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 | /* ------------------------------------------------------------------------------------ */ uint32 tempLeds=0; void setleds(uint32 sPC, uint32 sMA, uint16 sMB, uint16 sIR, int32 sLAC, int32 sMQ, int32 sIF, int32 sDF, int32 sTT) { int row,col,msk,m; float *p; if (++lctr<1049) return; lctr=0; //printf("%o,%d\r\n",sPC,sTT); ledstatus[0] = (uint32) sPC; ledstatus[1] = (uint32) sMA; ledstatus[2] = (uint32) sMB; ledstatus[3] = (uint32) sLAC; ledstatus[4] = (uint32) sMQ; // instruction leds: decode instruction in memory (could also be found in IR) //this *should* be found in IR, methinks. Just from memory is possibly problematic // tempLeds = ledstatus[5] & 12; // preserve value of fetch/execute handled in main loop // tempLeds = ledstatus[5] & 13; // preserve value of fetch/execute/WC handled in main loop tempLeds = 0; // Clear all lights if (sTT==0) tempLeds |= 1<<3; // set fetch if (sTT==1) tempLeds |= 1<<2; // set execute switch((sIR & 0xE00) >> 9) { case 0: tempLeds+=(1<<11); break; // 000 AND case 1: tempLeds+=(1<<10); break; // 001 TAD case 2: tempLeds+=(1<<9); break; // 010 DCA case 3: tempLeds+=(1<<8); break; // 011 ISZ case 4: tempLeds+=(1<<7); break; // 100 JMS case 5: tempLeds+=(1<<6); break; // 101 JMP case 6: tempLeds+=(1<<5); break; // 110 IOT case 7: tempLeds+=(1<<4); break; // 111-0 and 111-1 OPR group 1 & 2 default: printf("instruction error in multiplexer"); // debug only, remove } if ( ((sIR & 0xE00) >> 9) <= 5) // <=5: all memory reference instructions if ((sIR & 0x100) != 0) // if fourth bit is set, this is indirect addressing, so... tempLeds += (1<<1); // ...light defer ledstatus[5]=tempLeds; tempLeds = 0; //ledstatus[6]; // want to preserve value of some leds set in main loop // tempLeds = ledstatus[6] & 0xd00; // want to preserve value of CA/break/pause set in main loop if (sTT==2) tempLeds |= 1<<8; // set pause led // CAddr led - handled in main loop // Break led - handled in main loop tempLeds |= ((int_req & INT_ION)==0?0:1)<<9; // ION led // Pause led - handled in main loop if (swStop==0) tempLeds |= (1<<7); // RUN led ledstatus[6]=tempLeds; // DF & IF in simh live in the 3 bits of octal digit #5... tempLeds = (uint32) (sDF>>3); // shift down from oct digit 5 to HW cols 1-3 (SW col[3-5]) tempLeds += (uint32) (sIF>>6); // shift down from oct digit 5 to HW cols 4-6 (SW col[9-11] // Link tempLeds += (uint32) ((sLAC & 010000)>>7); // shift down from bit 12 to bit 8 ledstatus[7]=tempLeds; for (row=m=0,p=brtval;row<8;row++) for (col=0,msk=1;col<12;col++,p++,m++,msk=msk<<1) { if (ledstatus[row]&msk) (*p)+=(32.0-*p)*DECAY; else (*p)-=*p*DECAY; } } /* ------------------------------------------------------------------------------------ */ //--- PiDP add ------------------------------------------------------------- int mountUSBStickFile(int devNo, char *devCode, char *sPath) { char sUSBPath[CBUFSIZE]; // will be "/media/usb0" etc char sFoundFile[CBUFSIZE]; // path & name of file that is found char fileExtension[4]; // will be ".RX" etc FILE *fp; DIR *pDir; struct dirent *pDirent; int i,j, alreadyMounted; fileExtension[0]='.'; // extension starts with a . strncpy(&fileExtension[1], devCode, 2); // extension is PT, RX, RL etc fileExtension[2]=0; // don't want device number sFoundFile[0]=0; // empty string, no file found yet // if mounting another image to a device, clear the current file from the mountlist: mountedFiles[devNo][0]=0x00; for (i=0;i<8;i++) // search all 8 USB mount points { sprintf(sUSBPath,"/media/usb%d",i); // usb sticks are numbered 0..7 //printf("1- %s\r\n", sUSBPath); pDir = opendir(sUSBPath); if (pDir==NULL) // that means usbmount not installed? { printf("\r\nCannot open usb%d directory\r\n", i); return 1; } while ((pDirent = readdir(pDir)) != NULL) // search all files in directory { if (strstr(pDirent->d_name,fileExtension)) { sprintf(sPath, "%s/%s", sUSBPath, pDirent->d_name); alreadyMounted=0; for (j=0;j<7;j++) { if (strncmp(mountedFiles[j],sPath, CBUFSIZE)==0) alreadyMounted=1; //printf(" >%s %d\r\n", mountedFiles[j], strncmp(mountedFiles[j],sPath, CBUFSIZE)); } if (alreadyMounted==0) { strcpy(sFoundFile, sPath); //printf("2-%s\r\n", sFoundFile); break; // break out of while loop } } } closedir (pDir); if (sFoundFile[0]!=0) break; } //printf("3-%s\r\n", sFoundFile); if (sFoundFile[0]==0x00) // no file found, exit { printf("\r\nNo unmounted %s file found\r\n", devCode); return 1; } fp = fopen(sFoundFile, "r"); // check file is OK if (fp==NULL) { printf("\r\nError opening file %s\r\n", sFoundFile); return 1; } fclose (fp); sprintf(sPath,"%s %s", devCode, sFoundFile); // print cmd string // printf("\r\nMounting %s\r\n", sPath); if(attach_cmd ((int32) 0, xcptr)==SCPE_OK) // issue simh attach command { strcpy(mountedFiles[devNo], sFoundFile); // add file to mount list printf("\r\nMounted %s %s\r\n", devCode, mountedFiles[devNo]); } else { printf("\r\nSimH error mounting %s\r\n", devCode); return 1; } return 0; } |
Changes to src/PDP8/pdp8_ct.c.
︙ | ︙ | |||
152 153 154 155 156 157 158 | uint32 ct_stopioe = 1; /* stop on error */ uint8 *ct_xb = NULL; /* transfer buffer */ static uint8 ct_fnc_tab[SRA_M_FNC + 1] = { OP_FWD, 0 , OP_WRI|OP_FWD, OP_REV, OP_WRI|OP_FWD, OP_REV, 0, OP_FWD }; | < | | 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | uint32 ct_stopioe = 1; /* stop on error */ uint8 *ct_xb = NULL; /* transfer buffer */ static uint8 ct_fnc_tab[SRA_M_FNC + 1] = { OP_FWD, 0 , OP_WRI|OP_FWD, OP_REV, OP_WRI|OP_FWD, OP_REV, 0, OP_FWD }; int32 ct70 (int32 IR, int32 AC); t_stat ct_svc (UNIT *uptr); t_stat ct_reset (DEVICE *dptr); t_stat ct_attach (UNIT *uptr, CONST char *cptr); t_stat ct_detach (UNIT *uptr); t_stat ct_boot (int32 unitno, DEVICE *dptr); uint32 ct_updsta (UNIT *uptr); int32 ct_go_start (int32 AC); int32 ct_go_cont (UNIT *uptr, int32 AC); t_stat ct_map_err (UNIT *uptr, t_stat st); UNIT *ct_busy (void); |
︙ | ︙ | |||
184 185 186 187 188 189 190 | UNIT ct_unit[] = { { UDATA (&ct_svc, UNIT_ATTABLE+UNIT_ROABLE, CT_SIZE) }, { UDATA (&ct_svc, UNIT_ATTABLE+UNIT_ROABLE, CT_SIZE) }, }; REG ct_reg[] = { | | | | | | | | | | | | | | | | | | | 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | UNIT ct_unit[] = { { UDATA (&ct_svc, UNIT_ATTABLE+UNIT_ROABLE, CT_SIZE) }, { UDATA (&ct_svc, UNIT_ATTABLE+UNIT_ROABLE, CT_SIZE) }, }; REG ct_reg[] = { { ORDATAD (CTSRA, ct_sra, 8, "status register A") }, { ORDATAD (CTSRB, ct_srb, 8, "status register B") }, { ORDATAD (CTDB, ct_db, 8, "data buffer") }, { FLDATAD (CTDF, ct_df, 0, "data flag") }, { FLDATAD (RDY, ct_srb, 0, "ready flag") }, { FLDATAD (WLE, ct_srb, 8, "write lock error") }, { FLDATAD (WRITE, ct_write, 0, "TA60 write operation flag") }, { FLDATAD (INT, int_req, INT_V_CT, "interrupt request") }, { DRDATAD (BPTR, ct_bptr, 17, "buffer pointer") }, { DRDATAD (BLNT, ct_blnt, 17, "buffer length") }, { DRDATAD (STIME, ct_stime, 24, "operation start time"), PV_LEFT + REG_NZ }, { DRDATAD (CTIME, ct_ctime, 24, "character latency"), PV_LEFT + REG_NZ }, { FLDATAD (STOP_IOE, ct_stopioe, 0, "stop on I/O errors flag") }, { URDATA (UFNC, ct_unit[0].FNC, 8, 4, 0, CT_NUMDR, REG_HRO) }, { URDATA (UST, ct_unit[0].UST, 8, 2, 0, CT_NUMDR, REG_HRO) }, { URDATAD (POS, ct_unit[0].pos, 10, T_ADDR_W, 0, CT_NUMDR, PV_LEFT | REG_RO, "position, units 0-1") }, { FLDATA (DEVNUM, ct_dib.dev, 6), REG_HRO }, { NULL } }; MTAB ct_mod[] = { { MTUF_WLK, 0, "write enabled", "WRITEENABLED", NULL }, { MTUF_WLK, MTUF_WLK, "write locked", "LOCKED", NULL }, |
︙ | ︙ | |||
646 647 648 649 650 651 652 | if (ct_xb == NULL) return SCPE_MEM; return SCPE_OK; } /* Attach routine */ | | | 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 | if (ct_xb == NULL) return SCPE_MEM; return SCPE_OK; } /* Attach routine */ t_stat ct_attach (UNIT *uptr, CONST char *cptr) { t_stat r; r = sim_tape_attach (uptr, cptr); if (r != SCPE_OK) return r; ct_updsta (NULL); |
︙ | ︙ |
Changes to src/PDP8/pdp8_defs.h.
1 2 | /* pdp8_defs.h: PDP-8 simulator definitions | | | 1 2 3 4 5 6 7 8 9 10 | /* pdp8_defs.h: PDP-8 simulator definitions Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
︙ | ︙ | |||
19 20 21 22 23 24 25 26 27 28 29 30 31 32 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 18-Sep-13 RMS Added set_bootpc prototype 18-Apr-12 RMS Removed separate timer for additional terminals; Added clock_cosched prototype 22-May-10 RMS Added check for 64b definitions 21-Aug-07 RMS Added FPP8 support 13-Dec-06 RMS Added TA8E support 30-Oct-06 RMS Added infinite loop stop | > | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 18-Sep-16 RMS Added support for 16 additional terminals 18-Sep-13 RMS Added set_bootpc prototype 18-Apr-12 RMS Removed separate timer for additional terminals; Added clock_cosched prototype 22-May-10 RMS Added check for 64b definitions 21-Aug-07 RMS Added FPP8 support 13-Dec-06 RMS Added TA8E support 30-Oct-06 RMS Added infinite loop stop |
︙ | ︙ | |||
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | #define TMR_CLK 0 /* timer 0 = clock */ /* Device information block */ #define DEV_MAXBLK 8 /* max dev block */ #define DEV_MAX 64 /* total devices */ typedef struct { uint32 dev; /* base dev number */ uint32 num; /* number of slots */ int32 (*dsp[DEV_MAXBLK])(int32 IR, int32 dat); } DIB; /* Standard device numbers */ #define DEV_PTR 001 /* paper tape reader */ #define DEV_PTP 002 /* paper tape punch */ #define DEV_TTI 003 /* console input */ | > > > > > > | 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 | #define TMR_CLK 0 /* timer 0 = clock */ /* Device information block */ #define DEV_MAXBLK 8 /* max dev block */ #define DEV_MAX 64 /* total devices */ typedef struct { uint32 dev; /* device number */ int32 (*dsp)(int32 IR, int32 dat); /* dispatch */ } DIB_DSP; typedef struct { uint32 dev; /* base dev number */ uint32 num; /* number of slots */ int32 (*dsp[DEV_MAXBLK])(int32 IR, int32 dat); DIB_DSP *dsp_tbl; /* optional table */ } DIB; /* Standard device numbers */ #define DEV_PTR 001 /* paper tape reader */ #define DEV_PTP 002 /* paper tape punch */ #define DEV_TTI 003 /* console input */ |
︙ | ︙ | |||
110 111 112 113 114 115 116 117 118 119 120 121 122 123 | #define DEV_LPT 066 /* line printer */ #define DEV_MT 070 /* TM8E */ #define DEV_CT 070 /* TA8E */ #define DEV_RK 074 /* RK8E */ #define DEV_RX 075 /* RX8E/RX28 */ #define DEV_DTA 076 /* TC08 */ #define DEV_TD8E 077 /* TD8E */ /* Interrupt flags The interrupt flags consist of three groups: 1. Devices with individual interrupt enables. These record their interrupt requests in device_done and their enables | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | #define DEV_LPT 066 /* line printer */ #define DEV_MT 070 /* TM8E */ #define DEV_CT 070 /* TA8E */ #define DEV_RK 074 /* RK8E */ #define DEV_RX 075 /* RX8E/RX28 */ #define DEV_DTA 076 /* TC08 */ #define DEV_TD8E 077 /* TD8E */ /* Extra PTO8/KL8JA devices */ #define DEV_TTI1 040 #define DEV_TTO1 041 #define DEV_TTI2 042 #define DEV_TTO2 043 #define DEV_TTI3 044 #define DEV_TTO3 045 #define DEV_TTI4 046 #define DEV_TTO4 047 #define DEV_TTI5 034 #define DEV_TTO5 035 #define DEV_TTI6 011 #define DEV_TTO6 012 #define DEV_TTI7 030 #define DEV_TTO7 031 #define DEV_TTI8 032 #define DEV_TTO8 033 #define DEV_TTI9 050 #define DEV_TTO9 051 #define DEV_TTI10 052 #define DEV_TTO10 053 #define DEV_TTI11 054 #define DEV_TTO11 055 /* conflict: FPP */ #define DEV_TTI12 056 /* conflict: FPP */ #define DEV_TTO12 057 #define DEV_TTI13 070 /* conflict: CT, MT */ #define DEV_TTO13 071 #define DEV_TTI14 036 /* conflict: TSC */ #define DEV_TTO14 037 #define DEV_TTI15 072 #define DEV_TTO15 073 #define DEV_TTI16 006 #define DEV_TTO16 007 /* Interrupt flags The interrupt flags consist of three groups: 1. Devices with individual interrupt enables. These record their interrupt requests in device_done and their enables |
︙ | ︙ | |||
141 142 143 144 145 146 147 | #define INT_V_LPT (INT_V_START+0) /* line printer */ #define INT_V_PTP (INT_V_START+1) /* tape punch */ #define INT_V_PTR (INT_V_START+2) /* tape reader */ #define INT_V_TTO (INT_V_START+3) /* terminal */ #define INT_V_TTI (INT_V_START+4) /* keyboard */ #define INT_V_CLK (INT_V_START+5) /* clock */ #define INT_V_TTO1 (INT_V_START+6) /* tto1 */ | | | | | | | | 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | #define INT_V_LPT (INT_V_START+0) /* line printer */ #define INT_V_PTP (INT_V_START+1) /* tape punch */ #define INT_V_PTR (INT_V_START+2) /* tape reader */ #define INT_V_TTO (INT_V_START+3) /* terminal */ #define INT_V_TTI (INT_V_START+4) /* keyboard */ #define INT_V_CLK (INT_V_START+5) /* clock */ #define INT_V_TTO1 (INT_V_START+6) /* tto1 */ //#define INT_V_TTO2 (INT_V_START+7) /* tto2 */ //#define INT_V_TTO3 (INT_V_START+8) /* tto3 */ //#define INT_V_TTO4 (INT_V_START+9) /* tto4 */ #define INT_V_TTI1 (INT_V_START+10) /* tti1 */ //#define INT_V_TTI2 (INT_V_START+11) /* tti2 */ //#define INT_V_TTI3 (INT_V_START+12) /* tti3 */ //#define INT_V_TTI4 (INT_V_START+13) /* tti4 */ #define INT_V_DIRECT (INT_V_START+14) /* direct start */ #define INT_V_RX (INT_V_DIRECT+0) /* RX8E */ #define INT_V_RK (INT_V_DIRECT+1) /* RK8E */ #define INT_V_RF (INT_V_DIRECT+2) /* RF08 */ #define INT_V_DF (INT_V_DIRECT+3) /* DF32 */ #define INT_V_MT (INT_V_DIRECT+4) /* TM8E */ #define INT_V_DTA (INT_V_DIRECT+5) /* TC08 */ |
︙ | ︙ | |||
173 174 175 176 177 178 179 | #define INT_LPT (1 << INT_V_LPT) #define INT_PTP (1 << INT_V_PTP) #define INT_PTR (1 << INT_V_PTR) #define INT_TTO (1 << INT_V_TTO) #define INT_TTI (1 << INT_V_TTI) #define INT_CLK (1 << INT_V_CLK) #define INT_TTO1 (1 << INT_V_TTO1) | | | | | | | | < | | | 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | #define INT_LPT (1 << INT_V_LPT) #define INT_PTP (1 << INT_V_PTP) #define INT_PTR (1 << INT_V_PTR) #define INT_TTO (1 << INT_V_TTO) #define INT_TTI (1 << INT_V_TTI) #define INT_CLK (1 << INT_V_CLK) #define INT_TTO1 (1 << INT_V_TTO1) //#define INT_TTO2 (1 << INT_V_TTO2) //#define INT_TTO3 (1 << INT_V_TTO3) //#define INT_TTO4 (1 << INT_V_TTO4) #define INT_TTI1 (1 << INT_V_TTI1) //#define INT_TTI2 (1 << INT_V_TTI2) //#define INT_TTI3 (1 << INT_V_TTI3) //#define INT_TTI4 (1 << INT_V_TTI4) #define INT_RX (1 << INT_V_RX) #define INT_RK (1 << INT_V_RK) #define INT_RF (1 << INT_V_RF) #define INT_DF (1 << INT_V_DF) #define INT_MT (1 << INT_V_MT) #define INT_DTA (1 << INT_V_DTA) #define INT_RL (1 << INT_V_RL) #define INT_CT (1 << INT_V_CT) #define INT_PWR (1 << INT_V_PWR) #define INT_UF (1 << INT_V_UF) #define INT_TSC (1 << INT_V_TSC) #define INT_FPP (1 << INT_V_FPP) #define INT_NO_ION_PENDING (1 << INT_V_NO_ION_PENDING) #define INT_NO_CIF_PENDING (1 << INT_V_NO_CIF_PENDING) #define INT_ION (1 << INT_V_ION) #define INT_DEV_ENABLE ((1 << INT_V_DIRECT) - 1) /* devices w/enables */ #define INT_ALL ((1 << INT_V_OVHD) - 1) /* all interrupts */ #define INT_INIT_ENABLE (INT_TTI+INT_TTO+INT_PTR+INT_PTP+INT_LPT) | \ (INT_TTI1+INT_TTO1) #define INT_PENDING (INT_ION+INT_NO_CIF_PENDING+INT_NO_ION_PENDING) #define INT_UPDATE ((int_req & ~INT_DEV_ENABLE) | (dev_done & int_enable)) /* Function prototypes */ t_stat set_dev (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat show_dev (FILE *st, UNIT *uptr, int32 val, CONST void *desc); void cpu_set_bootpc (int32 pc); #endif |
Changes to src/PDP8/pdp8_df.c.
︙ | ︙ | |||
104 105 106 107 108 109 110 | int32 df_da = 0; /* disk address */ int32 df_done = 0; /* done flag */ int32 df_wlk = 0; /* write lock */ int32 df_time = 10; /* inter-word time */ int32 df_burst = 1; /* burst mode flag */ int32 df_stopioe = 1; /* stop on error */ | < | | | | | | | | | | | | | 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 | int32 df_da = 0; /* disk address */ int32 df_done = 0; /* done flag */ int32 df_wlk = 0; /* write lock */ int32 df_time = 10; /* inter-word time */ int32 df_burst = 1; /* burst mode flag */ int32 df_stopioe = 1; /* stop on error */ int32 df60 (int32 IR, int32 AC); int32 df61 (int32 IR, int32 AC); int32 df62 (int32 IR, int32 AC); t_stat df_svc (UNIT *uptr); t_stat pcell_svc (UNIT *uptr); t_stat df_reset (DEVICE *dptr); t_stat df_boot (int32 unitno, DEVICE *dptr); t_stat df_attach (UNIT *uptr, CONST char *cptr); t_stat df_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc); /* DF32 data structures df_dev RF device descriptor df_unit RF unit descriptor pcell_unit photocell timing unit (orphan) df_reg RF register list */ DIB df_dib = { DEV_DF, 3, { &df60, &df61, &df62 } }; UNIT df_unit = { UDATA (&df_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF, DF_DKSIZE) }; REG df_reg[] = { { ORDATAD (STA, df_sta, 12, "status, disk and memory address extension") }, { ORDATAD (DA, df_da, 12, "low order disk address") }, { ORDATAD (WC, M[DF_WC], 12, "word count (in memory)"), REG_FIT }, { ORDATAD (MA, M[DF_MA], 12, "memory address (in memory)"), REG_FIT }, { FLDATAD (DONE, df_done, 0, "device done flag") }, { FLDATAD (INT, int_req, INT_V_DF, "interrupt pending flag") }, { ORDATAD (WLS, df_wlk, 8, "write lock switches") }, { DRDATAD (TIME, df_time, 24, "rotational delay, per word"), REG_NZ + PV_LEFT }, { FLDATAD (BURST, df_burst, 0, "burst flag") }, { FLDATAD (STOP_IOE, df_stopioe, 0, "stop on I/O error") }, { DRDATA (CAPAC, df_unit.capac, 18), REG_HRO }, { ORDATA (DEVNUM, df_dib.dev, 6), REG_HRO }, { NULL } }; MTAB df_mod[] = { { UNIT_PLAT, (0 << UNIT_V_PLAT), NULL, "1P", &df_set_size }, |
︙ | ︙ | |||
349 350 351 352 353 354 355 | cpu_set_bootpc (OS8_START); } return SCPE_OK; } /* Attach routine */ | | | | 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | cpu_set_bootpc (OS8_START); } return SCPE_OK; } /* Attach routine */ t_stat df_attach (UNIT *uptr, CONST char *cptr) { uint32 p, sz; uint32 ds_bytes = DF_DKSIZE * sizeof (int16); if ((uptr->flags & UNIT_AUTO) && (sz = sim_fsize_name (cptr))) { p = (sz + ds_bytes - 1) / ds_bytes; if (p >= DF_NUMDK) p = DF_NUMDK - 1; uptr->flags = (uptr->flags & ~UNIT_PLAT) | (p << UNIT_V_PLAT); } uptr->capac = UNIT_GETP (uptr->flags) * DF_DKSIZE; return attach_unit (uptr, cptr); } /* Change disk size */ t_stat df_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { if (val < 0) return SCPE_IERR; if (uptr->flags & UNIT_ATT) return SCPE_ALATT; uptr->capac = UNIT_GETP (val) * DF_DKSIZE; uptr->flags = uptr->flags & ~UNIT_AUTO; return SCPE_OK; } |
Changes to src/PDP8/pdp8_dt.c.
︙ | ︙ | |||
272 273 274 275 276 277 278 | int32 dtsb = 0; /* status B */ int32 dt_ltime = 12; /* interline time */ int32 dt_dctime = 40000; /* decel time */ int32 dt_substate = 0; int32 dt_logblk = 0; int32 dt_stopoffr = 0; | < | | 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | int32 dtsb = 0; /* status B */ int32 dt_ltime = 12; /* interline time */ int32 dt_dctime = 40000; /* decel time */ int32 dt_substate = 0; int32 dt_logblk = 0; int32 dt_stopoffr = 0; int32 dt76 (int32 IR, int32 AC); int32 dt77 (int32 IR, int32 AC); t_stat dt_svc (UNIT *uptr); t_stat dt_reset (DEVICE *dptr); t_stat dt_attach (UNIT *uptr, CONST char *cptr); void dt_flush (UNIT *uptr); t_stat dt_detach (UNIT *uptr); t_stat dt_boot (int32 unitno, DEVICE *dptr); void dt_deselect (int32 oldf); void dt_newsa (int32 newf); void dt_newfnc (UNIT *uptr, int32 newsta); t_bool dt_setpos (UNIT *uptr); |
︙ | ︙ | |||
321 322 323 324 325 326 327 | { UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+ UNIT_DISABLE+UNIT_ROABLE, DT_CAPAC) }, { UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+ UNIT_DISABLE+UNIT_ROABLE, DT_CAPAC) } }; REG dt_reg[] = { | | | | | | | | | | | | | | | | | | 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | { UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+ UNIT_DISABLE+UNIT_ROABLE, DT_CAPAC) }, { UDATA (&dt_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+ UNIT_DISABLE+UNIT_ROABLE, DT_CAPAC) } }; REG dt_reg[] = { { ORDATAD (DTSA, dtsa, 12, "status register A") }, { ORDATAD (DTSB, dtsb, 12, "status register B") }, { FLDATAD (INT, int_req, INT_V_DTA, "interrupt pending flag") }, { FLDATAD (ENB, dtsa, DTA_V_ENB, "interrupt enable flag") }, { FLDATAD (DTF, dtsb, DTB_V_DTF, "DECtape flag") }, { FLDATAD (ERF, dtsb, DTB_V_ERF, "error flag") }, { ORDATAD (WC, M[DT_WC], 12, "word count (memory location 7755)"), REG_FIT }, { ORDATAD (CA, M[DT_CA], 12, "current address (memory location 7754)"), REG_FIT }, { DRDATAD (LTIME, dt_ltime, 24, "time between lines"), REG_NZ | PV_LEFT }, { DRDATAD (DCTIME, dt_dctime, 24, "time to decelerate to a full stop"), REG_NZ | PV_LEFT }, { ORDATAD (SUBSTATE, dt_substate, 2, "read/write command substate") }, { DRDATA (LBLK, dt_logblk, 12), REG_HIDDEN }, { URDATAD (POS, dt_unit[0].pos, 10, T_ADDR_W, 0, DT_NUMDR, PV_LEFT | REG_RO, "position, in lines, units 0 to 7") }, { URDATAD (STATT, dt_unit[0].STATE, 8, 18, 0, DT_NUMDR, REG_RO, "unit state, units 0 to 7") }, { URDATA (LASTT, dt_unit[0].LASTT, 10, 32, 0, DT_NUMDR, REG_HRO) }, { FLDATAD (STOP_OFFR, dt_stopoffr, 0, "stop on off-reel error") }, { ORDATA (DEVNUM, dt_dib.dev, 6), REG_HRO }, { NULL } }; MTAB dt_mod[] = { { UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL }, { UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL }, |
︙ | ︙ | |||
1198 1199 1200 1201 1202 1203 1204 | Determine 12b, 16b, or 18b/36b format Allocate buffer If 16b or 18b, read 16b or 18b format and convert to 12b in buffer If 12b, read data into buffer */ | | | 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 | Determine 12b, 16b, or 18b/36b format Allocate buffer If 16b or 18b, read 16b or 18b format and convert to 12b in buffer If 12b, read data into buffer */ t_stat dt_attach (UNIT *uptr, CONST char *cptr) { uint32 pdp18b[D18_NBSIZE]; uint16 pdp11b[D18_NBSIZE], *fbuf; int32 i, k; int32 u = uptr - dt_dev.units; t_stat r; uint32 ba, sz; |
︙ | ︙ |
Changes to src/PDP8/pdp8_fpp.c.
︙ | ︙ | |||
163 164 165 166 167 168 169 | FPN fpp_ac; /* FAC */ uint32 fpp_ssf = 0; /* single-step flag */ uint32 fpp_last_lockbit = 0; /* last lockbit */ static FPN fpp_zero = { 0, { 0, 0, 0, 0, 0 } }; static FPN fpp_one = { 1, { 02000, 0, 0, 0, 0 } }; | < | 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | FPN fpp_ac; /* FAC */ uint32 fpp_ssf = 0; /* single-step flag */ uint32 fpp_last_lockbit = 0; /* last lockbit */ static FPN fpp_zero = { 0, { 0, 0, 0, 0, 0 } }; static FPN fpp_one = { 1, { 02000, 0, 0, 0, 0 } }; int32 fpp55 (int32 IR, int32 AC); int32 fpp56 (int32 IR, int32 AC); void fpp_load_apt (uint32 apta); void fpp_dump_apt (uint32 apta, uint32 sta); uint32 fpp_1wd_dir (uint32 ir); uint32 fpp_2wd_dir (uint32 ir); uint32 fpp_indir (uint32 ir); |
︙ | ︙ | |||
218 219 220 221 222 223 224 | */ DIB fpp_dib = { DEV_FPP, 2, { &fpp55, &fpp56 } }; UNIT fpp_unit = { UDATA (&fpp_svc, 0, 0) }; REG fpp_reg[] = { | | | | | | | | | | | | | | | | | | | 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | */ DIB fpp_dib = { DEV_FPP, 2, { &fpp55, &fpp56 } }; UNIT fpp_unit = { UDATA (&fpp_svc, 0, 0) }; REG fpp_reg[] = { { ORDATAD (FPACE, fpp_ac.exp, 12, "floating accumulator") }, { ORDATAD (FPAC0, fpp_ac.fr[0], 12, "first mantissa") }, { ORDATAD (FPAC1, fpp_ac.fr[1], 12, "second mantissa") }, { ORDATAD (FPAC2, fpp_ac.fr[2], 12, "third mantissa") }, { ORDATAD (FPAC3, fpp_ac.fr[3], 12, "fourth mantissa") }, { ORDATAD (FPAC4, fpp_ac.fr[4], 12, "fifth mantissa") }, { ORDATAD (CMD, fpp_cmd, 12, "FPP command register") }, { ORDATAD (STA, fpp_sta, 12, "status register") }, { ORDATAD (APTA, fpp_apta, 15, "active parameter table (APT) pointer") }, { GRDATAD (APTSVF, fpp_aptsvf, 8, 3, 12, "APT field") }, { ORDATAD (FPC, fpp_fpc, 15, "floating program counter") }, { ORDATAD (BRA, fpp_bra, 15, "base register") }, { ORDATAD (XRA, fpp_xra, 15, "pointer to index register 0") }, { ORDATAD (OPA, fpp_opa, 15, "operand address register") }, { ORDATAD (SSF, fpp_ssf, 12, "single step flag") }, { ORDATAD (LASTLOCK, fpp_last_lockbit, 12, "lockout from FPCOM") }, { FLDATAD (FLAG, fpp_flag, 0, "done flag") }, { NULL } }; DEVICE fpp_dev = { "FPP", &fpp_unit, fpp_reg, NULL, 1, 10, 31, 1, 8, 8, NULL, NULL, &fpp_reset, |
︙ | ︙ |
Changes to src/PDP8/pdp8_lp.c.
1 2 | /* pdp8_lp.c: PDP-8 line printer simulator | | | 1 2 3 4 5 6 7 8 9 10 | /* pdp8_lp.c: PDP-8 line printer simulator Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
︙ | ︙ | |||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. lpt LP8E line printer 19-Jan-07 RMS Added UNIT_TEXT 25-Apr-03 RMS Revised for extended file support 04-Oct-02 RMS Added DIB, enable/disable, device number support 30-May-02 RMS Widened POS to 32b */ #include "pdp8_defs.h" extern int32 int_req, int_enable, dev_done, stop_inst; int32 lpt_err = 0; /* error flag */ int32 lpt_stopioe = 0; /* stop on error */ | > < | | | | | | | | | | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. lpt LP8E line printer 16-Dec-16 DJG Added IOT 6660 to allow WPS WS78 3.4 to print 19-Jan-07 RMS Added UNIT_TEXT 25-Apr-03 RMS Revised for extended file support 04-Oct-02 RMS Added DIB, enable/disable, device number support 30-May-02 RMS Widened POS to 32b */ #include "pdp8_defs.h" extern int32 int_req, int_enable, dev_done, stop_inst; int32 lpt_err = 0; /* error flag */ int32 lpt_stopioe = 0; /* stop on error */ int32 lpt (int32 IR, int32 AC); t_stat lpt_svc (UNIT *uptr); t_stat lpt_reset (DEVICE *dptr); t_stat lpt_attach (UNIT *uptr, CONST char *cptr); t_stat lpt_detach (UNIT *uptr); /* LPT data structures lpt_dev LPT device descriptor lpt_unit LPT unit descriptor lpt_reg LPT register list */ DIB lpt_dib = { DEV_LPT, 1, { &lpt } }; UNIT lpt_unit = { UDATA (&lpt_svc, UNIT_SEQ+UNIT_ATTABLE+UNIT_TEXT, 0), SERIAL_OUT_WAIT }; REG lpt_reg[] = { { ORDATAD (BUF, lpt_unit.buf, 8,"last data item processed") }, { FLDATAD (ERR, lpt_err, 0, "error status flag") }, { FLDATAD (DONE, dev_done, INT_V_LPT, "device done flag") }, { FLDATAD (ENABLE, int_enable, INT_V_LPT, "interrupt enable flag") }, { FLDATAD (INT, int_req, INT_V_LPT, "interrupt pending flag") }, { DRDATAD (POS, lpt_unit.pos, T_ADDR_W, "position in the output file"), PV_LEFT }, { DRDATAD (TIME, lpt_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT }, { FLDATAD (STOP_IOE, lpt_stopioe, 0, "stop on I/O error") }, { ORDATA (DEVNUM, lpt_dib.dev, 6), REG_HRO }, { NULL } }; MTAB lpt_mod[] = { { MTAB_XTD|MTAB_VDV, 0, "DEVNO", "DEVNO", &set_dev, &show_dev, NULL }, |
︙ | ︙ | |||
86 87 88 89 90 91 92 93 94 95 96 97 98 99 | }; /* IOT routine */ int32 lpt (int32 IR, int32 AC) { switch (IR & 07) { /* decode IR<9:11> */ case 1: /* PSKF */ return (dev_done & INT_LPT)? IOT_SKP + AC: AC; case 2: /* PCLF */ dev_done = dev_done & ~INT_LPT; /* clear flag */ int_req = int_req & ~INT_LPT; /* clear int req */ | > > > > > | 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 | }; /* IOT routine */ int32 lpt (int32 IR, int32 AC) { switch (IR & 07) { /* decode IR<9:11> */ case 0: /* PKSTF */ dev_done = dev_done | INT_LPT; /* set flag */ int_req = INT_UPDATE; /* update interrupts */ return AC; case 1: /* PSKF */ return (dev_done & INT_LPT)? IOT_SKP + AC: AC; case 2: /* PCLF */ dev_done = dev_done & ~INT_LPT; /* clear flag */ int_req = int_req & ~INT_LPT; /* clear int req */ |
︙ | ︙ | |||
161 162 163 164 165 166 167 | lpt_err = (lpt_unit.flags & UNIT_ATT) == 0; sim_cancel (&lpt_unit); /* deactivate unit */ return SCPE_OK; } /* Attach routine */ | | | 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | lpt_err = (lpt_unit.flags & UNIT_ATT) == 0; sim_cancel (&lpt_unit); /* deactivate unit */ return SCPE_OK; } /* Attach routine */ t_stat lpt_attach (UNIT *uptr, CONST char *cptr) { t_stat reason; reason = attach_unit (uptr, cptr); lpt_err = (lpt_unit.flags & UNIT_ATT) == 0; return reason; } |
︙ | ︙ |
Changes to src/PDP8/pdp8_mt.c.
︙ | ︙ | |||
141 142 143 144 145 146 147 | int32 mt_sta = 0; /* status register */ int32 mt_db = 0; /* data buffer */ int32 mt_done = 0; /* mag tape flag */ int32 mt_time = 10; /* record latency */ int32 mt_stopioe = 1; /* stop on error */ uint8 *mtxb = NULL; /* transfer buffer */ | < | | | 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | int32 mt_sta = 0; /* status register */ int32 mt_db = 0; /* data buffer */ int32 mt_done = 0; /* mag tape flag */ int32 mt_time = 10; /* record latency */ int32 mt_stopioe = 1; /* stop on error */ uint8 *mtxb = NULL; /* transfer buffer */ int32 mt70 (int32 IR, int32 AC); int32 mt71 (int32 IR, int32 AC); int32 mt72 (int32 IR, int32 AC); t_stat mt_svc (UNIT *uptr); t_stat mt_reset (DEVICE *dptr); t_stat mt_attach (UNIT *uptr, CONST char *cptr); t_stat mt_detach (UNIT *uptr); int32 mt_updcsta (UNIT *uptr); int32 mt_ixma (int32 xma); t_stat mt_map_err (UNIT *uptr, t_stat st); t_stat mt_vlock (UNIT *uptr, int32 val, CONST char *cptr, void *desc); UNIT *mt_busy (void); void mt_set_done (void); /* MT data structures mt_dev MT device descriptor mt_unit MT unit list |
︙ | ︙ | |||
178 179 180 181 182 183 184 | { UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) }, { UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) }, { UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) }, { UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) } }; REG mt_reg[] = { | | | | | | | | | | | | | | | | 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | { UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) }, { UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) }, { UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) }, { UDATA (&mt_svc, UNIT_ATTABLE+UNIT_DISABLE+UNIT_ROABLE, 0) } }; REG mt_reg[] = { { ORDATAD (CMD, mt_cu, 12, "command") }, { ORDATAD (FNC, mt_fn, 12, "function") }, { ORDATAD (CA, mt_ca, 12, "memory address") }, { ORDATAD (WC, mt_wc, 12, "word count") }, { ORDATAD (DB, mt_db, 12, "data buffer") }, { GRDATAD (STA, mt_sta, 8, 12, 12, "status buffer") }, { ORDATAD (STA2, mt_sta, 6, "secondary status") }, { FLDATAD (DONE, mt_done, 0, "device done flag") }, { FLDATAD (INT, int_req, INT_V_MT, "interrupt pending flag") }, { FLDATAD (STOP_IOE, mt_stopioe, 0, "stop on I/O error") }, { DRDATAD (TIME, mt_time, 24, "record delay"), PV_LEFT }, { URDATAD (UST, mt_unit[0].USTAT, 8, 16, 0, MT_NUMDR, 0, "unit status, units 0 to 7") }, { URDATAD (POS, mt_unit[0].pos, 10, T_ADDR_W, 0, MT_NUMDR, PV_LEFT | REG_RO, "position, units 0 to 7") }, { FLDATA (DEVNUM, mt_dib.dev, 6), REG_HRO }, { NULL } }; MTAB mt_mod[] = { { MTUF_WLK, 0, "write enabled", "WRITEENABLED", &mt_vlock }, { MTUF_WLK, MTUF_WLK, "write locked", "LOCKED", &mt_vlock }, |
︙ | ︙ | |||
614 615 616 617 618 619 620 | if (mtxb == NULL) return SCPE_MEM; return SCPE_OK; } /* Attach routine */ | | | 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | if (mtxb == NULL) return SCPE_MEM; return SCPE_OK; } /* Attach routine */ t_stat mt_attach (UNIT *uptr, CONST char *cptr) { t_stat r; int32 u = uptr - mt_dev.units; /* get unit number */ r = sim_tape_attach (uptr, cptr); if (r != SCPE_OK) return r; |
︙ | ︙ | |||
645 646 647 648 649 650 651 | if (u == GET_UNIT (mt_cu)) mt_updcsta (uptr); return sim_tape_detach (uptr); } /* Write lock/enable routine */ | | | 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 | if (u == GET_UNIT (mt_cu)) mt_updcsta (uptr); return sim_tape_detach (uptr); } /* Write lock/enable routine */ t_stat mt_vlock (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { int32 u = uptr - mt_dev.units; /* get unit number */ if ((uptr->flags & UNIT_ATT) && (val || sim_tape_wrp (uptr))) uptr->USTAT = uptr->USTAT | STA_WLK; else uptr->USTAT = uptr->USTAT & ~STA_WLK; if (u == GET_UNIT (mt_cu)) mt_updcsta (uptr); return SCPE_OK; } |
Changes to src/PDP8/pdp8_pt.c.
︙ | ︙ | |||
58 59 60 61 62 63 64 | UNIT ptr_unit = { UDATA (&ptr_svc, UNIT_SEQ+UNIT_ATTABLE+UNIT_ROABLE, 0), SERIAL_IN_WAIT }; REG ptr_reg[] = { | | | | | | | | | 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | UNIT ptr_unit = { UDATA (&ptr_svc, UNIT_SEQ+UNIT_ATTABLE+UNIT_ROABLE, 0), SERIAL_IN_WAIT }; REG ptr_reg[] = { { ORDATAD (BUF, ptr_unit.buf, 8, "last data item processed") }, { FLDATAD (DONE, dev_done, INT_V_PTR, "device done flag") }, { FLDATAD (ENABLE, int_enable, INT_V_PTR, "interrupt enable flag") }, { FLDATAD (INT, int_req, INT_V_PTR, "interrupt pending flag") }, { DRDATAD (POS, ptr_unit.pos, T_ADDR_W, "position in the input file"), PV_LEFT }, { DRDATAD (TIME, ptr_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT }, { FLDATAD (STOP_IOE, ptr_stopioe, 0, "stop on I/O error") }, { NULL } }; MTAB ptr_mod[] = { { MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_dev }, { 0 } }; |
︙ | ︙ | |||
94 95 96 97 98 99 100 | DIB ptp_dib = { DEV_PTP, 1, { &ptp } }; UNIT ptp_unit = { UDATA (&ptp_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT }; REG ptp_reg[] = { | | | | | | | | | 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 | DIB ptp_dib = { DEV_PTP, 1, { &ptp } }; UNIT ptp_unit = { UDATA (&ptp_svc, UNIT_SEQ+UNIT_ATTABLE, 0), SERIAL_OUT_WAIT }; REG ptp_reg[] = { { ORDATAD (BUF, ptp_unit.buf, 8, "last data item processed") }, { FLDATAD (DONE, dev_done, INT_V_PTP, "device done flag") }, { FLDATAD (ENABLE, int_enable, INT_V_PTP, "interrupt enable flag") }, { FLDATAD (INT, int_req, INT_V_PTP, "interrupt pending flag") }, { DRDATAD (POS, ptp_unit.pos, T_ADDR_W, "position in the output file"), PV_LEFT }, { DRDATAD (TIME, ptp_unit.wait, 24, "time from I/O initiation to interrupt"), PV_LEFT }, { FLDATAD (STOP_IOE, ptp_stopioe, 0, "stop on I/O error") }, { NULL } }; MTAB ptp_mod[] = { { MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_dev }, { 0 } }; |
︙ | ︙ |
Changes to src/PDP8/pdp8_rf.c.
︙ | ︙ | |||
113 114 115 116 117 118 119 | int32 rf_da = 0; /* disk address */ int32 rf_done = 0; /* done flag */ int32 rf_wlk = 0; /* write lock */ int32 rf_time = 10; /* inter-word time */ int32 rf_burst = 1; /* burst mode flag */ int32 rf_stopioe = 1; /* stop on error */ | < | | | | | | | | | | | | | 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | int32 rf_da = 0; /* disk address */ int32 rf_done = 0; /* done flag */ int32 rf_wlk = 0; /* write lock */ int32 rf_time = 10; /* inter-word time */ int32 rf_burst = 1; /* burst mode flag */ int32 rf_stopioe = 1; /* stop on error */ int32 rf60 (int32 IR, int32 AC); int32 rf61 (int32 IR, int32 AC); int32 rf62 (int32 IR, int32 AC); int32 rf64 (int32 IR, int32 AC); t_stat rf_svc (UNIT *uptr); t_stat pcell_svc (UNIT *uptr); t_stat rf_reset (DEVICE *dptr); t_stat rf_boot (int32 unitno, DEVICE *dptr); t_stat rf_attach (UNIT *uptr, CONST char *cptr); t_stat rf_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc); /* RF08 data structures rf_dev RF device descriptor rf_unit RF unit descriptor pcell_unit photocell timing unit (orphan) rf_reg RF register list */ DIB rf_dib = { DEV_RF, 5, { &rf60, &rf61, &rf62, NULL, &rf64 } }; UNIT rf_unit = { UDATA (&rf_svc, UNIT_FIX+UNIT_ATTABLE+ UNIT_BUFABLE+UNIT_MUSTBUF, RF_DKSIZE) }; UNIT pcell_unit = { UDATA (&pcell_svc, 0, 0) }; REG rf_reg[] = { { ORDATAD (STA, rf_sta, 12, "status") }, { ORDATAD (DA, rf_da, 20, "low order disk address") }, { ORDATAD (WC, M[RF_WC], 12, "word count (in memory)"), REG_FIT }, { ORDATAD (MA, M[RF_MA], 12, "memory address (in memory)"), REG_FIT }, { FLDATAD (DONE, rf_done, 0, "device done flag") }, { FLDATAD (INT, int_req, INT_V_RF, "interrupt pending flag") }, { ORDATAD (WLK, rf_wlk, 32, "write lock switches") }, { DRDATAD (TIME, rf_time, 24, "rotational delay, per word"), REG_NZ + PV_LEFT }, { FLDATAD (BURST, rf_burst, 0, "burst flag") }, { FLDATAD (STOP_IOE, rf_stopioe, 0, "stop on I/O error") }, { DRDATA (CAPAC, rf_unit.capac, 21), REG_HRO }, { ORDATA (DEVNUM, rf_dib.dev, 6), REG_HRO }, { NULL } }; MTAB rf_mod[] = { { UNIT_PLAT, (0 << UNIT_V_PLAT), NULL, "1P", &rf_set_size }, |
︙ | ︙ | |||
415 416 417 418 419 420 421 | cpu_set_bootpc (OS8_START); } return SCPE_OK; } /* Attach routine */ | | | | 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | cpu_set_bootpc (OS8_START); } return SCPE_OK; } /* Attach routine */ t_stat rf_attach (UNIT *uptr, CONST char *cptr) { uint32 sz, p; uint32 ds_bytes = RF_DKSIZE * sizeof (int16); if ((uptr->flags & UNIT_AUTO) && (sz = sim_fsize_name (cptr))) { p = (sz + ds_bytes - 1) / ds_bytes; if (p >= RF_NUMDK) p = RF_NUMDK - 1; uptr->flags = (uptr->flags & ~UNIT_PLAT) | (p << UNIT_V_PLAT); } uptr->capac = UNIT_GETP (uptr->flags) * RF_DKSIZE; return attach_unit (uptr, cptr); } /* Change disk size */ t_stat rf_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { if (val < 0) return SCPE_IERR; if (uptr->flags & UNIT_ATT) return SCPE_ALATT; uptr->capac = UNIT_GETP (val) * RF_DKSIZE; uptr->flags = uptr->flags & ~UNIT_AUTO; return SCPE_OK; } |
Changes to src/PDP8/pdp8_rk.c.
︙ | ︙ | |||
134 135 136 137 138 139 140 | int32 rk_sta = 0; /* status register */ int32 rk_cmd = 0; /* command register */ int32 rk_da = 0; /* disk address */ int32 rk_ma = 0; /* memory address */ int32 rk_swait = 10, rk_rwait = 10; /* seek, rotate wait */ int32 rk_stopioe = 1; /* stop on error */ | < | 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | int32 rk_sta = 0; /* status register */ int32 rk_cmd = 0; /* command register */ int32 rk_da = 0; /* disk address */ int32 rk_ma = 0; /* memory address */ int32 rk_swait = 10, rk_rwait = 10; /* seek, rotate wait */ int32 rk_stopioe = 1; /* stop on error */ int32 rk (int32 IR, int32 AC); t_stat rk_svc (UNIT *uptr); t_stat rk_reset (DEVICE *dptr); t_stat rk_boot (int32 unitno, DEVICE *dptr); void rk_go (int32 function, int32 cylinder); /* RK-8E data structures |
︙ | ︙ | |||
163 164 165 166 167 168 169 | { UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+ UNIT_ROABLE, RK_SIZE) }, { UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+ UNIT_ROABLE, RK_SIZE) } }; REG rk_reg[] = { | | | | | | | | | | | 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 | { UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+ UNIT_ROABLE, RK_SIZE) }, { UDATA (&rk_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+ UNIT_ROABLE, RK_SIZE) } }; REG rk_reg[] = { { ORDATAD (RKSTA, rk_sta, 12, "status") }, { ORDATAD (RKCMD, rk_cmd, 12, "disk command") }, { ORDATAD (RKDA, rk_da, 12, "disk address") }, { ORDATAD (RKMA, rk_ma, 12, "current memory address") }, { FLDATAD (BUSY, rk_busy, 0, "control busy flag") }, { FLDATAD (INT, int_req, INT_V_RK, "interrupt pending flag") }, { DRDATAD (STIME, rk_swait, 24, "seek time, per cylinder"), PV_LEFT }, { DRDATAD (RTIME, rk_rwait, 24, "rotational delay"), PV_LEFT }, { FLDATAD (STOP_IOE, rk_stopioe, 0, "stop on I/O error") }, { ORDATA (DEVNUM, rk_dib.dev, 6), REG_HRO }, { NULL } }; MTAB rk_mod[] = { { UNIT_HWLK, 0, "write enabled", "WRITEENABLED", NULL }, { UNIT_HWLK, UNIT_HWLK, "write locked", "LOCKED", NULL }, |
︙ | ︙ |
Changes to src/PDP8/pdp8_rl.c.
︙ | ︙ | |||
170 171 172 173 174 175 176 | int32 rl_lft = 0; /* silo left/right */ int32 rl_done = 0; /* done flag */ int32 rl_erf = 0; /* error flag */ int32 rl_swait = 10; /* seek wait */ int32 rl_rwait = 10; /* rotate wait */ int32 rl_stopioe = 1; /* stop on error */ | < | | | | 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | int32 rl_lft = 0; /* silo left/right */ int32 rl_done = 0; /* done flag */ int32 rl_erf = 0; /* error flag */ int32 rl_swait = 10; /* seek wait */ int32 rl_rwait = 10; /* rotate wait */ int32 rl_stopioe = 1; /* stop on error */ int32 rl60 (int32 IR, int32 AC); int32 rl61 (int32 IR, int32 AC); t_stat rl_svc (UNIT *uptr); t_stat rl_reset (DEVICE *dptr); void rl_set_done (int32 error); t_stat rl_boot (int32 unitno, DEVICE *dptr); t_stat rl_attach (UNIT *uptr, CONST char *cptr); t_stat rl_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat rl_set_bad (UNIT *uptr, int32 val, CONST char *cptr, void *desc); /* RL8A data structures rl_dev RL device descriptor rl_unit RL unit list rl_reg RL register list rl_mod RL modifier list |
︙ | ︙ | |||
203 204 205 206 207 208 209 | { UDATA (&rl_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+UNIT_AUTO+ UNIT_ROABLE, RL01_SIZE) }, { UDATA (&rl_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+UNIT_AUTO+ UNIT_ROABLE, RL01_SIZE) } }; REG rl_reg[] = { | | | | | | | | | | | | | | | | | | 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | { UDATA (&rl_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+UNIT_AUTO+ UNIT_ROABLE, RL01_SIZE) }, { UDATA (&rl_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_DISABLE+UNIT_AUTO+ UNIT_ROABLE, RL01_SIZE) } }; REG rl_reg[] = { { ORDATAD (RLCSA, rlcsa, 12, "control/status A") }, { ORDATAD (RLCSB, rlcsb, 12, "control/status B") }, { ORDATAD (RLMA, rlma, 12, "memory address") }, { ORDATAD (RLWC, rlwc, 12, "word count") }, { ORDATAD (RLSA, rlsa, 6, "sector address") }, { ORDATAD (RLER, rler, 12, "error flags") }, { ORDATAD (RLSI, rlsi, 16, "silo top word") }, { ORDATAD (RLSI1, rlsi1, 16, "silo second word") }, { ORDATAD (RLSI2, rlsi2, 16, "silo third word") }, { FLDATAD (RLSIL, rl_lft, 0, "silo read left/right flag") }, { FLDATAD (INT, int_req, INT_V_RL, "interrupt request") }, { FLDATAD (DONE, rl_done, INT_V_RL, "done flag") }, { FLDATA (IE, rlcsb, RLCSB_V_IE) }, { FLDATAD (ERR, rl_erf, 0, "composite error flag") }, { DRDATAD (STIME, rl_swait, 24, "seek time, per cylinder"), PV_LEFT }, { DRDATAD (RTIME, rl_rwait, 24, "rotational delay"), PV_LEFT }, { URDATA (CAPAC, rl_unit[0].capac, 10, T_ADDR_W, 0, RL_NUMDR, PV_LEFT + REG_HRO) }, { FLDATAD (STOP_IOE, rl_stopioe, 0, "stop on I/O error") }, { ORDATA (DEVNUM, rl_dib.dev, 6), REG_HRO }, { NULL } }; MTAB rl_mod[] = { { UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL }, { UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL }, |
︙ | ︙ | |||
569 570 571 572 573 574 575 | if (rlxb == NULL) return SCPE_MEM; return SCPE_OK; } /* Attach routine */ | | | 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 | if (rlxb == NULL) return SCPE_MEM; return SCPE_OK; } /* Attach routine */ t_stat rl_attach (UNIT *uptr, CONST char *cptr) { uint32 p; t_stat r; uptr->capac = (uptr->flags & UNIT_RL02)? RL02_SIZE: RL01_SIZE; r = attach_unit (uptr, cptr); /* attach unit */ if (r != SCPE_OK) /* error? */ |
︙ | ︙ | |||
600 601 602 603 604 605 606 | uptr->capac = RL01_SIZE; } return SCPE_OK; } /* Set size routine */ | | | 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 | uptr->capac = RL01_SIZE; } return SCPE_OK; } /* Set size routine */ t_stat rl_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { if (uptr->flags & UNIT_ATT) return SCPE_ALATT; uptr->capac = (val & UNIT_RL02)? RL02_SIZE: RL01_SIZE; return SCPE_OK; } |
︙ | ︙ | |||
624 625 626 627 628 629 630 | Inputs: uptr = pointer to unit val = ignored Outputs: sta = status code */ | | | 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 | Inputs: uptr = pointer to unit val = ignored Outputs: sta = status code */ t_stat rl_set_bad (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { int32 i, da = RL_BBMAP * RL_NUMBY; if ((uptr->flags & UNIT_ATT) == 0) return SCPE_UNATT; if (uptr->flags & UNIT_RO) return SCPE_RO; |
︙ | ︙ |
Changes to src/PDP8/pdp8_rx.c.
︙ | ︙ | |||
133 134 135 136 137 138 139 | int32 rx_cwait = 100; /* command time */ int32 rx_swait = 10; /* seek, per track */ int32 rx_xwait = 1; /* tr set time */ int32 rx_stopioe = 0; /* stop on error */ uint8 rx_buf[RX2_NUMBY] = { 0 }; /* sector buffer */ int32 rx_bptr = 0; /* buffer pointer */ | < | | | | | | | | | | | | | | | | | | | | | | 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | int32 rx_cwait = 100; /* command time */ int32 rx_swait = 10; /* seek, per track */ int32 rx_xwait = 1; /* tr set time */ int32 rx_stopioe = 0; /* stop on error */ uint8 rx_buf[RX2_NUMBY] = { 0 }; /* sector buffer */ int32 rx_bptr = 0; /* buffer pointer */ int32 rx (int32 IR, int32 AC); t_stat rx_svc (UNIT *uptr); t_stat rx_reset (DEVICE *dptr); t_stat rx_boot (int32 unitno, DEVICE *dptr); t_stat rx_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat rx_attach (UNIT *uptr, CONST char *cptr); void rx_cmd (void); void rx_done (int32 esr_flags, int32 new_ecode); t_stat rx_settype (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat rx_showtype (FILE *st, UNIT *uptr, int32 val, CONST void *desc); /* RX8E data structures rx_dev RX device descriptor rx_unit RX unit list rx_reg RX register list rx_mod RX modifier list */ DIB rx_dib = { DEV_RX, 1, { &rx } }; UNIT rx_unit[] = { { UDATA (&rx_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF+ UNIT_ROABLE, RX_SIZE) }, { UDATA (&rx_svc, UNIT_FIX+UNIT_ATTABLE+UNIT_BUFABLE+UNIT_MUSTBUF+ UNIT_ROABLE, RX_SIZE) } }; REG rx_reg[] = { { ORDATAD (RXCS, rx_csr, 12, "status") }, { ORDATAD (RXDB, rx_dbr, 12, "data buffer") }, { ORDATAD (RXES, rx_esr, 12, "error status") }, { ORDATA (RXERR, rx_ecode, 8) }, { ORDATAD (RXTA, rx_track, 8, "current track") }, { ORDATAD (RXSA, rx_sector, 8, "current sector") }, { DRDATAD (STAPTR, rx_state, 4, "controller state"), REG_RO }, { DRDATAD (BUFPTR, rx_bptr, 8, "buffer pointer") }, { FLDATAD (TR, rx_tr, 0, "transfer ready flag") }, { FLDATAD (ERR, rx_err, 0, "error flag") }, { FLDATAD (DONE, dev_done, INT_V_RX, "done flag") }, { FLDATAD (ENABLE, int_enable, INT_V_RX, "interrupt enable flag") }, { FLDATAD (INT, int_req, INT_V_RX, "interrupt pending flag") }, { DRDATAD (CTIME, rx_cwait, 24, "command completion time"), PV_LEFT }, { DRDATAD (STIME, rx_swait, 24, "seek time per track"), PV_LEFT }, { DRDATAD (XTIME, rx_xwait, 24, "transfer ready delay"), PV_LEFT }, { FLDATAD (STOP_IOE, rx_stopioe, 0, "stop on I/O error") }, { BRDATAD (SBUF, rx_buf, 8, 8, RX2_NUMBY, "sector buffer array") }, { FLDATA (RX28, rx_28, 0), REG_HRO }, { URDATA (CAPAC, rx_unit[0].capac, 10, T_ADDR_W, 0, RX_NUMDR, REG_HRO | PV_LEFT) }, { ORDATA (DEVNUM, rx_dib.dev, 6), REG_HRO }, { NULL } }; |
︙ | ︙ | |||
589 590 591 592 593 594 595 | } else rx_done (rx_esr | RXES_ID, 0010); /* no, error */ return SCPE_OK; } /* Attach routine */ | | | | | 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 | } else rx_done (rx_esr | RXES_ID, 0010); /* no, error */ return SCPE_OK; } /* Attach routine */ t_stat rx_attach (UNIT *uptr, CONST char *cptr) { uint32 sz; if ((uptr->flags & UNIT_AUTO) && (sz = sim_fsize_name (cptr))) { if (sz > RX_SIZE) uptr->flags = uptr->flags | UNIT_DEN; else uptr->flags = uptr->flags & ~UNIT_DEN; } uptr->capac = (uptr->flags & UNIT_DEN)? RX2_SIZE: RX_SIZE; return attach_unit (uptr, cptr); } /* Set size routine */ t_stat rx_set_size (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { if (uptr->flags & UNIT_ATT) return SCPE_ALATT; if ((rx_28 == 0) && val) /* not on RX8E */ return SCPE_NOFNC; uptr->capac = val? RX2_SIZE: RX_SIZE; return SCPE_OK; } /* Set controller type */ t_stat rx_settype (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { int32 i; if ((val < 0) || (val > 1) || (cptr != NULL)) return SCPE_ARG; if (val == rx_28) return SCPE_OK; |
︙ | ︙ | |||
640 641 642 643 644 645 646 | } rx_28 = val; return SCPE_OK; } /* Show controller type */ | | | 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 | } rx_28 = val; return SCPE_OK; } /* Show controller type */ t_stat rx_showtype (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { if (rx_28) fprintf (st, "RX28"); else fprintf (st, "RX8E"); return SCPE_OK; } /* Bootstrap routine */ |
︙ | ︙ |
Changes to src/PDP8/pdp8_sys.c.
1 2 | /* pdp8_sys.c: PDP-8 simulator interface | | | 1 2 3 4 5 6 7 8 9 10 | /* pdp8_sys.c: PDP-8 simulator interface Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
︙ | ︙ | |||
19 20 21 22 23 24 25 26 27 28 29 30 31 32 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 17-Sep-13 RMS Fixed recognition of initial field change (Dave Gesswein) 24-Mar-09 RMS Added link to FPP 24-Jun-08 RMS Fixed bug in new rim loader (Don North) 24-May-08 RMS Fixed signed/unsigned declaration inconsistency 03-Sep-07 RMS Added FPP8 support Rewrote rim and binary loaders 15-Dec-06 RMS Added TA8E support, IOT disambiguation | > | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 15-Dec-16 RMS Added PKSTF (Dave Gesswein) 17-Sep-13 RMS Fixed recognition of initial field change (Dave Gesswein) 24-Mar-09 RMS Added link to FPP 24-Jun-08 RMS Fixed bug in new rim loader (Don North) 24-May-08 RMS Fixed signed/unsigned declaration inconsistency 03-Sep-07 RMS Added FPP8 support Rewrote rim and binary loaders 15-Dec-06 RMS Added TA8E support, IOT disambiguation |
︙ | ︙ | |||
64 65 66 67 68 69 70 | extern DEVICE dt_dev, td_dev; extern DEVICE mt_dev, ct_dev; extern DEVICE ttix_dev, ttox_dev; extern REG cpu_reg[]; extern uint16 M[]; t_stat fprint_sym_fpp (FILE *of, t_value *val); | | | | | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | extern DEVICE dt_dev, td_dev; extern DEVICE mt_dev, ct_dev; extern DEVICE ttix_dev, ttox_dev; extern REG cpu_reg[]; extern uint16 M[]; t_stat fprint_sym_fpp (FILE *of, t_value *val); t_stat parse_sym_fpp (CONST char *cptr, t_value *val); CONST char *parse_field (CONST char *cptr, uint32 max, uint32 *val, uint32 c); CONST char *parse_fpp_xr (CONST char *cptr, uint32 *xr, t_bool inc); int32 test_fpp_addr (uint32 ad, uint32 max); /* SCP data structures and interface routines sim_name simulator name string sim_PC pointer to saved PC register descriptor sim_emax maximum number of words for examine/deposit |
︙ | ︙ | |||
237 238 239 240 241 242 243 | } return SCPE_IERR; } /* Binary loader Two loader formats are supported: RIM loader (-r) and BIN (-b) loader. */ | | | 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | } return SCPE_IERR; } /* Binary loader Two loader formats are supported: RIM loader (-r) and BIN (-b) loader. */ t_stat sim_load (FILE *fileref, CONST char *cptr, CONST char *fnam, int flag) { if ((*cptr != 0) || (flag != 0)) return SCPE_ARG; if ((sim_switches & SWMASK ('R')) || /* RIM format? */ (match_ext (fnam, "RIM") && !(sim_switches & SWMASK ('B')))) return sim_load_rim (fileref); else return sim_load_bin (fileref); /* no, BIN */ |
︙ | ︙ | |||
301 302 303 304 305 306 307 | "ADCL", "ADLM", "ADST", "ADRB", /* A/D */ "ADSK", "ADSE", "ADLE", "ADRS", "DCMA", "DMAR", "DMAW", /* DF/RF */ "DCIM", "DSAC", "DIML", "DIMA", "DCEA", "DEAL", "DEAC", "DFSE", "DFSC", "DISK", "DMAC", "DCXA", "DXAL", "DXAC", | | | 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | "ADCL", "ADLM", "ADST", "ADRB", /* A/D */ "ADSK", "ADSE", "ADLE", "ADRS", "DCMA", "DMAR", "DMAW", /* DF/RF */ "DCIM", "DSAC", "DIML", "DIMA", "DCEA", "DEAL", "DEAC", "DFSE", "DFSC", "DISK", "DMAC", "DCXA", "DXAL", "DXAC", "PKSTF", "PSKF", "PCLF", "PSKE", /* LPT */ "PSTB", "PSIE", "PCLF PSTB", "PCIE", "LWCR", "CWCR", "LCAR", /* MT */ "CCAR", "LCMR", "LFGR", "LDBR", "RWCR", "CLT", "RCAR", "RMSR", "RCMR", "RFSR", "RDBR", "SKEF", "SKCB", "SKJD", "SKTR", "CLF", "DSKP", "DCLR", "DLAG", /* RK */ |
︙ | ︙ | |||
364 365 366 367 368 369 370 | 06614+I_IOA+AMB_RL, 06615+I_IOA+AMB_RL, 06617+I_IOA+AMB_RL, 06700+I_IOA+AMB_CT, 06701+I_IOA+AMB_CT, 06702+I_IOA+AMB_CT, 06703+I_IOA+AMB_CT, 06704+I_IOA+AMB_CT, 06705+I_IOA+AMB_CT, 06706+I_IOA+AMB_CT, 06707+I_IOA+AMB_CT, 06771+I_IOA+AMB_TD, 06772+I_IOA+AMB_TD, 06773+I_IOA+AMB_TD, 06774+I_IOA+AMB_TD, 06775+I_IOA+AMB_TD, 06776+I_IOA+AMB_TD, 06777+I_IOA+AMB_TD, 06530+I_NPN, 06531+I_NPN, 06532+I_NPN, 06533+I_NPN, /* AD */ 06534+I_NPN, 06535+I_NPN, 06536+I_NPN, 06537+I_NPN, | | | 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | 06614+I_IOA+AMB_RL, 06615+I_IOA+AMB_RL, 06617+I_IOA+AMB_RL, 06700+I_IOA+AMB_CT, 06701+I_IOA+AMB_CT, 06702+I_IOA+AMB_CT, 06703+I_IOA+AMB_CT, 06704+I_IOA+AMB_CT, 06705+I_IOA+AMB_CT, 06706+I_IOA+AMB_CT, 06707+I_IOA+AMB_CT, 06771+I_IOA+AMB_TD, 06772+I_IOA+AMB_TD, 06773+I_IOA+AMB_TD, 06774+I_IOA+AMB_TD, 06775+I_IOA+AMB_TD, 06776+I_IOA+AMB_TD, 06777+I_IOA+AMB_TD, 06530+I_NPN, 06531+I_NPN, 06532+I_NPN, 06533+I_NPN, /* AD */ 06534+I_NPN, 06535+I_NPN, 06536+I_NPN, 06537+I_NPN, 06660+I_NPN, 06601+I_NPN, 06603+I_NPN, 06605+I_NPN, /* DF/RF */ 06611+I_NPN, 06612+I_NPN, 06615+I_NPN, 06616+I_NPN, 06611+I_NPN, 06615+I_NPN, 06616+I_NPN, 06621+I_NPN, 06622+I_NPN, 06623+I_NPN, 06626+I_NPN, 06641+I_NPN, 06643+I_NPN, 06645+I_NPN, 06661+I_NPN, 06662+I_NPN, 06663+I_NPN, /* LPT */ 06664+I_NPN, 06665+I_NPN, 06666+I_NPN, 06667+I_NPN, 06701+I_NPN, 06702+I_NPN, 06703+I_NPN, /* MT */ |
︙ | ︙ | |||
514 515 516 517 518 519 520 | }; /* Operate decode Inputs: *of = output stream inst = mask bits | | | | | 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | }; /* Operate decode Inputs: *of = output stream inst = mask bits Class = instruction class code sp = space needed? Outputs: status = space needed */ /* Use scp.c provided fprintf function */ #define fprintf Fprintf #define fputs(_s,f) Fprintf(f,"%s",_s) #define fputc(_c,f) Fprintf(f,"%c",_c) int32 fprint_opr (FILE *of, int32 inst, int32 Class, int32 sp) { int32 i, j; for (i = 0; opc_val[i] >= 0; i++) { /* loop thru ops */ j = (opc_val[i] >> I_V_FL) & I_M_FL; /* get class */ if ((j == Class) && (opc_val[i] & inst)) { /* same class? */ inst = inst & ~opc_val[i]; /* mask bit set? */ fprintf (of, (sp? " %s": "%s"), opcode[i]); sp = 1; } } return sp; } |
︙ | ︙ | |||
674 675 676 677 678 679 680 | *uptr = pointer to unit *val = pointer to output values sw = switches Outputs: status = error status */ | | | 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | *uptr = pointer to unit *val = pointer to output values sw = switches Outputs: status = error status */ t_stat parse_sym (CONST char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 sw) { uint32 cflag, d, i, j, k; t_stat r; char gbuf[CBUFSIZE]; cflag = (uptr == NULL) || (uptr == &cpu_unit); while (isspace (*cptr)) cptr++; /* absorb spaces */ |
︙ | ︙ | |||
864 865 866 867 868 869 870 | } /* end if */ } /* end for */ return SCPE_ARG; } /* FPP8 instruction parse */ | | | 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 | } /* end if */ } /* end for */ return SCPE_ARG; } /* FPP8 instruction parse */ t_stat parse_sym_fpp (CONST char *cptr, t_value *val) { uint32 i, j, ad, xr; int32 broff, nwd; char gbuf[CBUFSIZE]; cptr = get_glyph (cptr, gbuf, 0); /* get opcode */ for (i = 0; (fopcode[i] != NULL) && (strcmp (fopcode[i], gbuf) != 0) ; i++) ; |
︙ | ︙ | |||
965 966 967 968 969 970 971 | if (*cptr != 0) return SCPE_ARG; /* junk at end? */ return -nwd; } /* Parse field */ | | | | 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 | if (*cptr != 0) return SCPE_ARG; /* junk at end? */ return -nwd; } /* Parse field */ CONST char *parse_field (CONST char *cptr, uint32 max, uint32 *val, uint32 c) { char gbuf[CBUFSIZE]; t_stat r; cptr = get_glyph (cptr, gbuf, c); /* get field */ *val = get_uint (gbuf, 8, max, &r); if (r != SCPE_OK) return NULL; return cptr; } /* Parse index register */ CONST char *parse_fpp_xr (CONST char *cptr, uint32 *xr, t_bool inc) { char gbuf[CBUFSIZE]; uint32 len; t_stat r; cptr = get_glyph (cptr, gbuf, 0); /* get field */ len = strlen (gbuf); |
︙ | ︙ |
Changes to src/PDP8/pdp8_td.c.
︙ | ︙ | |||
189 190 191 192 193 194 195 | int32 td_csum = 0; /* save check sum */ int32 td_qlctr = 0; /* quad line ctr */ int32 td_ltime = 20; /* interline time */ int32 td_dctime = 40000; /* decel time */ int32 td_stopoffr = 0; static uint8 tdb_mtk[DT_NUMDR][D18_LPERB]; /* mark track bits */ | < | | | 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | int32 td_csum = 0; /* save check sum */ int32 td_qlctr = 0; /* quad line ctr */ int32 td_ltime = 20; /* interline time */ int32 td_dctime = 40000; /* decel time */ int32 td_stopoffr = 0; static uint8 tdb_mtk[DT_NUMDR][D18_LPERB]; /* mark track bits */ int32 td77 (int32 IR, int32 AC); t_stat td_svc (UNIT *uptr); t_stat td_reset (DEVICE *dptr); t_stat td_attach (UNIT *uptr, CONST char *cptr); void td_flush (UNIT *uptr); t_stat td_detach (UNIT *uptr); t_stat td_boot (int32 unitno, DEVICE *dptr); t_bool td_newsa (int32 newf); t_bool td_setpos (UNIT *uptr); int32 td_header (UNIT *uptr, int32 blk, int32 line); int32 td_trailer (UNIT *uptr, int32 blk, int32 line); int32 td_read (UNIT *uptr, int32 blk, int32 line); void td_write (UNIT *uptr, int32 blk, int32 line, int32 datb); int32 td_set_mtk (int32 code, int32 u, int32 k); t_stat td_show_pos (FILE *st, UNIT *uptr, int32 val, CONST void *desc); extern uint16 M[]; /* TD data structures td_dev DT device descriptor td_unit DT unit list |
︙ | ︙ | |||
226 227 228 229 230 231 232 | { UDATA (&td_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+ UNIT_DISABLE+UNIT_ROABLE, DT_CAPAC) }, { UDATA (&td_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+ UNIT_DISABLE+UNIT_ROABLE, DT_CAPAC) } }; REG td_reg[] = { | | | | | | | | | | | | | | | | 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | { UDATA (&td_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+ UNIT_DISABLE+UNIT_ROABLE, DT_CAPAC) }, { UDATA (&td_svc, UNIT_8FMT+UNIT_FIX+UNIT_ATTABLE+ UNIT_DISABLE+UNIT_ROABLE, DT_CAPAC) } }; REG td_reg[] = { { GRDATAD (TDCMD, td_cmd, 8, 4, 8, "command register") }, { ORDATAD (TDDAT, td_dat, 12, "data register") }, { ORDATAD (TDMTK, td_mtk, 6, "mark track register") }, { FLDATAD (TDSLF, td_slf, 0, "single line flag") }, { FLDATAD (TDQLF, td_qlf, 0, "quad line flag") }, { FLDATAD (TDTME, td_tme, 0, "timing error flag") }, { ORDATAD (TDQL, td_qlctr, 2, "quad line counter") }, { ORDATA (TDCSUM, td_csum, 6), REG_RO }, { DRDATAD (LTIME, td_ltime, 31, "time between lines"), REG_NZ | PV_LEFT }, { DRDATAD (DCTIME, td_dctime, 31, "time to decelerate to a full stop"), REG_NZ | PV_LEFT }, { URDATAD (POS, td_unit[0].pos, 10, T_ADDR_W, 0, DT_NUMDR, PV_LEFT | REG_RO, "positions, in lines, units 0 and 1") }, { URDATAD (STATT, td_unit[0].STATE, 8, 18, 0, DT_NUMDR, REG_RO, "unit state, units 0 and 1") }, { URDATA (LASTT, td_unit[0].LASTT, 10, 32, 0, DT_NUMDR, REG_HRO) }, { FLDATAD (STOP_OFFR, td_stopoffr, 0, "stop on off-reel error") }, { ORDATA (DEVNUM, td_dib.dev, 6), REG_HRO }, { NULL } }; MTAB td_mod[] = { { UNIT_WLK, 0, "write enabled", "WRITEENABLED", NULL }, { UNIT_WLK, UNIT_WLK, "write locked", "LOCKED", NULL }, |
︙ | ︙ | |||
762 763 764 765 766 767 768 | Determine 12b, 16b, or 18b/36b format Allocate buffer If 16b or 18b, read 16b or 18b format and convert to 12b in buffer If 12b, read data into buffer Set up mark track bit array */ | | | 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 | Determine 12b, 16b, or 18b/36b format Allocate buffer If 16b or 18b, read 16b or 18b format and convert to 12b in buffer If 12b, read data into buffer Set up mark track bit array */ t_stat td_attach (UNIT *uptr, CONST char *cptr) { uint32 pdp18b[D18_NBSIZE]; uint16 pdp11b[D18_NBSIZE], *fbuf; int32 i, k, mtkpb; int32 u = uptr - td_dev.units; t_stat r; uint32 ba, sz; |
︙ | ︙ | |||
927 928 929 930 931 932 933 | for (i = 5; i >= 0; i--) tdb_mtk[u][k++] = (code >> i) & 1; return k; } /* Show position */ | | | 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 | for (i = 5; i >= 0; i--) tdb_mtk[u][k++] = (code >> i) & 1; return k; } /* Show position */ t_stat td_show_pos (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { if ((uptr->flags & UNIT_ATT) == 0) return SCPE_UNATT; if (uptr->pos < DT_EZLIN) /* rev end zone? */ fprintf (st, "Reverse end zone\n"); else if (uptr->pos < ((uint32) DTU_FWDEZ (uptr))) { /* data zone? */ int32 blkno = DT_LIN2BL (uptr->pos, uptr); /* block # */ int32 lineno = DT_LIN2OF (uptr->pos, uptr); /* line # within block */ |
︙ | ︙ |
Changes to src/PDP8/pdp8_tsc.c.
︙ | ︙ | |||
56 57 58 59 60 61 62 | extern int32 tsc_pc; /* "ERTB" */ extern int32 tsc_cdf; /* "ECDF" */ extern int32 tsc_enb; /* enable */ #define UNIT_V_SN699 (UNIT_V_UF + 0) /* SN 699 or above */ #define UNIT_SN699 (1 << UNIT_V_SN699) | < | | | | | | 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | extern int32 tsc_pc; /* "ERTB" */ extern int32 tsc_cdf; /* "ECDF" */ extern int32 tsc_enb; /* enable */ #define UNIT_V_SN699 (UNIT_V_UF + 0) /* SN 699 or above */ #define UNIT_SN699 (1 << UNIT_V_SN699) int32 tsc (int32 IR, int32 AC); t_stat tsc_reset (DEVICE *dptr); /* TSC data structures tsc_dev TSC device descriptor tsc_unit TSC unit descriptor tsc_reg TSC register list */ DIB tsc_dib = { DEV_TSC, 1, { &tsc } }; UNIT tsc_unit = { UDATA (NULL, UNIT_SN699, 0) }; REG tsc_reg[] = { { ORDATAD (IR, tsc_ir, 12, "most recently trapped instruction") }, { ORDATAD (PC, tsc_pc, 12, "PC of most recently trapped instruction") }, { FLDATAD (CDF, tsc_cdf, 0, "1 if trapped instruction is CDF, 0 otherwise") }, { FLDATAD (ENB, tsc_enb, 0, "interrupt enable flag") }, { FLDATAD (INT, int_req, INT_V_TSC, "interrupt pending flag") }, { NULL } }; MTAB tsc_mod[] = { { UNIT_SN699, UNIT_SN699, "ESME", "ESME", NULL }, { UNIT_SN699, 0, "no ESME", "NOESME", NULL }, { 0 } |
︙ | ︙ |
Changes to src/PDP8/pdp8_tt.c.
1 2 | /* pdp8_tt.c: PDP-8 console terminal simulator | | | 1 2 3 4 5 6 7 8 9 10 | /* pdp8_tt.c: PDP-8 console terminal simulator Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
︙ | ︙ | |||
50 51 52 53 54 55 56 | int32 tti (int32 IR, int32 AC); int32 tto (int32 IR, int32 AC); t_stat tti_svc (UNIT *uptr); t_stat tto_svc (UNIT *uptr); t_stat tti_reset (DEVICE *dptr); t_stat tto_reset (DEVICE *dptr); | | | | | | | | > > | | | | | | | 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 | int32 tti (int32 IR, int32 AC); int32 tto (int32 IR, int32 AC); t_stat tti_svc (UNIT *uptr); t_stat tto_svc (UNIT *uptr); t_stat tti_reset (DEVICE *dptr); t_stat tto_reset (DEVICE *dptr); t_stat tty_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc); /* TTI data structures tti_dev TTI device descriptor tti_unit TTI unit descriptor tti_reg TTI register list tti_mod TTI modifiers list */ DIB tti_dib = { DEV_TTI, 1, { &tti } }; UNIT tti_unit = { UDATA (&tti_svc, UNIT_IDLE|TT_MODE_KSR, 0), SERIAL_IN_WAIT }; REG tti_reg[] = { { ORDATAD (BUF, tti_unit.buf, 8, "last data item processed") }, { FLDATAD (DONE, dev_done, INT_V_TTI, "device done flag") }, { FLDATAD (ENABLE, int_enable, INT_V_TTI, "interrupt enable flag") }, { FLDATAD (INT, int_req, INT_V_TTI, "interrupt pending flag") }, { DRDATAD (POS, tti_unit.pos, T_ADDR_W, "number of characters input"), PV_LEFT }, { DRDATAD (TIME, tti_unit.wait, 24, "input polling interval (if 0, the keyboard is polled synchronously with the clock)"), PV_LEFT+REG_NZ }, { NULL } }; MTAB tti_mod[] = { { TT_MODE, TT_MODE_KSR, "KSR", "KSR", &tty_set_mode }, { TT_MODE, TT_MODE_7B, "7b", "7B", &tty_set_mode }, { TT_MODE, TT_MODE_8B, "8b", "8B", &tty_set_mode }, { TT_MODE, TT_MODE_7P, "7b", NULL, NULL }, { MTAB_XTD|MTAB_VDV, 0, "DEVNO", NULL, NULL, &show_dev, NULL }, { 0 } }; DEVICE tti_dev = { "TTI", &tti_unit, tti_reg, tti_mod, 1, 10, 31, 1, 8, 8, NULL, NULL, &tti_reset, NULL, NULL, NULL, &tti_dib, 0 }; uint32 tti_buftime; /* time input character arrived */ /* TTO data structures tto_dev TTO device descriptor tto_unit TTO unit descriptor tto_reg TTO register list */ DIB tto_dib = { DEV_TTO, 1, { &tto } }; UNIT tto_unit = { UDATA (&tto_svc, TT_MODE_KSR, 0), SERIAL_OUT_WAIT }; REG tto_reg[] = { { ORDATAD (BUF, tto_unit.buf, 8, "last date item processed") }, { FLDATAD (DONE, dev_done, INT_V_TTO, "device done flag") }, { FLDATAD (ENABLE, int_enable, INT_V_TTO, "interrupt enable flag") }, { FLDATAD (INT, int_req, INT_V_TTO, "interrupt pending flag") }, { DRDATAD (POS, tto_unit.pos, T_ADDR_W, "number of characters output"), PV_LEFT }, { DRDATAD (TIME, tto_unit.wait, 24, "time form I/O initiation to interrupt"), PV_LEFT }, { NULL } }; MTAB tto_mod[] = { { TT_MODE, TT_MODE_KSR, "KSR", "KSR", &tty_set_mode }, { TT_MODE, TT_MODE_7B, "7b", "7B", &tty_set_mode }, { TT_MODE, TT_MODE_8B, "8b", "8B", &tty_set_mode }, |
︙ | ︙ | |||
175 176 177 178 179 180 181 | /* Unit service */ t_stat tti_svc (UNIT *uptr) { int32 c; sim_clock_coschedule (uptr, tmxr_poll); /* continue poll */ | | > > | 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | /* Unit service */ t_stat tti_svc (UNIT *uptr) { int32 c; sim_clock_coschedule (uptr, tmxr_poll); /* continue poll */ if ((dev_done & INT_TTI) && /* prior character still pending and < 500ms? */ ((sim_os_msec () - tti_buftime) < 500)) return SCPE_OK; if ((c = sim_poll_kbd ()) < SCPE_KFLAG) /* no char or error? */ return c; if (c & SCPE_BREAK) /* break? */ uptr->buf = 0; else uptr->buf = sim_tt_inpcvt (c, TT_GET_MODE (uptr->flags) | TTUF_KSR); tti_buftime = sim_os_msec (); uptr->pos = uptr->pos + 1; dev_done = dev_done | INT_TTI; /* set done */ int_req = INT_UPDATE; /* update interrupts */ return SCPE_OK; } /* Reset routine */ |
︙ | ︙ | |||
269 270 271 272 273 274 275 | dev_done = dev_done & ~INT_TTO; /* clear done, int */ int_req = int_req & ~INT_TTO; int_enable = int_enable | INT_TTO; /* set enable */ sim_cancel (&tto_unit); /* deactivate unit */ return SCPE_OK; } | | | 273 274 275 276 277 278 279 280 281 282 283 284 285 | dev_done = dev_done & ~INT_TTO; /* clear done, int */ int_req = int_req & ~INT_TTO; int_enable = int_enable | INT_TTO; /* set enable */ sim_cancel (&tto_unit); /* deactivate unit */ return SCPE_OK; } t_stat tty_set_mode (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { tti_unit.flags = (tti_unit.flags & ~TT_MODE) | val; tto_unit.flags = (tto_unit.flags & ~TT_MODE) | val; return SCPE_OK; } |
Changes to src/PDP8/pdp8_ttx.c.
1 2 | /* pdp8_ttx.c: PDP-8 additional terminals simulator | | | 1 2 3 4 5 6 7 8 9 10 | /* pdp8_ttx.c: PDP-8 additional terminals simulator Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
︙ | ︙ | |||
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. ttix,ttox PT08/KL8JA terminal input/output 11-Oct-13 RMS Poll TTIX immediately to pick up initial connect (Mark Pizzolato) 18-Apr-12 RMS Revised to use clock coscheduling 19-Nov-08 RMS Revised for common TMXR show routines 07-Jun-06 RMS Added UNIT_IDLE flag 06-Jul-06 RMS Fixed bug in DETACH routine 22-Nov-05 RMS Revised for new terminal processing routines 29-Jun-05 RMS Added SET TTOXn DISCONNECT Fixed bug in SET LOG/NOLOG 21-Jun-05 RMS Fixed bug in SHOW CONN/STATS 05-Jan-04 RMS Revised for tmxr library changes 09-May-03 RMS Added network device flag 25-Apr-03 RMS Revised for extended file support 22-Dec-02 RMS Added break support 02-Nov-02 RMS Added 7B/8B support 04-Oct-02 RMS Added DIB, device number support 22-Aug-02 RMS Updated for changes to sim_tmxr.c 06-Jan-02 RMS Added device enable/disable support 30-Dec-01 RMS Complete rebuild 30-Nov-01 RMS Added extended SET/SHOW support | > | > > > > > | | | | | > > | | > < < > > | | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > > | | < | < | < | | | | | < | < < | 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. ttix,ttox PT08/KL8JA terminal input/output 18-Sep-16 RMS Expanded support to 16 terminals 11-Oct-13 RMS Poll TTIX immediately to pick up initial connect (Mark Pizzolato) 18-Apr-12 RMS Revised to use clock coscheduling 19-Nov-08 RMS Revised for common TMXR show routines 07-Jun-06 RMS Added UNIT_IDLE flag 06-Jul-06 RMS Fixed bug in DETACH routine 22-Nov-05 RMS Revised for new terminal processing routines 29-Jun-05 RMS Added SET TTOXn DISCONNECT Fixed bug in SET LOG/NOLOG 21-Jun-05 RMS Fixed bug in SHOW CONN/STATS 05-Jan-04 RMS Revised for tmxr library changes 09-May-03 RMS Added network device flag 25-Apr-03 RMS Revised for extended file support 22-Dec-02 RMS Added break support 02-Nov-02 RMS Added 7B/8B support 04-Oct-02 RMS Added DIB, device number support 22-Aug-02 RMS Updated for changes to sim_tmxr.c 06-Jan-02 RMS Added device enable/disable support 30-Dec-01 RMS Complete rebuild 30-Nov-01 RMS Added extended SET/SHOW support This module implements 1-16 individual serial interfaces similar in function to the console. These interfaces are mapped to Telnet based connections as though they were the four lines of a terminal multiplexor. The connection polling mechanism is superimposed onto the keyboard of the first interface. The done and enable flags are maintained locally, and only a master interrupt request is maintained in global register dev_done. Because this is actually an interrupt request flag, the corresponding bit in int_enable must always be set to 1. */ #include "pdp8_defs.h" #include "sim_sock.h" #include "sim_tmxr.h" #include <ctype.h> #define TTX_MAXL 16 #define TTX_INIL 4 #define TTX_GETLN(x) (((x) >> 4) & TTX_MASK) extern int32 int_req, int_enable, dev_done, stop_inst; extern int32 tmxr_poll; uint32 ttix_done = 0; /* input ready flags */ uint32 ttox_done = 0; /* output ready flags */ uint32 ttx_enbl = 0; /* intr enable flags */ uint8 ttix_buf[TTX_MAXL] = { 0 }; /* input buffers */ uint8 ttox_buf[TTX_MAXL] = { 0 }; /* output buffers */ TMLN ttx_ldsc[TTX_MAXL] = { {0} }; /* line descriptors */ TMXR ttx_desc = { TTX_INIL, 0, 0, ttx_ldsc }; /* mux descriptor */ #define ttx_lines ttx_desc.lines int32 ttix (int32 IR, int32 AC); int32 ttox (int32 IR, int32 AC); t_stat ttix_svc (UNIT *uptr); t_stat ttox_svc (UNIT *uptr); int32 ttx_getln (int32 inst); void ttx_new_flags (uint32 newi, uint32 newo, uint32 newe); t_stat ttx_reset (DEVICE *dptr); t_stat ttx_attach (UNIT *uptr, CONST char *cptr); t_stat ttx_detach (UNIT *uptr); void ttx_reset_ln (int32 i); t_stat ttx_vlines (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat ttx_show_devno (FILE *st, UNIT *uptr, int32 val, CONST void *desc); #define TTIX_SET_DONE(ln) ttx_new_flags (ttix_done | (1u << (ln)), ttox_done, ttx_enbl) #define TTIX_CLR_DONE(ln) ttx_new_flags (ttix_done & ~(1u << (ln)), ttox_done, ttx_enbl) #define TTIX_TST_DONE(ln) ((ttix_done & (1u << (ln))) != 0) #define TTOX_SET_DONE(ln) ttx_new_flags (ttix_done, ttox_done | (1u << (ln)), ttx_enbl) #define TTOX_CLR_DONE(ln) ttx_new_flags (ttix_done, ttox_done & ~(1u << (ln)), ttx_enbl) #define TTOX_TST_DONE(ln) ((ttox_done & (1u << (ln))) != 0) #define TTX_SET_ENBL(ln) ttx_new_flags (ttix_done, ttox_done, ttx_enbl | (1u << (ln))) #define TTX_CLR_ENBL(ln) ttx_new_flags (ttix_done, ttox_done, ttx_enbl & ~(1u << (ln))) #define TTX_TST_ENBL(ln) ((ttx_enbl & (1u << (ln))) != 0) /* TTIx data structures ttix_dev TTIx device descriptor ttix_unit TTIx unit descriptor ttix_reg TTIx register list ttix_mod TTIx modifiers list */ DIB_DSP ttx_dsp[TTX_MAXL * 2] = { { DEV_TTI1, &ttix }, { DEV_TTO1, &ttox }, { DEV_TTI2, &ttix }, { DEV_TTO2, &ttox }, { DEV_TTI3, &ttix }, { DEV_TTO3, &ttox }, { DEV_TTI4, &ttix }, { DEV_TTO4, &ttox }, { DEV_TTI5, &ttix }, { DEV_TTO5, &ttox }, { DEV_TTI6, &ttix }, { DEV_TTO6, &ttox }, { DEV_TTI7, &ttix }, { DEV_TTO7, &ttox }, { DEV_TTI8, &ttix }, { DEV_TTO8, &ttox }, { DEV_TTI9, &ttix }, { DEV_TTO9, &ttox }, { DEV_TTI10, &ttix }, { DEV_TTO10, &ttox }, { DEV_TTI11, &ttix }, { DEV_TTO11, &ttox }, { DEV_TTI12, &ttix }, { DEV_TTO12, &ttox }, { DEV_TTI13, &ttix }, { DEV_TTO13, &ttox }, { DEV_TTI14, &ttix }, { DEV_TTO14, &ttox }, { DEV_TTI15, &ttix }, { DEV_TTO15, &ttox }, { DEV_TTI16, &ttix }, { DEV_TTO16, &ttox } }; DIB ttx_dib = { DEV_TTI1, TTX_INIL * 2, { &ttix, &ttox }, ttx_dsp }; UNIT ttix_unit = { UDATA (&ttix_svc, UNIT_IDLE|UNIT_ATTABLE, 0), SERIAL_IN_WAIT }; REG ttix_reg[] = { { BRDATAD (BUF, ttix_buf, 8, 8, TTX_MAXL, "input buffer, lines 0 to 15") }, { ORDATAD (DONE, ttix_done, TTX_MAXL, "device done flag (line 0 rightmost)") }, { ORDATAD (ENABLE, ttx_enbl, TTX_MAXL, "interrupt enable flag") }, { FLDATA (SUMDONE, dev_done, INT_V_TTI1), REG_HRO }, { FLDATA (SUMENABLE, int_enable, INT_V_TTI1), REG_HRO }, { DRDATAD (TIME, ttix_unit.wait, 24, "initial polling interval"), REG_NZ + PV_LEFT }, { DRDATA (LINES, ttx_desc.lines, 6), REG_HRO }, { NULL } }; MTAB ttix_mod[] = { { MTAB_VDV, 0, "LINES", "LINES", &ttx_vlines, &tmxr_show_lines, (void *) &ttx_desc }, { MTAB_VDV, 0, "DEVNO", NULL, NULL, &ttx_show_devno, (void *) &ttx_desc }, { UNIT_ATT, UNIT_ATT, "SUMMARY", NULL, NULL, &tmxr_show_summ, (void *) &ttx_desc }, { MTAB_VDV, 1, NULL, "DISCONNECT", &tmxr_dscln, NULL, (void *) &ttx_desc }, { MTAB_VDV | MTAB_NMO, 1, "CONNECTIONS", NULL, NULL, &tmxr_show_cstat, (void *) &ttx_desc }, { MTAB_VDV | MTAB_NMO, 0, "STATISTICS", NULL, NULL, &tmxr_show_cstat, (void *) &ttx_desc }, { 0 } }; /* debugging bitmaps */ #define DBG_XMT TMXR_DBG_XMT /* display Transmitted Data */ #define DBG_RCV TMXR_DBG_RCV /* display Received Data */ #define DBG_RET TMXR_DBG_RET /* display Returned Received Data */ |
︙ | ︙ | |||
134 135 136 137 138 139 140 | {"TRC", DBG_TRC}, {0} }; DEVICE ttix_dev = { "TTIX", &ttix_unit, ttix_reg, ttix_mod, 1, 10, 31, 1, 8, 8, | | | | > > > > > > > > > > > > | > > | | < | | > | | | | | > | < | | < | | < | < | | | | | < < < < < < < | < | < < < | < < < < < < < < < < | | | > < | | < | > > > | < | | | 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | {"TRC", DBG_TRC}, {0} }; DEVICE ttix_dev = { "TTIX", &ttix_unit, ttix_reg, ttix_mod, 1, 10, 31, 1, 8, 8, &tmxr_ex, &tmxr_dep, &ttx_reset, NULL, &ttx_attach, &ttx_detach, &ttx_dib, DEV_MUX | DEV_DISABLE | DEV_DEBUG, 0, ttx_debug }; /* TTOx data structures ttox_dev TTOx device descriptor ttox_unit TTOx unit descriptor ttox_reg TTOx register list */ UNIT ttox_unit[] = { { UDATA (&ttox_svc, TT_MODE_UC, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT }, { UDATA (&ttox_svc, TT_MODE_UC+UNIT_DIS, 0), SERIAL_OUT_WAIT } }; REG ttox_reg[] = { { BRDATAD (BUF, ttox_buf, 8, 8, TTX_MAXL, "last data item processed, lines 0 to 3") }, { ORDATAD (DONE, ttox_done, TTX_MAXL, "device done flag (line 0 rightmost)") }, { ORDATAD (ENABLE, ttx_enbl, TTX_MAXL, "interrupt enable flag") }, { FLDATA (SUMDONE, dev_done, INT_V_TTO1), REG_HRO }, { FLDATA (SUMENABLE, int_enable, INT_V_TTO1), REG_HRO }, { URDATAD (TIME, ttox_unit[0].wait, 10, 24, 0, TTX_MAXL, PV_LEFT, "line from I/O initiation to interrupt, lines 0 to 3") }, { NULL } }; MTAB ttox_mod[] = { { TT_MODE, TT_MODE_UC, "UC", "UC", NULL }, { TT_MODE, TT_MODE_7B, "7b", "7B", NULL }, { TT_MODE, TT_MODE_8B, "8b", "8B", NULL }, { TT_MODE, TT_MODE_7P, "7p", "7P", NULL }, { MTAB_VDV, 0, "DEVNO", NULL, NULL, &ttx_show_devno, &ttx_desc }, { MTAB_XTD|MTAB_VUN, 0, NULL, "DISCONNECT", &tmxr_dscln, NULL, &ttx_desc }, { MTAB_XTD|MTAB_VUN|MTAB_NC, 0, "LOG", "LOG", &tmxr_set_log, &tmxr_show_log, &ttx_desc }, { MTAB_XTD|MTAB_VUN|MTAB_NC, 0, NULL, "NOLOG", &tmxr_set_nolog, NULL, &ttx_desc }, { 0 } }; DEVICE ttox_dev = { "TTOX", ttox_unit, ttox_reg, ttox_mod, TTX_MAXL, 10, 31, 1, 8, 8, NULL, NULL, &ttx_reset, NULL, NULL, NULL, NULL, DEV_DISABLE | DEV_DEBUG, 0, ttx_debug }; /* Terminal input: IOT routine */ int32 ttix (int32 inst, int32 AC) { int32 pulse = inst & 07; /* IOT pulse */ int32 ln = ttx_getln (inst); /* line # */ if (ln < 0) /* bad line #? */ return (SCPE_IERR << IOT_V_REASON) | AC; switch (pulse) { /* case IR<9:11> */ case 0: /* KCF */ TTIX_CLR_DONE (ln); /* clear flag */ break; case 1: /* KSF */ return (TTIX_TST_DONE (ln))? IOT_SKP | AC: AC; case 2: /* KCC */ TTIX_CLR_DONE (ln); /* clear flag */ sim_activate_abs (&ttix_unit, ttix_unit.wait); /* check soon for more input */ return 0; /* clear AC */ case 4: /* KRS */ return (AC | ttix_buf[ln]); /* return buf */ case 5: /* KIE */ if (AC & 1) TTX_SET_ENBL (ln); else TTX_CLR_ENBL (ln); break; case 6: /* KRB */ TTIX_CLR_DONE (ln); /* clear flag */ sim_activate_abs (&ttix_unit, ttix_unit.wait); /* check soon for more input */ return ttix_buf[ln]; /* return buf */ default: return (stop_inst << IOT_V_REASON) | AC; } /* end switch */ return AC; } /* Unit service */ t_stat ttix_svc (UNIT *uptr) { int32 ln, c, temp; if ((uptr->flags & UNIT_ATT) == 0) /* attached? */ return SCPE_OK; sim_clock_coschedule (uptr, tmxr_poll); /* continue poll */ ln = tmxr_poll_conn (&ttx_desc); /* look for connect */ if (ln >= 0) /* got one? */ ttx_ldsc[ln].rcve = 1; /* set rcv enable */ tmxr_poll_rx (&ttx_desc); /* poll for input */ for (ln = 0; ln < ttx_lines; ln++) { /* loop thru lines */ if (ttx_ldsc[ln].conn) { /* connected? */ if (TTIX_TST_DONE (ln)) /* last char still pending? */ continue; if ((temp = tmxr_getc_ln (&ttx_ldsc[ln]))) { /* get char */ if (temp & SCPE_BREAK) /* break? */ c = 0; else c = sim_tt_inpcvt (temp, TT_GET_MODE (ttox_unit[ln].flags)); ttix_buf[ln] = c; TTIX_SET_DONE (ln); /* set flag */ } } } return SCPE_OK; } /* Terminal output: IOT routine */ int32 ttox (int32 inst, int32 AC) { int32 pulse = inst & 07; /* pulse */ int32 ln = ttx_getln (inst); /* line # */ if (ln < 0) /* bad line #? */ return (SCPE_IERR << IOT_V_REASON) | AC; switch (pulse) { /* case IR<9:11> */ case 0: /* TLF */ TTOX_SET_DONE (ln); /* set flag */ break; case 1: /* TSF */ return (TTOX_TST_DONE (ln))? IOT_SKP | AC: AC; case 2: /* TCF */ TTOX_CLR_DONE (ln); /* clear flag */ break; case 5: /* SPI */ if ((TTIX_TST_DONE (ln) || TTOX_TST_DONE (ln)) /* either done set */ && TTX_TST_ENBL (ln)) /* and enabled? */ return IOT_SKP | AC; return AC; case 6: /* TLS */ TTOX_CLR_DONE (ln); /* clear flag */ case 4: /* TPC */ sim_activate (&ttox_unit[ln], ttox_unit[ln].wait); /* activate */ ttox_buf[ln] = AC & 0377; /* load buffer */ break; default: return (stop_inst << IOT_V_REASON) | AC; } /* end switch */ return AC; } /* Unit service */ |
︙ | ︙ | |||
347 348 349 350 351 352 353 | } else { tmxr_poll_tx (&ttx_desc); /* poll xmt */ sim_activate (uptr, ttox_unit[ln].wait); /* wait */ return SCPE_OK; } } | > > > | > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > | | | | > > > > > > > > > > | | > > > | > | > > > | | > > | < | | | > | > | | > | > > > > > | > > > | > > > > > > > | > | > > > > > > > > > > | > > > > > | > > > > > > > > > > | > > > > > | > | 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | } else { tmxr_poll_tx (&ttx_desc); /* poll xmt */ sim_activate (uptr, ttox_unit[ln].wait); /* wait */ return SCPE_OK; } } TTOX_SET_DONE (ln); /* set done */ return SCPE_OK; } /* Flag routine Global dev_done is used as a master interrupt; therefore, global int_enable must always be set */ void ttx_new_flags (uint32 newidone, uint32 newodone, uint32 newenbl) { ttix_done = newidone; ttox_done = newodone; ttx_enbl = newenbl; if ((ttix_done & ttx_enbl) != 0) dev_done |= INT_TTI1; else dev_done &= ~INT_TTI1; if ((ttox_done & ttx_enbl) != 0) dev_done |= INT_TTO1; else dev_done &= ~INT_TTO1; int_enable |= (INT_TTI1 | INT_TTO1); int_req = INT_UPDATE; return; } /* Compute relative line number, based on table of device numbers */ int32 ttx_getln (int32 inst) { int32 i; int32 device = (inst >> 3) & 077; /* device = IR<3:8> */ for (i = 0; i < (ttx_lines * 2); i++) { /* loop thru disp tbl */ if (device == ttx_dsp[i].dev) /* dev # match? */ return (i >> 1); /* return line # */ } return -1; } /* Reset routine */ t_stat ttx_reset (DEVICE *dptr) { int32 ln; if (dptr->flags & DEV_DIS) { /* sync enables */ ttix_dev.flags |= DEV_DIS; ttox_dev.flags |= DEV_DIS; } else { ttix_dev.flags &= ~DEV_DIS; ttox_dev.flags &= ~DEV_DIS; } if (ttix_unit.flags & UNIT_ATT) /* if attached, */ sim_activate (&ttix_unit, tmxr_poll); /* activate */ else sim_cancel (&ttix_unit); /* else stop */ for (ln = 0; ln < TTX_MAXL; ln++) /* for all lines */ ttx_reset_ln (ln); /* reset line */ int_enable |= (INT_TTI1 | INT_TTO1); /* set master enable */ return SCPE_OK; } /* Reset line n */ void ttx_reset_ln (int32 ln) { uint32 mask = (1u << ln); ttix_buf[ln] = 0; /* clr buf */ ttox_buf[ln] = 0; /* clr done, set enbl */ ttx_new_flags (ttix_done & ~mask, ttox_done & ~mask, ttx_enbl | mask); sim_cancel (&ttox_unit[ln]); /* stop output */ return; } /* Attach master unit */ t_stat ttx_attach (UNIT *uptr, CONST char *cptr) { t_stat r; r = tmxr_attach (&ttx_desc, uptr, cptr); /* attach */ if (r != SCPE_OK) /* error */ return r; sim_activate (uptr, 0); /* start poll at once */ return SCPE_OK; } /* Detach master unit */ t_stat ttx_detach (UNIT *uptr) { int32 i; t_stat r; r = tmxr_detach (&ttx_desc, uptr); /* detach */ for (i = 0; i < TTX_MAXL; i++) /* all lines, */ ttx_ldsc[i].rcve = 0; /* disable rcv */ sim_cancel (uptr); /* stop poll */ return r; } /* Change number of lines */ t_stat ttx_vlines (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { int32 newln, i, t; t_stat r; if (cptr == NULL) return SCPE_ARG; newln = get_uint (cptr, 10, TTX_MAXL, &r); if ((r != SCPE_OK) || (newln == ttx_lines)) return r; if (newln == 0) return SCPE_ARG; if (newln < ttx_lines) { for (i = newln, t = 0; i < ttx_lines; i++) t = t | ttx_ldsc[i].conn; if (t && !get_yn ("This will disconnect users; proceed [N]?", FALSE)) return SCPE_OK; for (i = newln; i < ttx_lines; i++) { if (ttx_ldsc[i].conn) { tmxr_linemsg (&ttx_ldsc[i], "\r\nOperator disconnected line\r\n"); tmxr_reset_ln (&ttx_ldsc[i]); /* reset line */ } ttox_unit[i].flags |= UNIT_DIS; ttx_reset_ln (i); } } else { for (i = ttx_lines; i < newln; i++) { ttox_unit[i].flags &= ~UNIT_DIS; ttx_reset_ln (i); } } ttx_lines = newln; ttx_dib.num = newln * 2; return SCPE_OK; } /* Show device numbers */ t_stat ttx_show_devno (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { int32 i, dev_offset; DEVICE *dptr; if (uptr == NULL) return SCPE_IERR; dptr = find_dev_from_unit (uptr); if (dptr == NULL) return SCPE_IERR; /* Select correct devno entry for Input or Output device */ if (dptr->name[2] == 'O') dev_offset = 1; else dev_offset = 0; fprintf(st, "devno="); for (i = 0; i < ttx_lines; i++) { fprintf(st, "%02o%s", ttx_dsp[i*2+dev_offset].dev, i < ttx_lines-1 ? "," : ""); } return SCPE_OK; } |
Changes to src/gpio.c.
︙ | ︙ | |||
206 207 208 209 210 211 212 | pss->stable_state = ss; pss->last_change = na_ms; int mask = 1 << col; if (ss) switchstatus[row] |= mask; else switchstatus[row] &= ~mask; | > | < > | 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | pss->stable_state = ss; pss->last_change = na_ms; int mask = 1 << col; if (ss) switchstatus[row] |= mask; else switchstatus[row] &= ~mask; #ifdef DEBUG printf("%cSS[%d][%02d] = %d ", gss_initted ? 'N' : 'I',row, col, ss); #endif } // Given the state of the switch at (row,col), work out if this requires // a change in our exported switch state. static void debounce_switch(int row, int col, int ss, ms_time_t now_ms) { |
︙ | ︙ | |||
256 257 258 259 260 261 262 | int i,j,k; const us_time_t intervl = 5; // light each row of leds 5 µs ms_time_t now_ms; // Find gpio address (different for Pi 2) ---------- gpio.addr_p = bcm_host_get_peripheral_address() + 0x200000; if (gpio.addr_p== 0x20200000) printf("RPi Plus detected - "); | | | 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | int i,j,k; const us_time_t intervl = 5; // light each row of leds 5 µs ms_time_t now_ms; // Find gpio address (different for Pi 2) ---------- gpio.addr_p = bcm_host_get_peripheral_address() + 0x200000; if (gpio.addr_p== 0x20200000) printf("RPi Plus detected - "); else printf("RPi 2/3 detected - "); #ifdef SERIALSETUP printf(" Serial mod version\n"); #else printf(" Default version using gpiomem\n"); #endif // set thread to real time priority ----------------- |
︙ | ︙ |
Changes to src/scp.c.in.
1 2 | /* scp.c: simulator control program | | | 1 2 3 4 5 6 7 8 9 10 | /* scp.c: simulator control program Copyright (c) 1993-2016, Robert M Supnik Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: |
︙ | ︙ | |||
19 20 21 22 23 24 25 26 27 28 29 30 31 32 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 20-Mar-12 MP Fixes to "SHOW <x> SHOW" commands 06-Jan-12 JDB Fixed "SHOW DEVICE" with only one enabled unit (Dave Bryan) 25-Sep-11 MP Added the ability for a simulator built with SIM_ASYNCH_IO to change whether I/O is actually done asynchronously by the new scp command SET ASYNCH and SET NOASYNCH 22-Sep-11 MP Added signal catching of SIGHUP and SIGTERM to cause | > | 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of Robert M Supnik shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from Robert M Supnik. 08-Mar-16 RMS Added shutdown flag for detach_all 20-Mar-12 MP Fixes to "SHOW <x> SHOW" commands 06-Jan-12 JDB Fixed "SHOW DEVICE" with only one enabled unit (Dave Bryan) 25-Sep-11 MP Added the ability for a simulator built with SIM_ASYNCH_IO to change whether I/O is actually done asynchronously by the new scp command SET ASYNCH and SET NOASYNCH 22-Sep-11 MP Added signal catching of SIGHUP and SIGTERM to cause |
︙ | ︙ | |||
213 214 215 216 217 218 219 | /* Macros and data structures */ #ifdef PIDP8I #include <pthread.h> #include <time.h> #include <stdint.h> | | | > | 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | /* Macros and data structures */ #ifdef PIDP8I #include <pthread.h> #include <time.h> #include <stdint.h> #include <unistd.h> // for sleep() extern void *blink(void *ptr); // the real-time multiplexing process to start up #endif #define NOT_MUX_USING_CODE /* sim_tmxr library provider or agnostic */ #include "sim_defs.h" #include "sim_rev.h" #include "sim_disk.h" #include "sim_tape.h" #include "sim_ether.h" #include "sim_serial.h" #if defined (USE_SIM_VIDEO) #include "sim_video.h" #endif #include "sim_sock.h" #include "sim_frontpanel.h" #include <signal.h> #include <ctype.h> #include <time.h> #include <math.h> #if defined(_WIN32) #include <direct.h> #include <io.h> #include <fcntl.h> #else #include <unistd.h> #endif |
︙ | ︙ | |||
337 338 339 340 341 342 343 | pthread_mutex_t sim_timer_lock = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t sim_timer_wake = PTHREAD_COND_INITIALIZER; pthread_mutex_t sim_tmxr_poll_lock = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t sim_tmxr_poll_cond = PTHREAD_COND_INITIALIZER; int32 sim_tmxr_poll_count; pthread_t sim_asynch_main_threadid; UNIT * volatile sim_asynch_queue; | < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | | | | | | | | | | | | | | | | | | | | | | | | | | | < | > > | | | | | | | | | | | | | | | | | | | | | | > > > > | < < > | | | 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | pthread_mutex_t sim_timer_lock = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t sim_timer_wake = PTHREAD_COND_INITIALIZER; pthread_mutex_t sim_tmxr_poll_lock = PTHREAD_MUTEX_INITIALIZER; pthread_cond_t sim_tmxr_poll_cond = PTHREAD_COND_INITIALIZER; int32 sim_tmxr_poll_count; pthread_t sim_asynch_main_threadid; UNIT * volatile sim_asynch_queue; t_bool sim_asynch_enabled = TRUE; int32 sim_asynch_check; int32 sim_asynch_latency = 4000; /* 4 usec interrupt latency */ int32 sim_asynch_inst_latency = 20; /* assume 5 mip simulator */ int sim_aio_update_queue (void) { int migrated = 0; if (AIO_QUEUE_VAL != QUEUE_LIST_END) { /* List !Empty */ UNIT *q, *uptr; int32 a_event_time; do q = AIO_QUEUE_VAL; while (q != AIO_QUEUE_SET(QUEUE_LIST_END, q)); /* Grab current queue */ while (q != QUEUE_LIST_END) { /* List !Empty */ sim_debug (SIM_DBG_AIO_QUEUE, sim_dflt_dev, "Migrating Asynch event for %s after %d instructions\n", sim_uname(q), q->a_event_time); ++migrated; uptr = q; q = q->a_next; uptr->a_next = NULL; /* hygiene */ if (uptr->a_activate_call != &sim_activate_notbefore) { a_event_time = uptr->a_event_time-((sim_asynch_inst_latency+1)/2); if (a_event_time < 0) a_event_time = 0; } else a_event_time = uptr->a_event_time; uptr->a_activate_call (uptr, a_event_time); if (uptr->a_check_completion) { sim_debug (SIM_DBG_AIO_QUEUE, sim_dflt_dev, "Calling Completion Check for asynch event on %s\n", sim_uname(uptr)); uptr->a_check_completion (uptr); } } } return migrated; } void sim_aio_activate (ACTIVATE_API caller, UNIT *uptr, int32 event_time) { sim_debug (SIM_DBG_AIO_QUEUE, sim_dflt_dev, "Queueing Asynch event for %s after %d instructions\n", sim_uname(uptr), event_time); if (uptr->a_next) { uptr->a_activate_call = sim_activate_abs; } else { UNIT *q; uptr->a_event_time = event_time; uptr->a_activate_call = caller; do { q = AIO_QUEUE_VAL; uptr->a_next = q; /* Mark as on list */ } while (q != AIO_QUEUE_SET(uptr, q)); } sim_asynch_check = 0; /* try to force check */ if (sim_idle_wait) { sim_debug (TIMER_DBG_IDLE, &sim_timer_dev, "waking due to event on %s after %d instructions\n", sim_uname(uptr), event_time); pthread_cond_signal (&sim_asynch_wake); } } #else t_bool sim_asynch_enabled = FALSE; #endif /* The per-simulator init routine is a weak global that defaults to NULL The other per-simulator pointers can be overrriden by the init routine */ WEAK void (*sim_vm_init) (void); char* (*sim_vm_read) (char *ptr, int32 size, FILE *stream) = NULL; void (*sim_vm_post) (t_bool from_scp) = NULL; CTAB *sim_vm_cmd = NULL; void (*sim_vm_sprint_addr) (char *buf, DEVICE *dptr, t_addr addr) = NULL; void (*sim_vm_fprint_addr) (FILE *st, DEVICE *dptr, t_addr addr) = NULL; t_addr (*sim_vm_parse_addr) (DEVICE *dptr, CONST char *cptr, CONST char **tptr) = NULL; t_value (*sim_vm_pc_value) (void) = NULL; t_bool (*sim_vm_is_subroutine_call) (t_addr **ret_addrs) = NULL; t_bool (*sim_vm_fprint_stopped) (FILE *st, t_stat reason) = NULL; /* Prototypes */ /* Set and show command processors */ t_stat set_dev_radix (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat set_dev_enbdis (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat set_dev_debug (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat set_unit_enbdis (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat ssh_break (FILE *st, const char *cptr, int32 flg); t_stat show_cmd_fi (FILE *ofile, int32 flag, CONST char *cptr); t_stat show_config (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_queue (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_time (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_mod_names (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_show_commands (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_log_names (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_dev_radix (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_dev_debug (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_dev_logicals (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_dev_modifiers (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_dev_show_commands (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_version (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_default (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_break (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_on (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_send (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_expect (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_device (FILE *st, DEVICE *dptr, int32 flag); t_stat show_unit (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag); t_stat show_all_mods (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flg, int32 *toks); t_stat show_one_mod (FILE *st, DEVICE *dptr, UNIT *uptr, MTAB *mptr, CONST char *cptr, int32 flag); t_stat sim_save (FILE *sfile); t_stat sim_rest (FILE *rfile); /* Breakpoint package */ t_stat sim_brk_init (void); t_stat sim_brk_set (t_addr loc, int32 sw, int32 ncnt, CONST char *act); t_stat sim_brk_clr (t_addr loc, int32 sw); t_stat sim_brk_clrall (int32 sw); t_stat sim_brk_show (FILE *st, t_addr loc, int32 sw); t_stat sim_brk_showall (FILE *st, int32 sw); CONST char *sim_brk_getact (char *buf, int32 size); BRKTAB *sim_brk_new (t_addr loc, uint32 btyp); char *sim_brk_clract (void); FILE *stdnul; /* Command support routines */ SCHTAB *get_rsearch (CONST char *cptr, int32 radix, SCHTAB *schptr); SCHTAB *get_asearch (CONST char *cptr, int32 radix, SCHTAB *schptr); int32 test_search (t_value *val, SCHTAB *schptr); static const char *get_glyph_gen (const char *iptr, char *optr, char mchar, t_bool uc, t_bool quote, char escape_char); int32 get_switches (const char *cptr); CONST char *get_sim_sw (CONST char *cptr); t_stat get_aval (t_addr addr, DEVICE *dptr, UNIT *uptr); t_value get_rval (REG *rptr, uint32 idx); void put_rval (REG *rptr, uint32 idx, t_value val); void fprint_help (FILE *st); void fprint_stopped (FILE *st, t_stat r); void fprint_capac (FILE *st, DEVICE *dptr, UNIT *uptr); void fprint_sep (FILE *st, int32 *tokens); char *read_line (char *ptr, int32 size, FILE *stream); char *read_line_p (const char *prompt, char *ptr, int32 size, FILE *stream); REG *find_reg_glob (CONST char *ptr, CONST char **optr, DEVICE **gdptr); char *sim_trim_endspc (char *cptr); /* Forward references */ t_stat scp_attach_unit (DEVICE *dptr, UNIT *uptr, const char *cptr); t_stat scp_detach_unit (DEVICE *dptr, UNIT *uptr); t_bool qdisable (DEVICE *dptr); t_stat attach_err (UNIT *uptr, t_stat stat); t_stat detach_all (int32 start_device, t_bool shutdown); t_stat assign_device (DEVICE *dptr, const char *cptr); t_stat deassign_device (DEVICE *dptr); t_stat ssh_break_one (FILE *st, int32 flg, t_addr lo, int32 cnt, CONST char *aptr); t_stat exdep_reg_loop (FILE *ofile, SCHTAB *schptr, int32 flag, CONST char *cptr, REG *lowr, REG *highr, uint32 lows, uint32 highs); t_stat ex_reg (FILE *ofile, t_value val, int32 flag, REG *rptr, uint32 idx); t_stat dep_reg (int32 flag, CONST char *cptr, REG *rptr, uint32 idx); t_stat exdep_addr_loop (FILE *ofile, SCHTAB *schptr, int32 flag, const char *cptr, t_addr low, t_addr high, DEVICE *dptr, UNIT *uptr); t_stat ex_addr (FILE *ofile, int32 flag, t_addr addr, DEVICE *dptr, UNIT *uptr); t_stat dep_addr (int32 flag, const char *cptr, t_addr addr, DEVICE *dptr, UNIT *uptr, int32 dfltinc); void fprint_fields (FILE *stream, t_value before, t_value after, BITFIELD* bitdefs); t_stat step_svc (UNIT *ptr); t_stat expect_svc (UNIT *ptr); t_stat shift_args (char *do_arg[], size_t arg_count); t_stat set_on (int32 flag, CONST char *cptr); t_stat set_verify (int32 flag, CONST char *cptr); t_stat set_message (int32 flag, CONST char *cptr); t_stat set_quiet (int32 flag, CONST char *cptr); t_stat set_asynch (int32 flag, CONST char *cptr); t_stat sim_show_asynch (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat do_cmd_label (int32 flag, CONST char *cptr, CONST char *label); void int_handler (int signal); t_stat set_prompt (int32 flag, CONST char *cptr); t_stat sim_set_asynch (int32 flag, CONST char *cptr); t_stat sim_set_environment (int32 flag, CONST char *cptr); static const char *get_dbg_verb (uint32 dbits, DEVICE* dptr); /* Global data */ DEVICE *sim_dflt_dev = NULL; UNIT *sim_clock_queue = QUEUE_LIST_END; int32 sim_interval = 0; int32 sim_switches = 0; FILE *sim_ofile = NULL; TMLN *sim_oline = NULL; SCHTAB *sim_schrptr = FALSE; SCHTAB *sim_schaptr = FALSE; DEVICE *sim_dfdev = NULL; UNIT *sim_dfunit = NULL; DEVICE **sim_internal_devices = NULL; uint32 sim_internal_device_count = 0; int32 sim_opt_out = 0; int32 sim_is_running = 0; t_bool sim_processing_event = FALSE; uint32 sim_brk_summ = 0; uint32 sim_brk_types = 0; BRKTYPTAB *sim_brk_type_desc = NULL; /* type descriptions */ uint32 sim_brk_dflt = 0; uint32 sim_brk_match_type; t_addr sim_brk_match_addr; char *sim_brk_act[MAX_DO_NEST_LVL]; char *sim_brk_act_buf[MAX_DO_NEST_LVL]; BRKTAB **sim_brk_tab = NULL; int32 sim_brk_ent = 0; int32 sim_brk_lnt = 0; int32 sim_brk_ins = 0; int32 sim_quiet = 0; int32 sim_step = 0; static double sim_time; static uint32 sim_rtime; static int32 noqueue_time; volatile int32 stop_cpu = 0; static char **sim_argv; t_value *sim_eval = NULL; static t_value sim_last_val; static t_addr sim_last_addr; FILE *sim_log = NULL; /* log file */ FILEREF *sim_log_ref = NULL; /* log file file reference */ FILE *sim_deb = NULL; /* debug file */ FILEREF *sim_deb_ref = NULL; /* debug file file reference */ int32 sim_deb_switches = 0; /* debug switches */ struct timespec sim_deb_basetime; /* debug timestamp relative base time */ char *sim_prompt = NULL; /* prompt string */ static FILE *sim_gotofile; /* the currently open do file */ static int32 sim_goto_line[MAX_DO_NEST_LVL+1]; /* the current line number in the currently open do file */ static int32 sim_do_echo = 0; /* the echo status of the currently open do file */ static int32 sim_show_message = 1; /* the message display status of the currently open do file */ static int32 sim_on_inherit = 0; /* the inherit status of on state and conditions when executing do files */ static int32 sim_do_depth = 0; static int32 sim_on_check[MAX_DO_NEST_LVL+1]; static char *sim_on_actions[MAX_DO_NEST_LVL+1][SCPE_MAX_ERR+1]; static char sim_do_filename[MAX_DO_NEST_LVL+1][CBUFSIZE]; static const char *sim_do_ocptr[MAX_DO_NEST_LVL+1]; static const char *sim_do_label[MAX_DO_NEST_LVL+1]; t_stat sim_last_cmd_stat; /* Command Status */ static SCHTAB sim_stabr; /* Register search specifier */ static SCHTAB sim_staba; /* Memory search specifier */ static UNIT sim_step_unit = { UDATA (&step_svc, 0, 0) }; |
︙ | ︙ | |||
878 879 880 881 882 883 884 885 886 887 888 889 890 891 | " Except for main memory and network devices, units are simulated as\n" " unstructured binary disk files in the host file system. Before using a\n" " simulated unit, the user must specify the file to be accessed by that unit.\n" #define HLP_ATTACH "*Commands Connecting_and_Disconnecting_Devices ATTACH" "3ATTACH\n" " The ATTACH (abbreviation AT) command associates a unit and a file:\n" "++ATTACH <unit> <filename>\n\n" "4Switches\n" "5-n\n" " If the -n switch is specified when an attach is executed, a new file is\n" " created, and an appropriate message is printed.\n" "5-e\n" " If the file does not exist, and the -e switch was not specified, a new\n" " file is created, and an appropriate message is printed. If the -e switch\n" | > > | 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 | " Except for main memory and network devices, units are simulated as\n" " unstructured binary disk files in the host file system. Before using a\n" " simulated unit, the user must specify the file to be accessed by that unit.\n" #define HLP_ATTACH "*Commands Connecting_and_Disconnecting_Devices ATTACH" "3ATTACH\n" " The ATTACH (abbreviation AT) command associates a unit and a file:\n" "++ATTACH <unit> <filename>\n\n" " Some devices have more detailed or specific help available with:\n\n" "++HELP <device> ATTACH\n\n" "4Switches\n" "5-n\n" " If the -n switch is specified when an attach is executed, a new file is\n" " created, and an appropriate message is printed.\n" "5-e\n" " If the file does not exist, and the -e switch was not specified, a new\n" " file is created, and an appropriate message is printed. If the -e switch\n" |
︙ | ︙ | |||
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 | "2Listing Files\n" #define HLP_DIR "*Commands Listing_Files DIR" "3DIR\n" "++DIR {path} list directory files\n" #define HLP_LS "*Commands Listing_Files LS" "3LS\n" "++LS {path} list directory files\n" #define HLP_SET "*Commands SET" "2SET\n" /***************** 80 character line width template *************************/ #define HLP_SET_CONSOLE "*Commands SET CONSOLE" "3Console\n" "+set console arg{,arg...} set console options\n" "+set console WRU specify console drop to simh character\n" "+set console BRK specify console Break character\n" "+set console DEL specify console delete character\n" "+set console PCHAR specify console printable characters\n" "+set console TELNET=port specify console telnet port\n" "+set console TELNET=LOG=log_file\n" "++++++++ specify console telnet logging to the\n" "++++++++ specified destination {LOG,STDOUT,STDERR,\n" "++++++++ DEBUG or filename)\n" "+set console TELNET=NOLOG disables console telnet logging\n" "+set console TELNET=BUFFERED[=bufsize]\n" "++++++++ specify console telnet buffering\n" "+set console TELNET=NOBUFFERED\n" "++++++++ disables console telnet buffering\n" "+set console TELNET=UNBUFFERED\n" "++++++++ disables console telnet buffering\n" "+set console NOTELNET disable console telnet\n" "+set console SERIAL=serialport[;config]\n" "++++++++ specify console serial port and optionally\n" "++++++++ the port config (i.e. ;9600-8n1)\n" "+set console NOSERIAL disable console serial session\n" | > > > > > > > > > < < < | > > > > > | 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 | "2Listing Files\n" #define HLP_DIR "*Commands Listing_Files DIR" "3DIR\n" "++DIR {path} list directory files\n" #define HLP_LS "*Commands Listing_Files LS" "3LS\n" "++LS {path} list directory files\n" "2Displaying Files\n" #define HLP_TYPE "*Commands Displaying_Files TYPE" "3TYPE\n" "++TYPE {file} display a file contents\n" #define HLP_CAT "*Commands Displaying_Files CAT" "3CAT\n" "++CAT {file} display a file contents\n" #define HLP_SET "*Commands SET" "2SET\n" /***************** 80 character line width template *************************/ #define HLP_SET_CONSOLE "*Commands SET CONSOLE" "3Console\n" "+set console arg{,arg...} set console options\n" "+set console WRU specify console drop to simh character\n" "+set console BRK specify console Break character\n" "+set console DEL specify console delete character\n" "+set console PCHAR specify console printable characters\n" "+set console SPEED=speed{*factor}\n" "++++++++ specify console input data rate\n" "+set console TELNET=port specify console telnet port\n" "+set console TELNET=LOG=log_file\n" "++++++++ specify console telnet logging to the\n" "++++++++ specified destination {LOG,STDOUT,STDERR,\n" "++++++++ DEBUG or filename)\n" "+set console TELNET=NOLOG disables console telnet logging\n" "+set console TELNET=BUFFERED[=bufsize]\n" "++++++++ specify console telnet buffering\n" "+set console TELNET=NOBUFFERED\n" "++++++++ disables console telnet buffering\n" "+set console TELNET=UNBUFFERED\n" "++++++++ disables console telnet buffering\n" "+set console NOTELNET disable console telnet\n" "+set console SERIAL=serialport[;config]\n" "++++++++ specify console serial port and optionally\n" "++++++++ the port config (i.e. ;9600-8n1)\n" "+set console NOSERIAL disable console serial session\n" "+set console SPEED=nn{*fac} specifies the maximum console port input rate\n" /***************** 80 character line width template *************************/ #define HLP_SET_REMOTE "*Commands SET REMOTE" "3Remote\n" "+set remote TELNET=port specify remote console telnet port\n" "+set remote NOTELNET disables remote console\n" "+set remote BUFFERSIZE=bufsize\n" "++++++++ specify remote console command output buffer\n" "++++++++ size\n" "+set remote CONNECTIONS=n specify number of concurrent remote\n" "++++++++ console sessions\n" "+set remote TIMEOUT=n specify number of seconds without input\n" "++++++++ before automatic continue\n" "+set remote MASTER enable master mode remote console\n" "+set remote NOMASTER disable remote master mode console\n" #define HLP_SET_DEFAULT "*Commands SET Working_Directory" "3Working Directory\n" "+set default <dir> set the current directory\n" "+cd <dir> set the current directory\n" #define HLP_SET_LOG "*Commands SET Log" "3Log\n" " Interactions with the simulator session (at the \"sim>\" prompt\n" " can be recorded to a log file\n\n" "+set log log_file specify the log destination\n" "++++++++ (STDOUT,DEBUG or filename)\n" "+set nolog disables any currently active logging\n" "4Switches\n" " By default, log output is written at the end of the specified log file.\n" " A new log file can created if the -N switch is used on the command line.\n" #define HLP_SET_DEBUG "*Commands SET Debug" |
︙ | ︙ | |||
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 | " -T or -A is explicitly specified, -T is implied.\n" "5-P\n" " The -P switch adds the output of the PC (Program Counter) to each debug\n" " message.\n" "5-N\n" " The -N switch causes a new/empty file to be written to. The default\n" " is to append to an existing debug log file.\n" #define HLP_SET_BREAK "*Commands SET Breakpoints" "3Breakpoints\n" "+set break <list> set breakpoints\n" "+set nobreak <list> clear breakpoints\n" /***************** 80 character line width template *************************/ #define HLP_SET_THROTTLE "*Commands SET Throttle" "3Throttle\n" "+set throttle {x{M|K|%%}}|{x/t}\n" "++++++++ set simulation rate\n" "+set nothrottle set simulation rate to maximum\n" #define HLP_SET_ASYNCH "*Commands SET Asynch" "3Asynch\n" "+set asynch enable asynchronous I/O\n" "+set noasynch disable asynchronous I/O\n" #define HLP_SET_ENVIRON "*Commands SET Asynch" "3Environment\n" "+set environment name=val set environment variable\n" | > > > > > > > > > > > > > > > | 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 | " -T or -A is explicitly specified, -T is implied.\n" "5-P\n" " The -P switch adds the output of the PC (Program Counter) to each debug\n" " message.\n" "5-N\n" " The -N switch causes a new/empty file to be written to. The default\n" " is to append to an existing debug log file.\n" "5-D\n" " The -D switch causes data blob output to also display the data as\n" " RADIX-50 characters.\n" "5-E\n" " The -E switch causes data blob output to also display the data as\n" " EBCDIC characters.\n" #define HLP_SET_BREAK "*Commands SET Breakpoints" "3Breakpoints\n" "+set break <list> set breakpoints\n" "+set nobreak <list> clear breakpoints\n" /***************** 80 character line width template *************************/ #define HLP_SET_THROTTLE "*Commands SET Throttle" "3Throttle\n" "+set throttle {x{M|K|%%}}|{x/t}\n" "++++++++ set simulation rate\n" "+set nothrottle set simulation rate to maximum\n" #define HLP_SET_CLOCKS "*Commands SET Clocks" "3Clock\n" #if defined (SIM_ASYNCH_CLOCKS) "+set clock asynch enable asynchronous clocks\n" "+set clock noasynch disable asynchronous clocks\n" #endif "+set clock nocatchup disable catchup clock ticks\n" "+set clock catchup enable catchup clock ticks\n" "+set clock calib=n%% specify idle calibration skip %%\n" #define HLP_SET_ASYNCH "*Commands SET Asynch" "3Asynch\n" "+set asynch enable asynchronous I/O\n" "+set noasynch disable asynchronous I/O\n" #define HLP_SET_ENVIRON "*Commands SET Asynch" "3Environment\n" "+set environment name=val set environment variable\n" |
︙ | ︙ | |||
1110 1111 1112 1113 1114 1115 1116 | "++++++++ available\n" /***************** 80 character line width template *************************/ #define HLP_SHOW "*Commands SHOW" "2SHOW\n" "+sh{ow} {-c} br{eak} <list> show breakpoints\n" "+sh{ow} con{figuration} show configuration\n" "+sh{ow} cons{ole} {arg} show console options\n" | | | 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 | "++++++++ available\n" /***************** 80 character line width template *************************/ #define HLP_SHOW "*Commands SHOW" "2SHOW\n" "+sh{ow} {-c} br{eak} <list> show breakpoints\n" "+sh{ow} con{figuration} show configuration\n" "+sh{ow} cons{ole} {arg} show console options\n" "+sh{ow} {-ei} dev{ices} show devices\n" "+sh{ow} fea{tures} show system devices with descriptions\n" "+sh{ow} m{odifiers} show modifiers for all devices\n" "+sh{ow} s{how} show SHOW commands for all devices\n" "+sh{ow} n{ames} show logical names\n" "+sh{ow} q{ueue} show event queue\n" "+sh{ow} ti{me} show simulated time\n" "+sh{ow} th{rottle} show simulation rate\n" |
︙ | ︙ | |||
1135 1136 1137 1138 1139 1140 1141 | "+sh{ow} <unit> {arg,...} show unit parameters\n" "+sh{ow} ethernet show ethernet devices\n" "+sh{ow} serial show serial devices\n" "+sh{ow} multiplexer show open multiplexer devices\n" #if defined(USE_SIM_VIDEO) "+sh{ow} video show video capabilities\n" #endif | | | 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 | "+sh{ow} <unit> {arg,...} show unit parameters\n" "+sh{ow} ethernet show ethernet devices\n" "+sh{ow} serial show serial devices\n" "+sh{ow} multiplexer show open multiplexer devices\n" #if defined(USE_SIM_VIDEO) "+sh{ow} video show video capabilities\n" #endif "+sh{ow} clocks show calibrated timer information\n" "+sh{ow} throttle show throttle info\n" "+sh{ow} on show on condition actions\n" "+h{elp} <dev> show displays the device specific show commands\n" "++++++++ available\n" #define HLP_SHOW_CONFIG "*Commands SHOW" #define HLP_SHOW_DEVICES "*Commands SHOW" #define HLP_SHOW_FEATURES "*Commands SHOW" |
︙ | ︙ | |||
1474 1475 1476 1477 1478 1479 1480 | " units of microseconds rather than instructions.\n" /***************** 80 character line width template *************************/ #define HLP_EXPECT "*Commands Executing_Command_Files Reacting_To_Console_Output" /***************** 80 character line width template *************************/ "3Reacting To Console Output\n" " The EXPECT command provides a way to stop execution and take actions\n" " when specific output has been generated by the simulated system.\n" | | | > > > > | 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 | " units of microseconds rather than instructions.\n" /***************** 80 character line width template *************************/ #define HLP_EXPECT "*Commands Executing_Command_Files Reacting_To_Console_Output" /***************** 80 character line width template *************************/ "3Reacting To Console Output\n" " The EXPECT command provides a way to stop execution and take actions\n" " when specific output has been generated by the simulated system.\n" "++EXPECT {dev:line} {[count]} {HALTAFTER=n,}\"<string>\" {actioncommand {; actioncommand}...}\n\n" " The string argument must be delimited by quote characters. Quotes may\n" " be either single or double but the opening and closing quote characters\n" " must match. Data in the string may contain escaped character strings.\n" " If a [count] is specified, the rule will match after the match string\n" " has matched count times.\n\n" " When multiple expect rules are defined with the same match string, they\n" " will match in the same order they were defined in.\n\n" " When expect rules are defined, they are evaluated agains recently\n" " produced output as each character is output to the device. Since this\n" " evaluation processing is done on each output character, rule matching\n" " is not specifically line oriented. If line oriented matching is desired\n" " then rules should be defined which contain the simulated system's line\n" " ending character sequence (i.e. \"\\r\\n\").\n" " Once data has matched any expect rule, that data is no longer eligible\n" |
︙ | ︙ | |||
1678 1679 1680 1681 1682 1683 1684 | " EXIT (synonyms QUIT and BYE) returns control to the operating system.\n" /***************** 80 character line width template *************************/ #define HLP_SCREENSHOT "*Commands Screenshot_Video_Window" "2Screenshot Video Window\n" " Simulators with Video devices display the simulated video in a window\n" " on the local system. The contents of that display can be saved in a\n" " file with the SCREENSHOT command:\n\n" | | > > > > > | 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 | " EXIT (synonyms QUIT and BYE) returns control to the operating system.\n" /***************** 80 character line width template *************************/ #define HLP_SCREENSHOT "*Commands Screenshot_Video_Window" "2Screenshot Video Window\n" " Simulators with Video devices display the simulated video in a window\n" " on the local system. The contents of that display can be saved in a\n" " file with the SCREENSHOT command:\n\n" " +SCREENSHOT screenshotfile\n\n" #if defined(HAVE_LIBPNG) " which will create a screen shot file called screenshotfile.png\n" #else " which will create a screen shot file called screenshotfile.bmp\n" #endif #define HLP_SPAWN "*Commands Executing_System_Commands" "2Executing System Commands\n" " The simulator can execute operating system commands with the ! (spawn)\n" " command:\n\n" "++! execute local command interpreter\n" "++! <command> execute local host command\n" " If no operating system command is provided, the simulator attempts to\n" |
︙ | ︙ | |||
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 | { "EXIT", &exit_cmd, 0, HLP_EXIT }, { "QUIT", &exit_cmd, 0, NULL }, { "BYE", &exit_cmd, 0, NULL }, { "CD", &set_default_cmd, 0, HLP_CD }, { "PWD", &pwd_cmd, 0, HLP_PWD }, { "DIR", &dir_cmd, 0, HLP_DIR }, { "LS", &dir_cmd, 0, HLP_LS }, { "SET", &set_cmd, 0, HLP_SET }, { "SHOW", &show_cmd, 0, HLP_SHOW }, { "DO", &do_cmd, 1, HLP_DO }, { "GOTO", &goto_cmd, 1, HLP_GOTO }, { "RETURN", &return_cmd, 0, HLP_RETURN }, { "SHIFT", &shift_cmd, 0, HLP_SHIFT }, { "CALL", &call_cmd, 0, HLP_CALL }, | > > | 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 | { "EXIT", &exit_cmd, 0, HLP_EXIT }, { "QUIT", &exit_cmd, 0, NULL }, { "BYE", &exit_cmd, 0, NULL }, { "CD", &set_default_cmd, 0, HLP_CD }, { "PWD", &pwd_cmd, 0, HLP_PWD }, { "DIR", &dir_cmd, 0, HLP_DIR }, { "LS", &dir_cmd, 0, HLP_LS }, { "TYPE", &type_cmd, 0, HLP_TYPE }, { "CAT", &type_cmd, 0, HLP_CAT }, { "SET", &set_cmd, 0, HLP_SET }, { "SHOW", &show_cmd, 0, HLP_SHOW }, { "DO", &do_cmd, 1, HLP_DO }, { "GOTO", &goto_cmd, 1, HLP_GOTO }, { "RETURN", &return_cmd, 0, HLP_RETURN }, { "SHIFT", &shift_cmd, 0, HLP_SHIFT }, { "CALL", &call_cmd, 0, HLP_CALL }, |
︙ | ︙ | |||
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 | { "NOTELNET", &sim_set_notelnet, 0 }, /* deprecated */ { "LOG", &sim_set_logon, 0, HLP_SET_LOG }, { "NOLOG", &sim_set_logoff, 0, HLP_SET_LOG }, { "DEBUG", &sim_set_debon, 0, HLP_SET_DEBUG }, { "NODEBUG", &sim_set_deboff, 0, HLP_SET_DEBUG }, { "THROTTLE", &sim_set_throt, 1, HLP_SET_THROTTLE }, { "NOTHROTTLE", &sim_set_throt, 0, HLP_SET_THROTTLE }, { "ASYNCH", &sim_set_asynch, 1, HLP_SET_ASYNCH }, { "NOASYNCH", &sim_set_asynch, 0, HLP_SET_ASYNCH }, { "ENVIRONMENT", &sim_set_environment, 1, HLP_SET_ENVIRON }, { "ON", &set_on, 1, HLP_SET_ON }, { "NOON", &set_on, 0, HLP_SET_ON }, { "VERIFY", &set_verify, 1, HLP_SET_VERIFY }, { "VERBOSE", &set_verify, 1, HLP_SET_VERIFY }, | > | 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 | { "NOTELNET", &sim_set_notelnet, 0 }, /* deprecated */ { "LOG", &sim_set_logon, 0, HLP_SET_LOG }, { "NOLOG", &sim_set_logoff, 0, HLP_SET_LOG }, { "DEBUG", &sim_set_debon, 0, HLP_SET_DEBUG }, { "NODEBUG", &sim_set_deboff, 0, HLP_SET_DEBUG }, { "THROTTLE", &sim_set_throt, 1, HLP_SET_THROTTLE }, { "NOTHROTTLE", &sim_set_throt, 0, HLP_SET_THROTTLE }, { "CLOCKS", &sim_set_timers, 1, HLP_SET_CLOCKS }, { "ASYNCH", &sim_set_asynch, 1, HLP_SET_ASYNCH }, { "NOASYNCH", &sim_set_asynch, 0, HLP_SET_ASYNCH }, { "ENVIRONMENT", &sim_set_environment, 1, HLP_SET_ENVIRON }, { "ON", &set_on, 1, HLP_SET_ON }, { "NOON", &set_on, 0, HLP_SET_ON }, { "VERIFY", &set_verify, 1, HLP_SET_VERIFY }, { "VERBOSE", &set_verify, 1, HLP_SET_VERIFY }, |
︙ | ︙ | |||
1885 1886 1887 1888 1889 1890 1891 | t_stat stat; #ifdef PIDP8I // PiDP-8/I hack here pthread_t thread1; const char *message="Thread 1"; int terminate=0, iret1; | | | | | 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 | t_stat stat; #ifdef PIDP8I // PiDP-8/I hack here pthread_t thread1; const char *message="Thread 1"; int terminate=0, iret1; // printf("\nPiDP FP driver 3\n"); // create thread iret1 = pthread_create( &thread1, NULL, blink, &terminate); if (iret1) { fprintf(stderr, "Error creating thread, return code %d\n", iret1); exit (EXIT_FAILURE); } // printf("Created thread, return code %d\n", iret1); sleep(2); // allow 2 sec for multiplex to start // ------------------------------------------------------------------------ #endif #if defined (__MWERKS__) && defined (macintosh) argc = ccommand (&argv); #endif |
︙ | ︙ | |||
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 | } if (!sim_quiet) { printf ("\n"); show_version (stdout, NULL, NULL, 0, NULL); } if (sim_dflt_dev == NULL) /* if no default */ sim_dflt_dev = sim_devices[0]; sim_argv = argv; cptr = getenv("HOME"); if (cptr == NULL) { cptr = getenv("HOMEPATH"); cptr2 = getenv("HOMEDRIVE"); } else cptr2 = NULL; if (cptr && sizeof (nbuf) > strlen (cptr) + strlen ("/simh.ini") + 1) { sprintf(nbuf, "\"%s%s%ssimh.ini\"", cptr2 ? cptr2 : "", cptr, strchr (cptr, '/') ? "/" : "\\"); stat = do_cmd (-1, nbuf) & ~SCPE_NOMESSAGE; /* simh.ini proc cmd file */ } if (stat == SCPE_OPENERR) stat = do_cmd (-1, "simh.ini"); /* simh.ini proc cmd file */ if (*cbuf) /* cmd file arg? */ stat = do_cmd (0, cbuf); /* proc cmd file */ else if (*argv[0]) { /* sim name arg? */ char *np; /* "path.ini" */ nbuf[0] = '"'; /* starting " */ strncpy (nbuf + 1, argv[0], PATH_MAX + 1); /* copy sim name */ | > > > > > > > > > > > > > | | 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 | } if (!sim_quiet) { printf ("\n"); show_version (stdout, NULL, NULL, 0, NULL); } if (sim_dflt_dev == NULL) /* if no default */ sim_dflt_dev = sim_devices[0]; if (*argv[0]) { /* sim name arg? */ char *np; /* "path.ini" */ strncpy (nbuf, argv[0], PATH_MAX + 1); /* copy sim name */ if ((np = (char *)match_ext (nbuf, "EXE"))) /* remove .exe */ *np = 0; np = strrchr (nbuf, '/'); /* stript path and try again in cwd */ if (np == NULL) np = strrchr (nbuf, '\\'); /* windows path separator */ if (np == NULL) np = strrchr (nbuf, ']'); /* VMS path separator */ if (np != NULL) setenv ("SIM_BIN_NAME", np+1, 1); /* Publish simulator binary name */ } sim_argv = argv; cptr = getenv("HOME"); if (cptr == NULL) { cptr = getenv("HOMEPATH"); cptr2 = getenv("HOMEDRIVE"); } else cptr2 = NULL; if (cptr && sizeof (nbuf) > strlen (cptr) + strlen ("/simh.ini") + 1) { sprintf(nbuf, "\"%s%s%ssimh.ini\"", cptr2 ? cptr2 : "", cptr, strchr (cptr, '/') ? "/" : "\\"); stat = do_cmd (-1, nbuf) & ~SCPE_NOMESSAGE; /* simh.ini proc cmd file */ } if (stat == SCPE_OPENERR) stat = do_cmd (-1, "simh.ini"); /* simh.ini proc cmd file */ if (*cbuf) /* cmd file arg? */ stat = do_cmd (0, cbuf); /* proc cmd file */ else if (*argv[0]) { /* sim name arg? */ char *np; /* "path.ini" */ nbuf[0] = '"'; /* starting " */ strncpy (nbuf + 1, argv[0], PATH_MAX + 1); /* copy sim name */ if ((np = (char *)match_ext (nbuf, "EXE"))) /* remove .exe */ *np = 0; strcat (nbuf, ".ini\""); /* add .ini" */ stat = do_cmd (-1, nbuf) & ~SCPE_NOMESSAGE; /* proc default cmd file */ if (stat == SCPE_OPENERR) { /* didn't exist/can't open? */ np = strrchr (nbuf, '/'); /* stript path and try again in cwd */ if (np == NULL) np = strrchr (nbuf, '\\'); /* windows path separator */ |
︙ | ︙ | |||
2041 2042 2043 2044 2045 2046 2047 | #endif return 0; } t_stat process_stdin_commands (t_stat stat, char *argv[]) { | | > | | | | | | | | | | | 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 | #endif return 0; } t_stat process_stdin_commands (t_stat stat, char *argv[]) { char cbuf[4*CBUFSIZE], gbuf[CBUFSIZE]; CONST char *cptr; t_stat stat_nomessage; CTAB *cmdp; stat = SCPE_BARE_STATUS(stat); /* remove possible flag */ while (stat != SCPE_EXIT) { /* in case exit */ #ifdef PIDP8I if (awfulHackFlag!=0) { if (awfulHackFlag==8) sprintf(cbuf, "exit"); // inject command into command line processor. else { char path[256]; snprintf(path, sizeof(path), "@BOOTDIR@/%d.script", awfulHackFlag); if (access(path, R_OK) == 0) { sprintf(cbuf, "do %s", path); } else { // Give up; can't find that boot script. Have to exit, or we'll // spam the console with errors, since we can write errors faster // than the user can flip the offending switch back, particularly // with a slow serial console. char cwd[256]; getcwd(cwd, sizeof(cwd)); printf("Cannot read %s from %s: %s!\n", path, cwd, strerror(errno)); sprintf(cbuf, "exit"); } } cptr = cbuf; } else if ((cptr = sim_brk_getact (cbuf, sizeof(cbuf)))) /* pending action? */ printf ("%s%s\n", sim_prompt, cptr); /* echo */ else if (sim_vm_read != NULL) { /* sim routine? */ |
︙ | ︙ | |||
2097 2098 2099 2100 2101 2102 2103 | if (*cptr == 0) /* ignore blank */ continue; sim_sub_args (cbuf, sizeof(cbuf), argv); if (sim_log) /* log cmd */ fprintf (sim_log, "%s%s\n", sim_prompt, cptr); if (sim_deb && (sim_deb != sim_log) && (sim_deb != stdout)) fprintf (sim_deb, "%s%s\n", sim_prompt, cptr); | | > | | | | | | | 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 | if (*cptr == 0) /* ignore blank */ continue; sim_sub_args (cbuf, sizeof(cbuf), argv); if (sim_log) /* log cmd */ fprintf (sim_log, "%s%s\n", sim_prompt, cptr); if (sim_deb && (sim_deb != sim_log) && (sim_deb != stdout)) fprintf (sim_deb, "%s%s\n", sim_prompt, cptr); cptr = get_glyph_cmd (cptr, gbuf); /* get command glyph */ sim_switches = 0; /* init switches */ if ((cmdp = find_cmd (gbuf))) /* lookup command */ stat = cmdp->action (cmdp->arg, cptr); /* if found, exec */ else stat = SCPE_UNK; stat_nomessage = stat & SCPE_NOMESSAGE; /* extract possible message supression flag */ stat_nomessage = stat_nomessage || (!sim_show_message);/* Apply global suppression */ stat = SCPE_BARE_STATUS(stat); /* remove possible flag */ sim_last_cmd_stat = stat; /* save command error status */ if (!stat_nomessage) { /* displaying message status? */ if (cmdp && (cmdp->message)) /* special message handler? */ cmdp->message (NULL, stat); /* let it deal with display */ else if (stat >= SCPE_BASE) /* error? */ sim_printf ("%s\n", sim_error_text (stat)); } if (sim_vm_post != NULL) (*sim_vm_post) (TRUE); } /* end while */ return stat; } /* Set prompt routine */ t_stat set_prompt (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE], *gptr; if ((!cptr) || (*cptr == '\0')) return SCPE_ARG; cptr = get_glyph_nc (cptr, gbuf, '"'); /* get quote delimited token */ if (gbuf[0] == '\0') { /* Token started with quote */ gbuf[sizeof (gbuf)-1] = '\0'; strncpy (gbuf, cptr, sizeof (gbuf)-1); gptr = strchr (gbuf, '"'); if (gptr) *gptr = '\0'; } sim_prompt = (char *)realloc (sim_prompt, strlen (gbuf) + 2); /* nul terminator and trailing blank */ sprintf (sim_prompt, "%s ", gbuf); return SCPE_OK; } /* Find command routine */ |
︙ | ︙ | |||
2156 2157 2158 2159 2160 2161 2162 | if (cmdp == NULL) /* try regular cmds */ cmdp = find_ctab (cmd_table, gbuf); return cmdp; } /* Exit command */ | | | | | 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 | if (cmdp == NULL) /* try regular cmds */ cmdp = find_ctab (cmd_table, gbuf); return cmdp; } /* Exit command */ t_stat exit_cmd (int32 flag, CONST char *cptr) { return SCPE_EXIT; } /* Help command */ /* Used when sorting a list of command names */ static int _cmd_name_compare (const void *pa, const void *pb) { CTAB * const *a = (CTAB * const *)pa; CTAB * const *b = (CTAB * const *)pb; return strcmp((*a)->name, (*b)->name); } void fprint_help (FILE *st) { CTAB *cmdp; |
︙ | ︙ | |||
2238 2239 2240 2241 2242 2243 2244 | void fprint_reg_help_ex (FILE *st, DEVICE *dptr, t_bool silent) { REG *rptr, *trptr; t_bool found = FALSE; t_bool all_unique = TRUE; size_t max_namelen = 0; DEVICE *tdptr; | | | 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 | void fprint_reg_help_ex (FILE *st, DEVICE *dptr, t_bool silent) { REG *rptr, *trptr; t_bool found = FALSE; t_bool all_unique = TRUE; size_t max_namelen = 0; DEVICE *tdptr; CONST char *tptr; char *namebuf; char rangebuf[32]; if (dptr->registers) for (rptr = dptr->registers; rptr->name != NULL; rptr++) { if (rptr->flags & REG_HIDDEN) continue; |
︙ | ︙ | |||
2343 2344 2345 2346 2347 2348 2349 | if (!MODMASK(mptr,MTAB_VDV) && MODMASK(mptr,MTAB_VUN) && (dptr->numunits != 1)) continue; /* skip unit only extended modifiers */ if ((dptr->numunits != 1) && !(mptr->mask & MTAB_XTD)) continue; /* skip unit only simple modifiers */ if (mptr->mstring) { fprint_header (st, &found, header); sprintf (buf, "set %s %s%s", sim_dname (dptr), mptr->mstring, (strchr(mptr->mstring, '=')) ? "" : (MODMASK(mptr,MTAB_VALR) ? "=val" : (MODMASK(mptr,MTAB_VALO) ? "{=val}" : ""))); | > | > > > > | > > > > > > > | 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 | if (!MODMASK(mptr,MTAB_VDV) && MODMASK(mptr,MTAB_VUN) && (dptr->numunits != 1)) continue; /* skip unit only extended modifiers */ if ((dptr->numunits != 1) && !(mptr->mask & MTAB_XTD)) continue; /* skip unit only simple modifiers */ if (mptr->mstring) { fprint_header (st, &found, header); sprintf (buf, "set %s %s%s", sim_dname (dptr), mptr->mstring, (strchr(mptr->mstring, '=')) ? "" : (MODMASK(mptr,MTAB_VALR) ? "=val" : (MODMASK(mptr,MTAB_VALO) ? "{=val}" : ""))); if ((strlen (buf) < 30) || (!mptr->help)) fprintf (st, "%-30s\t%s\n", buf, mptr->help ? mptr->help : ""); else fprintf (st, "%s\n%-30s\t%s\n", buf, "", mptr->help); } } } if (dptr->flags & DEV_DISABLE) { fprint_header (st, &found, header); sprintf (buf, "set %s ENABLE", sim_dname (dptr)); fprintf (st, "%-30s\tEnables device %s\n", buf, sim_dname (dptr)); sprintf (buf, "set %s DISABLE", sim_dname (dptr)); fprintf (st, "%-30s\tDisables device %s\n", buf, sim_dname (dptr)); } if (dptr->flags & DEV_DEBUG) { fprint_header (st, &found, header); sprintf (buf, "set %s DEBUG", sim_dname (dptr)); fprintf (st, "%-30s\tEnables debugging for device %s\n", buf, sim_dname (dptr)); sprintf (buf, "set %s NODEBUG", sim_dname (dptr)); fprintf (st, "%-30s\tDisables debugging for device %s\n", buf, sim_dname (dptr)); if (dptr->debflags) { t_bool desc_available = FALSE; strcpy (buf, ""); fprintf (st, "set %s DEBUG=", sim_dname (dptr)); for (dep = dptr->debflags; dep->name != NULL; dep++) { fprintf (st, "%s%s", ((dep == dptr->debflags) ? "" : ";"), dep->name); desc_available |= ((dep->desc != NULL) && (dep->desc[0] != '\0')); } fprintf (st, "\n"); fprintf (st, "%-30s\tEnables specific debugging for device %s\n", buf, sim_dname (dptr)); fprintf (st, "set %s NODEBUG=", sim_dname (dptr)); for (dep = dptr->debflags; dep->name != NULL; dep++) fprintf (st, "%s%s", ((dep == dptr->debflags) ? "" : ";"), dep->name); fprintf (st, "\n"); fprintf (st, "%-30s\tDisables specific debugging for device %s\n", buf, sim_dname (dptr)); if (desc_available) { fprintf (st, "\n*%s device DEBUG settings:\n", sim_dname (dptr)); for (dep = dptr->debflags; dep->name != NULL; dep++) fprintf (st, "%4s%-12s%s\n", "", dep->name, dep->desc ? dep->desc : ""); } } } if ((dptr->modifiers) && (dptr->units) && (dptr->numunits != 1)) { if (dptr->units->flags & UNIT_DISABLE) { fprint_header (st, &found, header); sprintf (buf, "set %sn ENABLE", sim_dname (dptr)); fprintf (st, "%-30s\tEnables unit %sn\n", buf, sim_dname (dptr)); |
︙ | ︙ | |||
2448 2449 2450 2451 2452 2453 2454 | } void fprint_show_help (FILE *st, DEVICE *dptr) { fprint_show_help_ex (st, dptr, TRUE); } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > | 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 | } void fprint_show_help (FILE *st, DEVICE *dptr) { fprint_show_help_ex (st, dptr, TRUE); } void fprint_brk_help_ex (FILE *st, DEVICE *dptr, t_bool silent) { BRKTYPTAB *brkt = dptr->brk_types; char gbuf[CBUFSIZE]; if (sim_brk_types == 0) { if ((dptr != sim_dflt_dev) && (!silent)) { fprintf (st, "Breakpoints are not supported in the %s simulator\n", sim_name); if (dptr->help) dptr->help (st, dptr, NULL, 0, NULL); } return; } if (brkt == NULL) { int i; if (dptr == sim_dflt_dev) { if (sim_brk_types & ~sim_brk_dflt) { fprintf (st, "%s supports the following breakpoint types:\n", sim_dname (dptr)); for (i=0; i<26; i++) { if (sim_brk_types & (1<<i)) fprintf (st, " -%c\n", 'A'+i); } } fprintf (st, "The default breakpoint type is: %s\n", put_switches (gbuf, sizeof(gbuf), sim_brk_dflt)); } return; } fprintf (st, "%s supports the following breakpoint types:\n", sim_dname (dptr)); while (brkt->btyp) { fprintf (st, " %s %s\n", put_switches (gbuf, sizeof(gbuf), brkt->btyp), brkt->desc); ++brkt; } fprintf (st, "The default breakpoint type is: %s\n", put_switches (gbuf, sizeof(gbuf), sim_brk_dflt)); } t_stat help_dev_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { char gbuf[CBUFSIZE]; CTAB *cmdp; if (*cptr) { const char *gptr = get_glyph (cptr, gbuf, 0); if ((cmdp = find_cmd (gbuf))) { if (cmdp->action == &exdep_cmd) { if (dptr->help) /* Shouldn't this pass cptr so the device knows which command invoked? */ return dptr->help (st, dptr, uptr, flag, gptr); else fprintf (st, "No help available for the %s %s command\n", cmdp->name, sim_dname(dptr)); return SCPE_OK; } if (cmdp->action == &set_cmd) { fprint_set_help_ex (st, dptr, FALSE); return SCPE_OK; } if (cmdp->action == &show_cmd) { fprint_show_help_ex (st, dptr, FALSE); return SCPE_OK; } if (cmdp->action == &attach_cmd) { fprint_attach_help_ex (st, dptr, FALSE); return SCPE_OK; } if (cmdp->action == &brk_cmd) { fprint_brk_help_ex (st, dptr, FALSE); return SCPE_OK; } if (dptr->help) return dptr->help (st, dptr, uptr, flag, cptr); fprintf (st, "No %s help is available for the %s device\n", cmdp->name, dptr->name); return SCPE_OK; } if (MATCH_CMD (gbuf, "REGISTERS") == 0) { |
︙ | ︙ | |||
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 | fprintf (st, "%s %s help\n", dptr->description (dptr), dptr->name); else fprintf (st, "%s help\n", dptr->name); fprint_set_help_ex (st, dptr, TRUE); fprint_show_help_ex (st, dptr, TRUE); fprint_attach_help_ex (st, dptr, TRUE); fprint_reg_help_ex (st, dptr, TRUE); return SCPE_OK; } t_stat help_cmd_output (int32 flag, const char *help, const char *help_base) { switch (help[0]) { case '*': scp_help (stdout, NULL, NULL, flag, help_base ? help_base : simh_help, help+1); if (sim_log) scp_help (sim_log, NULL, NULL, flag | SCP_HELP_FLAT, help_base ? help_base : simh_help, help+1); break; default: fputs (help, stdout); if (sim_log) fputs (help, sim_log); break; } return SCPE_OK; } | > | | 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 | fprintf (st, "%s %s help\n", dptr->description (dptr), dptr->name); else fprintf (st, "%s help\n", dptr->name); fprint_set_help_ex (st, dptr, TRUE); fprint_show_help_ex (st, dptr, TRUE); fprint_attach_help_ex (st, dptr, TRUE); fprint_reg_help_ex (st, dptr, TRUE); fprint_brk_help_ex (st, dptr, TRUE); return SCPE_OK; } t_stat help_cmd_output (int32 flag, const char *help, const char *help_base) { switch (help[0]) { case '*': scp_help (stdout, NULL, NULL, flag, help_base ? help_base : simh_help, help+1); if (sim_log) scp_help (sim_log, NULL, NULL, flag | SCP_HELP_FLAT, help_base ? help_base : simh_help, help+1); break; default: fputs (help, stdout); if (sim_log) fputs (help, sim_log); break; } return SCPE_OK; } t_stat help_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; CTAB *cmdp; GET_SWITCHES (cptr); if (sim_switches & SWMASK ('F')) flag = flag | SCP_HELP_FLAT; |
︙ | ︙ | |||
2646 2647 2648 2649 2650 2651 2652 | fprint_help (sim_log); } return SCPE_OK; } /* Spawn command */ | | | 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 | fprint_help (sim_log); } return SCPE_OK; } /* Spawn command */ t_stat spawn_cmd (int32 flag, CONST char *cptr) { t_stat status; if ((cptr == NULL) || (strlen (cptr) == 0)) cptr = getenv("SHELL"); if ((cptr == NULL) || (strlen (cptr) == 0)) cptr = getenv("ComSpec"); #if defined (VMS) |
︙ | ︙ | |||
2672 2673 2674 2675 2676 2677 2678 | #endif return status; } /* Screenshot command */ | | | | 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 | #endif return status; } /* Screenshot command */ t_stat screenshot_cmd (int32 flag, CONST char *cptr) { if ((cptr == NULL) || (strlen (cptr) == 0)) return SCPE_ARG; #if defined (USE_SIM_VIDEO) return vid_screenshot (cptr); #else sim_printf ("No video device\n"); return SCPE_UNK|SCPE_NOMESSAGE; #endif } /* Echo command */ t_stat echo_cmd (int32 flag, CONST char *cptr) { sim_printf ("%s\n", cptr); return SCPE_OK; } /* Do command |
︙ | ︙ | |||
2718 2719 2720 2721 2722 2723 2724 | -1 = initialization file (no error if not found) 0 = command line file 1 = "DO" command >1 = nested "DO" command */ | | | | > > > | | 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 | -1 = initialization file (no error if not found) 0 = command line file 1 = "DO" command >1 = nested "DO" command */ t_stat do_cmd (int32 flag, CONST char *fcptr) { return do_cmd_label (flag, fcptr, NULL); } static char *do_position(void) { static char cbuf[CBUFSIZE]; sprintf (cbuf, "%s%s%s-%d", sim_do_filename[sim_do_depth], sim_do_label[sim_do_depth] ? "::" : "", sim_do_label[sim_do_depth] ? sim_do_label[sim_do_depth] : "", sim_goto_line[sim_do_depth]); return cbuf; } t_stat do_cmd_label (int32 flag, CONST char *fcptr, CONST char *label) { char cbuf[4*CBUFSIZE], gbuf[CBUFSIZE], abuf[4*CBUFSIZE], quote, *c, *do_arg[11]; CONST char *cptr; FILE *fpin; CTAB *cmdp = NULL; int32 echo, nargs, errabort, i; int32 saved_sim_do_echo = sim_do_echo, saved_sim_show_message = sim_show_message, saved_sim_on_inherit = sim_on_inherit, saved_sim_quiet = sim_quiet; t_bool staying; t_stat stat, stat_nomessage; stat = SCPE_OK; staying = TRUE; if (flag > 0) /* need switches? */ GET_SWITCHES (fcptr); /* get switches */ echo = (sim_switches & SWMASK ('V')) || sim_do_echo; /* -v means echo */ sim_quiet = (sim_switches & SWMASK ('Q')) || sim_quiet; /* -q means quiet */ sim_on_inherit =(sim_switches & SWMASK ('O')) || sim_on_inherit; /* -o means inherit ON condition actions */ errabort = sim_switches & SWMASK ('E'); /* -e means abort on error */ abuf[sizeof(abuf)-1] = '\0'; strncpy (abuf, fcptr, sizeof(abuf)-1); c = abuf; do_arg[10] = NULL; /* make sure the argument list always ends with a NULL */ for (nargs = 0; nargs < 10; ) { /* extract arguments */ while (sim_isspace (*c)) /* skip blanks */ c++; if (*c == 0) /* all done? */ do_arg [nargs++] = NULL; /* null argument */ else { |
︙ | ︙ | |||
2840 2841 2842 2843 2844 2845 2846 | } if (*cptr == 0) /* ignore blank */ continue; if (echo) /* echo if -v */ sim_printf("%s> %s\n", do_position(), cptr); if (*cptr == ':') /* ignore label */ continue; | | | 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 | } if (*cptr == 0) /* ignore blank */ continue; if (echo) /* echo if -v */ sim_printf("%s> %s\n", do_position(), cptr); if (*cptr == ':') /* ignore label */ continue; cptr = get_glyph_cmd (cptr, gbuf); /* get command glyph */ sim_switches = 0; /* init switches */ sim_gotofile = fpin; sim_do_echo = echo; if ((cmdp = find_cmd (gbuf))) { /* lookup command */ if (cmdp->action == &return_cmd) /* RETURN command? */ break; /* done! */ if (cmdp->action == &do_cmd) { /* DO command? */ |
︙ | ︙ | |||
2864 2865 2866 2867 2868 2869 2870 | stat = cmdp->action (cmdp->arg, cptr); /* exec other cmd */ } else stat = SCPE_UNK; /* bad cmd given */ echo = sim_do_echo; /* Allow for SET VERIFY */ stat_nomessage = stat & SCPE_NOMESSAGE; /* extract possible message supression flag */ stat_nomessage = stat_nomessage || (!sim_show_message);/* Apply global suppression */ stat = SCPE_BARE_STATUS(stat); /* remove possible flag */ | | | 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 | stat = cmdp->action (cmdp->arg, cptr); /* exec other cmd */ } else stat = SCPE_UNK; /* bad cmd given */ echo = sim_do_echo; /* Allow for SET VERIFY */ stat_nomessage = stat & SCPE_NOMESSAGE; /* extract possible message supression flag */ stat_nomessage = stat_nomessage || (!sim_show_message);/* Apply global suppression */ stat = SCPE_BARE_STATUS(stat); /* remove possible flag */ if (((stat != SCPE_OK) && (stat != SCPE_EXPECT)) || ((cmdp->action != &return_cmd) && (cmdp->action != &goto_cmd) && (cmdp->action != &on_cmd) && (cmdp->action != &echo_cmd))) sim_last_cmd_stat = stat; /* save command error status */ switch (stat) { case SCPE_AFAIL: |
︙ | ︙ | |||
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 | if (!stat_nomessage) { /* report error if not suppressed */ if (cmdp && cmdp->message) /* special message handler */ cmdp->message ((!echo && !sim_quiet) ? sim_do_ocptr[sim_do_depth] : NULL, stat); else if (stat >= SCPE_BASE) /* report error if not suppressed */ sim_printf ("%s\n", sim_error_text (stat)); } if (staying && (sim_on_check[sim_do_depth]) && (stat != SCPE_OK) && (stat != SCPE_STEP)) { if ((stat <= SCPE_MAX_ERR) && sim_on_actions[sim_do_depth][stat]) sim_brk_setact (sim_on_actions[sim_do_depth][stat]); else | > > | 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 | if (!stat_nomessage) { /* report error if not suppressed */ if (cmdp && cmdp->message) /* special message handler */ cmdp->message ((!echo && !sim_quiet) ? sim_do_ocptr[sim_do_depth] : NULL, stat); else if (stat >= SCPE_BASE) /* report error if not suppressed */ sim_printf ("%s\n", sim_error_text (stat)); } if (stat == SCPE_EXPECT) /* EXPECT status is non actionable */ stat = SCPE_OK; /* so adjust it to SCPE_OK */ if (staying && (sim_on_check[sim_do_depth]) && (stat != SCPE_OK) && (stat != SCPE_STEP)) { if ((stat <= SCPE_MAX_ERR) && sim_on_actions[sim_do_depth][stat]) sim_brk_setact (sim_on_actions[sim_do_depth][stat]); else |
︙ | ︙ | |||
2984 2985 2986 2987 2988 2989 2990 | it is not found, then the original beginning token on the line is left untouched. */ void sim_sub_args (char *instr, size_t instr_size, char *do_arg[]) { char gbuf[CBUFSIZE]; | | > | 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 | it is not found, then the original beginning token on the line is left untouched. */ void sim_sub_args (char *instr, size_t instr_size, char *do_arg[]) { char gbuf[CBUFSIZE]; char *ip = instr, *op, *oend, *istart, *tmpbuf; const char *ap; char rbuf[CBUFSIZE]; int i; time_t now; struct tm *tmnow; time(&now); tmnow = localtime(&now); |
︙ | ︙ | |||
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 | else if (!strcmp ("DATE_YY", gbuf)) {/* Year (00-99) */ strftime (rbuf, sizeof(rbuf), "%y", tmnow); ap = rbuf; } else if (!strcmp ("DATE_YC", gbuf)) {/* Century (year/100) */ sprintf (rbuf, "%d", (tmnow->tm_year + 1900)/100); ap = rbuf; } else if (!strcmp ("DATE_MM", gbuf)) {/* Month number (01-12) */ strftime (rbuf, sizeof(rbuf), "%m", tmnow); ap = rbuf; } else if (!strcmp ("DATE_DD", gbuf)) {/* Day of Month (01-31) */ strftime (rbuf, sizeof(rbuf), "%d", tmnow); ap = rbuf; } else if (!strcmp ("DATE_D", gbuf)) { /* ISO 8601 weekday number (1-7) */ sprintf (rbuf, "%d", (tmnow->tm_wday ? tmnow->tm_wday : 7)); | > > > > > > > > > > > > > > > > > > > > > > > > > | 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 | else if (!strcmp ("DATE_YY", gbuf)) {/* Year (00-99) */ strftime (rbuf, sizeof(rbuf), "%y", tmnow); ap = rbuf; } else if (!strcmp ("DATE_YC", gbuf)) {/* Century (year/100) */ sprintf (rbuf, "%d", (tmnow->tm_year + 1900)/100); ap = rbuf; } else if ((!strcmp ("DATE_19XX_YY", gbuf)) || /* Year with same calendar */ (!strcmp ("DATE_19XX_YYYY", gbuf))) { int year = tmnow->tm_year + 1900; int days = year - 2001; int leaps = days/4 - days/100 + days/400; int lyear = ((year % 4) == 0) && (((year % 100) != 0) || ((year % 400) == 0)); int selector = ((days + leaps + 7) % 7) + lyear * 7; static int years[] = {90, 91, 97, 98, 99, 94, 89, 96, 80, 92, 76, 88, 72, 84}; int cal_year = years[selector]; if (!strcmp ("DATE_19XX_YY", gbuf)) sprintf (rbuf, "%d", cal_year); /* 2 digit year */ else sprintf (rbuf, "%d", cal_year + 1900); /* 4 digit year */ ap = rbuf; } else if (!strcmp ("DATE_MM", gbuf)) {/* Month number (01-12) */ strftime (rbuf, sizeof(rbuf), "%m", tmnow); ap = rbuf; } else if (!strcmp ("DATE_MMM", gbuf)) {/* abbreviated Month name */ strftime (rbuf, sizeof(rbuf), "%b", tmnow); ap = rbuf; } else if (!strcmp ("DATE_MONTH", gbuf)) {/* full Month name */ strftime (rbuf, sizeof(rbuf), "%B", tmnow); ap = rbuf; } else if (!strcmp ("DATE_DD", gbuf)) {/* Day of Month (01-31) */ strftime (rbuf, sizeof(rbuf), "%d", tmnow); ap = rbuf; } else if (!strcmp ("DATE_D", gbuf)) { /* ISO 8601 weekday number (1-7) */ sprintf (rbuf, "%d", (tmnow->tm_wday ? tmnow->tm_wday : 7)); |
︙ | ︙ | |||
3261 3262 3263 3264 3265 3266 3267 | <= - less than or equal LEQ - less than or equal > - greater than GTR - greater than >= - greater than or equal GEQ - greater than or equal */ | | | | | > | | | | > | > | 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 | <= - less than or equal LEQ - less than or equal > - greater than GTR - greater than >= - greater than or equal GEQ - greater than or equal */ t_stat assert_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE], gbuf2[CBUFSIZE]; CONST char *tptr, *gptr; REG *rptr; uint32 idx; t_value val; t_stat r; t_bool Not = FALSE; t_bool result; t_addr addr; t_stat reason; cptr = (CONST char *)get_sim_opt (CMD_OPT_SW|CMD_OPT_DFT, (CONST char *)cptr, &r); /* get sw, default */ sim_stabr.boolop = sim_staba.boolop = -1; /* no relational op dflt */ if (*cptr == 0) /* must be more */ return SCPE_2FARG; tptr = get_glyph (cptr, gbuf, 0); /* get token */ if (!strcmp (gbuf, "NOT")) { /* Conditional Inversion? */ Not = TRUE; /* remember that, and */ cptr = (CONST char *)tptr; } if (*cptr == '"') { /* quoted string comparison? */ char op[CBUFSIZE]; static struct { const char *op; int aval; int bval; t_bool invert; } *optr, compare_ops[] = { {"==", 0, 0, FALSE}, {"EQU", 0, 0, FALSE}, {"!=", 0, 0, TRUE}, {"NEQ", 0, 0, TRUE}, {"<", -1, -1, FALSE}, {"LSS", -1, -1, FALSE}, {"<=", 0, -1, FALSE}, {"LEQ", 0, -1, FALSE}, {">", 1, 1, FALSE}, {"GTR", 1, 1, FALSE}, {">=", 0, 1, FALSE}, {"GEQ", 0, 1, FALSE}, {NULL}}; tptr = (CONST char *)get_glyph_gen (cptr, gbuf, '=', (sim_switches & SWMASK ('I')), TRUE, '\\'); /* get first string */ if (!*tptr) return SCPE_2FARG; cptr += strlen (gbuf); while (sim_isspace (*cptr)) /* skip spaces */ ++cptr; get_glyph (cptr, op, '"'); for (optr = compare_ops; optr->op; optr++) if (0 == strcmp (op, optr->op)) break; if (!optr->op) return sim_messagef (SCPE_ARG, "Invalid operator: %s\n", op); cptr += strlen (op); while (sim_isspace (*cptr)) /* skip spaces */ ++cptr; cptr = (CONST char *)get_glyph_gen (cptr, gbuf2, 0, (sim_switches & SWMASK ('I')), TRUE, '\\'); /* get second string */ if (*cptr) { /* more? */ if (flag) /* ASSERT has no more args */ return SCPE_2MARG; } else { if (!flag) return SCPE_2FARG; /* IF needs actions! */ |
︙ | ︙ | |||
3353 3354 3355 3356 3357 3358 3359 | } else idx = 0; /* not array */ if (idx >= rptr->depth) /* validate subscript */ return SCPE_SUB; } else { /* not reg, check for memory */ if (sim_dfdev && sim_vm_parse_addr) /* get addr */ | | | 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 | } else idx = 0; /* not array */ if (idx >= rptr->depth) /* validate subscript */ return SCPE_SUB; } else { /* not reg, check for memory */ if (sim_dfdev && sim_vm_parse_addr) /* get addr */ addr = sim_vm_parse_addr (sim_dfdev, gbuf, &gptr); else addr = (t_addr) strtotv (gbuf, &gptr, sim_dfdev->dradix); if (gbuf == gptr) /* error? */ return SCPE_NXREG; } if (*gptr != 0) /* more? must be search */ get_glyph (gptr, gbuf, 0); else { |
︙ | ︙ | |||
3390 3391 3392 3393 3394 3395 3396 | return SCPE_MISVAL; reason = get_aval (addr, sim_dfdev, sim_dfunit);/* get data */ if (reason != SCPE_OK) /* return if error */ return reason; result = test_search (sim_eval, &sim_staba); /* test condition */ } } | | | 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 | return SCPE_MISVAL; reason = get_aval (addr, sim_dfdev, sim_dfunit);/* get data */ if (reason != SCPE_OK) /* return if error */ return reason; result = test_search (sim_eval, &sim_staba); /* test condition */ } } if (Not ^ result) { if (!flag) sim_brk_setact (cptr); /* set up IF actions */ } else if (flag) return SCPE_AFAIL; /* return assert status */ return SCPE_OK; |
︙ | ︙ | |||
3433 3434 3435 3436 3437 3438 3439 | \e Sends the ASCII Escape character (Decimal value 27) as well as octal character values of the form: \n{n{n}} where each n is an octal digit (0-7) and hext character values of the form: \xh{h} where each h is a hex digit (0-9A-Fa-f) */ | | | > | 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 | \e Sends the ASCII Escape character (Decimal value 27) as well as octal character values of the form: \n{n{n}} where each n is an octal digit (0-7) and hext character values of the form: \xh{h} where each h is a hex digit (0-9A-Fa-f) */ t_stat send_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; CONST char *tptr; uint8 dbuf[CBUFSIZE]; uint32 dsize = 0; uint32 delay = 0; uint32 after = 0; t_stat r; SEND *snd; |
︙ | ︙ | |||
3491 3492 3493 3494 3495 3496 3497 | return sim_messagef (SCPE_ARG, "Invalid String\n"); } if ((dsize == 0) && (delay == 0) && (after == 0)) return SCPE_2FARG; return sim_send_input (snd, dbuf, dsize, after, delay); } | | | > | | > | | > | 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 | return sim_messagef (SCPE_ARG, "Invalid String\n"); } if ((dsize == 0) && (delay == 0) && (after == 0)) return SCPE_2FARG; return sim_send_input (snd, dbuf, dsize, after, delay); } t_stat sim_show_send (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; CONST char *tptr; t_stat r; SEND *snd; tptr = get_glyph (cptr, gbuf, ','); if (sim_isalpha(gbuf[0]) && (strchr (gbuf, ':'))) { r = tmxr_locate_line_send (gbuf, &snd); if (r != SCPE_OK) return r; cptr = tptr; } else snd = sim_cons_get_send (); if (*cptr) return SCPE_2MARG; return sim_show_send_input (st, snd); } t_stat expect_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; CONST char *tptr; t_stat r; EXPECT *exp; GET_SWITCHES (cptr); /* get switches */ tptr = get_glyph (cptr, gbuf, ','); if (sim_isalpha(gbuf[0]) && (strchr (gbuf, ':'))) { r = tmxr_locate_line_expect (gbuf, &exp); if (r != SCPE_OK) return r; cptr = tptr; } else exp = sim_cons_get_expect (); if (flag) return sim_set_expect (exp, cptr); else return sim_set_noexpect (exp, cptr); } t_stat sim_show_expect (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; CONST char *tptr; t_stat r; EXPECT *exp; tptr = get_glyph (cptr, gbuf, ','); if (sim_isalpha(gbuf[0]) && (strchr (gbuf, ':'))) { r = tmxr_locate_line_expect (gbuf, &exp); if (r != SCPE_OK) |
︙ | ︙ | |||
3561 3562 3563 3564 3565 3566 3567 | return SCPE_ARG; /* String must be quote delimited */ return sim_exp_show (st, exp, gbuf); } /* Goto command */ | | | > | 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 | return SCPE_ARG; /* String must be quote delimited */ return sim_exp_show (st, exp, gbuf); } /* Goto command */ t_stat goto_cmd (int32 flag, CONST char *fcptr) { char cbuf[CBUFSIZE], gbuf[CBUFSIZE], gbuf1[CBUFSIZE]; const char *cptr; long fpos; int32 saved_do_echo = sim_do_echo; int32 saved_goto_line = sim_goto_line[sim_do_depth]; if (NULL == sim_gotofile) return SCPE_UNK; /* only valid inside of do_cmd */ get_glyph (fcptr, gbuf1, 0); if ('\0' == gbuf1[0]) return SCPE_ARG; /* unspecified goto target */ |
︙ | ︙ | |||
3604 3605 3606 3607 3608 3609 3610 | /* Return command */ /* The return command is invalid unless encountered in a do_cmd context, */ /* and in that context, it is handled as a special case inside of do_cmd() */ /* and not dispatched here, so if we get here a return has been issued from */ /* interactive input */ | | | | | > | | 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 | /* Return command */ /* The return command is invalid unless encountered in a do_cmd context, */ /* and in that context, it is handled as a special case inside of do_cmd() */ /* and not dispatched here, so if we get here a return has been issued from */ /* interactive input */ t_stat return_cmd (int32 flag, CONST char *fcptr) { return SCPE_UNK; /* only valid inside of do_cmd */ } /* Shift command */ /* The shift command is invalid unless encountered in a do_cmd context, */ /* and in that context, it is handled as a special case inside of do_cmd() */ /* and not dispatched here, so if we get here a shift has been issued from */ /* interactive input (it is not valid interactively since it would have to */ /* mess with the program's argv which is owned by the C runtime library */ t_stat shift_cmd (int32 flag, CONST char *fcptr) { return SCPE_UNK; /* only valid inside of do_cmd */ } /* Call command */ /* The call command is invalid unless encountered in a do_cmd context, */ /* and in that context, it is handled as a special case inside of do_cmd() */ /* and not dispatched here, so if we get here a call has been issued from */ /* interactive input */ t_stat call_cmd (int32 flag, CONST char *fcptr) { char cbuf[CBUFSIZE], gbuf[CBUFSIZE]; const char *cptr; if (NULL == sim_gotofile) return SCPE_UNK; /* only valid inside of do_cmd */ cptr = get_glyph (fcptr, gbuf, 0); if ('\0' == gbuf[0]) return SCPE_ARG; /* unspecified goto target */ sprintf(cbuf, "%s %s", sim_do_filename[sim_do_depth], cptr); sim_switches |= SWMASK ('O'); /* inherit ON state and actions */ return do_cmd_label (flag, cbuf, gbuf); } /* On command */ t_stat on_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; t_stat cond; cptr = get_glyph (cptr, gbuf, 0); if ('\0' == gbuf[0]) return SCPE_ARG; /* unspecified condition */ if (0 == strcmp("ERROR", gbuf)) |
︙ | ︙ | |||
3667 3668 3669 3670 3671 3672 3673 | } return SCPE_OK; } /* noop command */ /* The noop command (IGNORE, PROCEED) does nothing */ | | | | 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 | } return SCPE_OK; } /* noop command */ /* The noop command (IGNORE, PROCEED) does nothing */ t_stat noop_cmd (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; return SCPE_OK; /* we're happy doing nothing */ } /* Set on/noon routine */ t_stat set_on (int32 flag, CONST char *cptr) { if ((flag) && (cptr) && (*cptr)) { /* Set ON with arg */ char gbuf[CBUFSIZE]; cptr = get_glyph (cptr, gbuf, 0); /* get command glyph */ if (((MATCH_CMD(gbuf,"INHERIT")) && (MATCH_CMD(gbuf,"NOINHERIT"))) || |
︙ | ︙ | |||
3712 3713 3714 3715 3716 3717 3718 | strcpy(sim_on_actions[sim_do_depth][SCPE_AFAIL], "RETURN"); } return SCPE_OK; } /* Set verify/noverify routine */ | | | | | | 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 | strcpy(sim_on_actions[sim_do_depth][SCPE_AFAIL], "RETURN"); } return SCPE_OK; } /* Set verify/noverify routine */ t_stat set_verify (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; if (flag == sim_do_echo) /* already set correctly? */ return SCPE_OK; sim_do_echo = flag; return SCPE_OK; } /* Set message/nomessage routine */ t_stat set_message (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; if (flag == sim_show_message) /* already set correctly? */ return SCPE_OK; sim_show_message = flag; return SCPE_OK; } /* Set quiet/noquiet routine */ t_stat set_quiet (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; if (flag == sim_quiet) /* already set correctly? */ return SCPE_OK; sim_quiet = flag; return SCPE_OK; } /* Set asynch/noasynch routine */ t_stat sim_set_asynch (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; #ifdef SIM_ASYNCH_IO if (flag == sim_asynch_enabled) /* already set correctly? */ return SCPE_OK; sim_asynch_enabled = flag; |
︙ | ︙ | |||
3789 3790 3791 3792 3793 3794 3795 | fprintf (sim_log, "Asynchronous I/O is not available in this simulator\n"); return SCPE_NOFNC; #endif } /* Show asynch routine */ | | | | | > | 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 | fprintf (sim_log, "Asynchronous I/O is not available in this simulator\n"); return SCPE_NOFNC; #endif } /* Show asynch routine */ t_stat sim_show_asynch (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) return SCPE_2MARG; #ifdef SIM_ASYNCH_IO fprintf (st, "Asynchronous I/O is %sabled, %s\n", (sim_asynch_enabled) ? "en" : "dis", AIO_QUEUE_MODE); #if defined(SIM_ASYNCH_MUX) fprintf (st, "Asynchronous Multiplexer support is available\n"); #endif #if defined(SIM_ASYNCH_CLOCKS) fprintf (st, "Asynchronous Clock is %sabled\n", (sim_asynch_timer) ? "en" : "dis"); #endif #else fprintf (st, "Asynchronous I/O is not available in this simulator\n"); #endif return SCPE_OK; } /* Set environment routine */ t_stat sim_set_environment (int32 flag, CONST char *cptr) { char varname[CBUFSIZE]; if ((!cptr) || (*cptr == 0)) /* now eol? */ return SCPE_2FARG; cptr = get_glyph (cptr, varname, '='); /* get environment variable name */ setenv(varname, cptr, 1); return SCPE_OK; } /* Set command */ t_stat set_cmd (int32 flag, CONST char *cptr) { uint32 lvl = 0; t_stat r; char gbuf[CBUFSIZE], *cvptr; CONST char *svptr; DEVICE *dptr; UNIT *uptr; MTAB *mptr; CTAB *gcmdp; C1TAB *ctbr = NULL, *glbr; GET_SWITCHES (cptr); /* get switches */ |
︙ | ︙ | |||
3909 3910 3911 3912 3913 3914 3915 | } r = mptr->valid (uptr, mptr->match, cvptr, mptr->desc); if (r != SCPE_OK) return r; } else if (!mptr->desc) /* value desc? */ break; | | | | 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 | } r = mptr->valid (uptr, mptr->match, cvptr, mptr->desc); if (r != SCPE_OK) return r; } else if (!mptr->desc) /* value desc? */ break; // else if (mptr->mask & MTAB_VAL) { /* take a value? */ // if (!cvptr) return SCPE_MISVAL; /* none? error */ // r = dep_reg (0, cvptr, (REG *) mptr->desc, 0); // if (r != SCPE_OK) return r; // } else if (cvptr) /* = value? */ return SCPE_ARG; else *((int32 *) mptr->desc) = mptr->match; } /* end if xtd */ |
︙ | ︙ | |||
3972 3973 3974 3975 3976 3977 3978 | return tab; } return NULL; } /* Set device data radix routine */ | | | | 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 | return tab; } return NULL; } /* Set device data radix routine */ t_stat set_dev_radix (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (cptr) return SCPE_ARG; dptr->dradix = flag & 037; return SCPE_OK; } /* Set device enabled/disabled routine */ t_stat set_dev_enbdis (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { UNIT *up; uint32 i; if (cptr) return SCPE_ARG; if ((dptr->flags & DEV_DISABLE) == 0) /* allowed? */ |
︙ | ︙ | |||
4013 4014 4015 4016 4017 4018 4019 | if (dptr->reset) /* reset device */ return dptr->reset (dptr); else return SCPE_OK; } /* Set unit enabled/disabled routine */ | | | | 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 | if (dptr->reset) /* reset device */ return dptr->reset (dptr); else return SCPE_OK; } /* Set unit enabled/disabled routine */ t_stat set_unit_enbdis (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (cptr) return SCPE_ARG; if (!(uptr->flags & UNIT_DISABLE)) /* allowed? */ return SCPE_NOFNC; if (flag) /* enb? enable */ uptr->flags = uptr->flags & ~UNIT_DIS; else { if ((uptr->flags & UNIT_ATT) || /* dsb */ sim_is_active (uptr)) /* more tests */ return SCPE_NOFNC; uptr->flags = uptr->flags | UNIT_DIS; /* disable */ } return SCPE_OK; } /* Set device debug enabled/disabled routine */ t_stat set_dev_debug (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; DEBTAB *dep; if ((dptr->flags & DEV_DEBUG) == 0) return SCPE_NOFNC; if (cptr == NULL) { /* no arguments? */ |
︙ | ︙ | |||
4067 4068 4069 4070 4071 4072 4073 | return SCPE_ARG; } /* end while */ return SCPE_OK; } /* Show command */ | | | > | | > | 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 | return SCPE_ARG; } /* end while */ return SCPE_OK; } /* Show command */ t_stat show_cmd (int32 flag, CONST char *cptr) { t_stat r; cptr = get_sim_opt (CMD_OPT_SW|CMD_OPT_OF, cptr, &r); /* get sw, ofile */ if (!cptr) /* error? */ return r; if (sim_ofile) { /* output file? */ r = show_cmd_fi (sim_ofile, flag, cptr); /* do show */ fclose (sim_ofile); } else { r = show_cmd_fi (stdout, flag, cptr); /* no, stdout, log */ if (sim_log && (sim_log != stdout)) show_cmd_fi (sim_log, flag, cptr); if (sim_deb && (sim_deb != stdout) && (sim_deb != sim_log)) show_cmd_fi (sim_deb, flag, cptr); } return r; } t_stat show_cmd_fi (FILE *ofile, int32 flag, CONST char *cptr) { uint32 lvl = 0xFFFFFFFF; char gbuf[CBUFSIZE], *cvptr; CONST char *svptr; DEVICE *dptr; UNIT *uptr; MTAB *mptr; SHTAB *shtb = NULL, *shptr; GET_SWITCHES (cptr); /* get switches */ if (*cptr == 0) /* must be more */ |
︙ | ︙ | |||
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 | UNIT *uptr; int32 toks = 0; fprintf (st, "%s", sim_dname (dptr)); /* print dev name */ if ((flag == 2) && dptr->description) { fprintf (st, "\t%s\n", dptr->description(dptr)); } if (qdisable (dptr)) { /* disabled? */ fprintf (st, "\tdisabled\n"); return SCPE_OK; } for (j = ucnt = udbl = 0; j < dptr->numunits; j++) { /* count units */ uptr = dptr->units + j; if (!(uptr->flags & UNIT_DIS)) /* count enabled units */ | > > > > | 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 | UNIT *uptr; int32 toks = 0; fprintf (st, "%s", sim_dname (dptr)); /* print dev name */ if ((flag == 2) && dptr->description) { fprintf (st, "\t%s\n", dptr->description(dptr)); } else { if ((sim_switches & SWMASK ('D')) && dptr->description) fprintf (st, "\t%s\n", dptr->description(dptr)); } if (qdisable (dptr)) { /* disabled? */ fprintf (st, "\tdisabled\n"); return SCPE_OK; } for (j = ucnt = udbl = 0; j < dptr->numunits; j++) { /* count units */ uptr = dptr->units + j; if (!(uptr->flags & UNIT_DIS)) /* count enabled units */ |
︙ | ︙ | |||
4290 4291 4292 4293 4294 4295 4296 | } show_all_mods (st, dptr, uptr, MTAB_VUN, &toks); /* show unit mods */ if (toks || (flag < 0) || (flag > 1)) fprintf (st, "\n"); return SCPE_OK; } | | > | | > | | | | | < < | | > > > > > | > > > | > | | | 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 | } show_all_mods (st, dptr, uptr, MTAB_VUN, &toks); /* show unit mods */ if (toks || (flag < 0) || (flag > 1)) fprintf (st, "\n"); return SCPE_OK; } const char *sprint_capac (DEVICE *dptr, UNIT *uptr) { static char capac_buf[((CHAR_BIT * sizeof (t_value) * 4 + 3)/3) + 8]; t_addr kval = (uptr->flags & UNIT_BINK)? 1024: 1000; t_addr mval; t_addr psize = uptr->capac; const char *scale, *width; if (sim_switches & SWMASK ('B')) kval = 1024; mval = kval * kval; if (dptr->flags & DEV_SECTORS) { kval = kval / 512; mval = mval / 512; } if ((dptr->dwidth / dptr->aincr) > 8) width = "W"; else width = "B"; if (uptr->capac < (kval * 10)) scale = ""; else if (uptr->capac < (mval * 10)) { scale = "K"; psize = psize / kval; } else { scale = "M"; psize = psize / mval; } sprint_val (capac_buf, (t_value) psize, 10, T_ADDR_W, PV_LEFT); sprintf (&capac_buf[strlen (capac_buf)], "%s%s", scale, width); return capac_buf; } void fprint_capac (FILE *st, DEVICE *dptr, UNIT *uptr) { fprintf (st, "%s", sprint_capac (dptr, uptr)); } /* Show <global name> processors */ t_stat show_version (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { int32 vmaj = SIM_MAJOR, vmin = SIM_MINOR, vpat = SIM_PATCH, vdelt = SIM_DELTA; const char *cpp = ""; const char *build = ""; const char *arch = ""; if (cptr && (*cptr != 0)) return SCPE_2MARG; fprintf (st, "%s simulator V%d.%d-%d", sim_name, vmaj, vmin, vpat); if (vdelt) fprintf (st, " delta %d", vdelt); #if defined (SIM_VERSION_MODE) fprintf (st, " %s", SIM_VERSION_MODE); #endif if (flag) { t_bool idle_capable; uint32 os_ms_sleep_1, os_tick_size; fprintf (st, "\n\tSimulator Framework Capabilities:"); fprintf (st, "\n\t\t%s", sim_si64); fprintf (st, "\n\t\t%s", sim_sa64); fprintf (st, "\n\t\t%s", eth_capabilities()); idle_capable = sim_timer_idle_capable (&os_ms_sleep_1, &os_tick_size); fprintf (st, "\n\t\tIdle/Throttling support is %savailable", idle_capable ? "" : "NOT "); if (sim_disk_vhd_support()) fprintf (st, "\n\t\tVirtual Hard Disk (VHD) support"); if (sim_disk_raw_support()) fprintf (st, "\n\t\tRAW disk and CD/DVD ROM support"); #if defined (SIM_ASYNCH_IO) fprintf (st, "\n\t\tAsynchronous I/O support"); #endif |
︙ | ︙ | |||
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 | fprintf (st, "\n\tHost Platform:"); #if defined (__GNUC__) && defined (__VERSION__) fprintf (st, "\n\t\tCompiler: GCC %s", __VERSION__); #elif defined (__clang_version__) fprintf (st, "\n\t\tCompiler: clang %s", __clang_version__); #elif defined (_MSC_FULL_VER) && defined (_MSC_BUILD) fprintf (st, "\n\t\tCompiler: Microsoft Visual C++ %d.%02d.%05d.%02d", _MSC_FULL_VER/10000000, (_MSC_FULL_VER/100000)%100, _MSC_FULL_VER%100000, _MSC_BUILD); #elif defined (__DECC_VER) fprintf (st, "\n\t\tCompiler: DEC C %c%d.%d-%03d", ("T SV")[((__DECC_VER/10000)%10)-6], __DECC_VER/10000000, (__DECC_VER/100000)%100, __DECC_VER%10000); #elif defined (SIM_COMPILER) #define S_xstr(a) S_str(a) #define S_str(a) #a fprintf (st, "\n\t\tCompiler: %s", S_xstr(SIM_COMPILER)); #undef S_str #undef S_xstr #endif #if defined (__DATE__) && defined (__TIME__) | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > > > > > > > > > > > | < < < > > > > > > > > > > > > > > > > | < < > | > > > > > > | | | > > > | > > | 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 | fprintf (st, "\n\tHost Platform:"); #if defined (__GNUC__) && defined (__VERSION__) fprintf (st, "\n\t\tCompiler: GCC %s", __VERSION__); #elif defined (__clang_version__) fprintf (st, "\n\t\tCompiler: clang %s", __clang_version__); #elif defined (_MSC_FULL_VER) && defined (_MSC_BUILD) fprintf (st, "\n\t\tCompiler: Microsoft Visual C++ %d.%02d.%05d.%02d", _MSC_FULL_VER/10000000, (_MSC_FULL_VER/100000)%100, _MSC_FULL_VER%100000, _MSC_BUILD); #if defined(_DEBUG) build = " (Debug Build)"; #else build = " (Release Build)"; #endif #elif defined (__DECC_VER) fprintf (st, "\n\t\tCompiler: DEC C %c%d.%d-%03d", ("T SV")[((__DECC_VER/10000)%10)-6], __DECC_VER/10000000, (__DECC_VER/100000)%100, __DECC_VER%10000); #elif defined (SIM_COMPILER) #define S_xstr(a) S_str(a) #define S_str(a) #a fprintf (st, "\n\t\tCompiler: %s", S_xstr(SIM_COMPILER)); #undef S_str #undef S_xstr #endif #if defined(__GNUC__) #if defined(__OPTIMIZE__) build = " (Release Build)"; #else build = " (Debug Build)"; #endif #endif #if defined(_M_X64) || defined(_M_AMD64) || defined(__amd64__) || defined(__x86_64__) arch = " arch: x64"; #elif defined(_M_IX86) || defined(__i386) arch = " arch: x86"; #elif defined(_M_ARM64) || defined(__aarch64_) arch = " arch: ARM64"; #elif defined(_M_ARM) || defined(__arm__) arch = " arch: ARM"; #elif defined(__ia64__) || defined(_M_IA64) || defined(__itanium__) arch = " arch: IA-64"; #endif #if defined (__DATE__) && defined (__TIME__) #ifdef __cplusplus cpp = "C++"; #else cpp = "C"; #endif fprintf (st, "\n\t\tSimulator Compiled as %s%s%s on %s at %s", cpp, arch, build, __DATE__, __TIME__); #endif fprintf (st, "\n\t\tMemory Access: %s Endian", sim_end ? "Little" : "Big"); fprintf (st, "\n\t\tMemory Pointer Size: %d bits", (int)sizeof(dptr)*8); fprintf (st, "\n\t\t%s", sim_toffset_64 ? "Large File (>2GB) support" : "No Large File support"); #if defined (USE_SIM_VIDEO) fprintf (st, "\n\t\tSDL Video support: %s", vid_version()); #endif #if defined (HAVE_PCREPOSIX_H) fprintf (st, "\n\t\tPCRE RegEx support for EXPECT commands"); #elif defined (HAVE_REGEX_H) fprintf (st, "\n\t\tRegEx support for EXPECT commands"); #else fprintf (st, "\n\t\tNo RegEx support for EXPECT commands"); #endif fprintf (st, "\n\t\tOS clock resolution: %dms", os_tick_size); fprintf (st, "\n\t\tTime taken by msleep(1): %dms", os_ms_sleep_1); #if defined(__VMS) if (1) { char *arch = #if defined(__ia64) "I64"; #elif defined(__ALPHA) "Alpha"; #else "VAX"; #endif fprintf (st, "\n\t\tOS: OpenVMS %s %s", arch, __VMS_VERSION); } #elif defined(_WIN32) if (1) { char *proc_id = getenv ("PROCESSOR_IDENTIFIER"); char *arch = getenv ("PROCESSOR_ARCHITECTURE"); char *procs = getenv ("NUMBER_OF_PROCESSORS"); char *proc_level = getenv ("PROCESSOR_LEVEL"); char *proc_rev = getenv ("PROCESSOR_REVISION"); char *proc_arch3264 = getenv ("PROCESSOR_ARCHITEW6432"); char osversion[PATH_MAX+1] = ""; FILE *f; if ((f = _popen ("ver", "r"))) { memset (osversion, 0, sizeof(osversion)); do { if (NULL == fgets (osversion, sizeof(osversion)-1, f)) break; sim_trim_endspc (osversion); } while (osversion[0] == '\0'); _pclose (f); } fprintf (st, "\n\t\tOS: %s", osversion); fprintf (st, "\n\t\tArchitecture: %s%s%s, Processors: %s", arch, proc_arch3264 ? " on " : "", proc_arch3264 ? proc_arch3264 : "", procs); fprintf (st, "\n\t\tProcessor Id: %s, Level: %s, Revision: %s", proc_id ? proc_id : "", proc_level ? proc_level : "", proc_rev ? proc_rev : ""); } #else if (1) { char osversion[2*PATH_MAX+1] = ""; FILE *f; if ((f = popen ("uname -a", "r"))) { memset (osversion, 0, sizeof(osversion)); do { if (NULL == fgets (osversion, sizeof(osversion)-1, f)) break; sim_trim_endspc (osversion); } while (osversion[0] == '\0'); pclose (f); } fprintf (st, "\n\t\tOS: %s", osversion); } #endif } #if defined(SIM_GIT_COMMIT_ID) #define S_xstr(a) S_str(a) #define S_str(a) #a fprintf (st, "%sgit commit id: %8.8s", flag ? "\n " : " ", S_xstr(SIM_GIT_COMMIT_ID)); #undef S_str #undef S_xstr #endif #if defined(SIM_BUILD) #define S_xstr(a) S_str(a) #define S_str(a) #a fprintf (st, "%sBuild: %s", flag ? "\n " : " ", S_xstr(SIM_BUILD)); #undef S_str #undef S_xstr #endif fprintf (st, "\n"); return SCPE_OK; } t_stat show_config (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr) { int32 i; DEVICE *dptr; t_bool only_enabled = (sim_switches & SWMASK ('E')); if (cptr && (*cptr != 0)) return SCPE_2MARG; fprintf (st, "%s simulator configuration%s\n\n", sim_name, only_enabled ? " (enabled devices)" : ""); for (i = 0; (dptr = sim_devices[i]) != NULL; i++) if (!only_enabled || !qdisable (dptr)) show_device (st, dptr, flag); if (sim_switches & SWMASK ('I')) { fprintf (st, "\nInternal Devices%s\n\n", only_enabled ? " (enabled devices)" : ""); for (i = 0; sim_internal_device_count && (dptr = sim_internal_devices[i]); ++i) if (!only_enabled || !qdisable (dptr)) show_device (st, dptr, flag); } return SCPE_OK; } t_stat show_log_names (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr) { int32 i; DEVICE *dptr; if (cptr && (*cptr != 0)) return SCPE_2MARG; for (i = 0; (dptr = sim_devices[i]) != NULL; i++) show_dev_logicals (st, dptr, NULL, 1, cptr); return SCPE_OK; } t_stat show_dev_logicals (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (dptr->lname) fprintf (st, "%s -> %s\n", dptr->lname, dptr->name); else if (!flag) fputs ("no logical name assigned\n", st); return SCPE_OK; } t_stat show_queue (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr) { DEVICE *dptr; UNIT *uptr; int32 accum; if (cptr && (*cptr != 0)) return SCPE_2MARG; if (sim_clock_queue == QUEUE_LIST_END) fprintf (st, "%s event queue empty, time = %.0f, executing %.0f instructios/sec\n", sim_name, sim_time, sim_timer_inst_per_sec ()); else { const char *tim; fprintf (st, "%s event queue status, time = %.0f, executing %.0f instructions/sec\n", sim_name, sim_time, sim_timer_inst_per_sec ()); accum = 0; for (uptr = sim_clock_queue; uptr != QUEUE_LIST_END; uptr = uptr->next) { if (uptr == &sim_step_unit) fprintf (st, " Step timer"); else if (uptr == &sim_expect_unit) fprintf (st, " Expect fired"); else if ((dptr = find_dev_from_unit (uptr)) != NULL) { fprintf (st, " %s", sim_dname (dptr)); if (dptr->numunits > 1) fprintf (st, " unit %d", (int32) (uptr - dptr->units)); } else fprintf (st, " Unknown"); tim = sim_fmt_secs((accum + uptr->time)/sim_timer_inst_per_sec ()); fprintf (st, " at %d%s%s%s%s\n", accum + uptr->time, (*tim) ? " (" : "", tim, (*tim) ? ")" : "", (uptr->flags & UNIT_IDLE) ? " (Idle capable)" : ""); accum = accum + uptr->time; } } sim_show_clock_queues (st, dnotused, unotused, flag, cptr); #if defined (SIM_ASYNCH_IO) pthread_mutex_lock (&sim_asynch_lock); fprintf (st, "asynchronous pending event queue\n"); |
︙ | ︙ | |||
4530 4531 4532 4533 4534 4535 4536 | fprintf (st, "asynch latency: %d nanoseconds\n", sim_asynch_latency); fprintf (st, "asynch instruction latency: %d instructions\n", sim_asynch_inst_latency); pthread_mutex_unlock (&sim_asynch_lock); #endif /* SIM_ASYNCH_IO */ return SCPE_OK; } | | | > | | | > > | | > | | 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 | fprintf (st, "asynch latency: %d nanoseconds\n", sim_asynch_latency); fprintf (st, "asynch instruction latency: %d instructions\n", sim_asynch_inst_latency); pthread_mutex_unlock (&sim_asynch_lock); #endif /* SIM_ASYNCH_IO */ return SCPE_OK; } t_stat show_time (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) return SCPE_2MARG; fprintf (st, "Time:\t%.0f\n", sim_gtime()); return SCPE_OK; } t_stat show_break (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { t_stat r; if (cptr && (*cptr != 0)) r = ssh_break (st, cptr, 1); /* more? */ else r = sim_brk_showall (st, sim_switches); return r; } t_stat show_dev_radix (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { fprintf (st, "Radix=%d\n", dptr->dradix); return SCPE_OK; } t_stat show_dev_debug (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { int32 any = 0; DEBTAB *dep; if (dptr->flags & DEV_DEBUG) { if (dptr->dctrl == 0) fputs ("Debugging disabled", st); else if (dptr->debflags == NULL) fputs ("Debugging enabled", st); else { uint32 dctrl = dptr->dctrl; fputs ("Debug=", st); for (dep = dptr->debflags; (dctrl != 0) && (dep->name != NULL); dep++) { if ((dctrl & dep->mask) == dep->mask) { dctrl &= ~dep->mask; if (any) fputc (';', st); fputs (dep->name, st); any = 1; } } } fputc ('\n', st); return SCPE_OK; } else return SCPE_NOFNC; } /* Show On actions */ t_stat show_on (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { int32 lvl, i; if (cptr && (*cptr != 0)) return SCPE_2MARG; /* now eol? */ for (lvl=sim_do_depth; lvl >= 0; --lvl) { if (lvl > 0) fprintf(st, "On Processing at Do Nest Level: %d", lvl); |
︙ | ︙ | |||
4611 4612 4613 4614 4615 4616 4617 | if (sim_on_inherit) fprintf(st, "on state and actions are inherited by nested do commands and subroutines\n"); return SCPE_OK; } /* Show modifiers */ | | | | 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 | if (sim_on_inherit) fprintf(st, "on state and actions are inherited by nested do commands and subroutines\n"); return SCPE_OK; } /* Show modifiers */ t_stat show_mod_names (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr) { int32 i; DEVICE *dptr; if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; for (i = 0; (dptr = sim_devices[i]) != NULL; i++) show_dev_modifiers (st, dptr, NULL, flag, cptr); for (i = 0; sim_internal_device_count && (dptr = sim_internal_devices[i]); ++i) show_dev_modifiers (st, dptr, NULL, flag, cptr); return SCPE_OK; } t_stat show_dev_modifiers (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { fprint_set_help (st, dptr); return SCPE_OK; } t_stat show_all_mods (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, int32 *toks) { |
︙ | ︙ | |||
4656 4657 4658 4659 4660 4661 4662 | r = show_one_mod (st, dptr, uptr, mptr, NULL, 0); } } return SCPE_OK; } t_stat show_one_mod (FILE *st, DEVICE *dptr, UNIT *uptr, MTAB *mptr, | | | | | | | > > > > | | | | | > | | | 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 | r = show_one_mod (st, dptr, uptr, mptr, NULL, 0); } } return SCPE_OK; } t_stat show_one_mod (FILE *st, DEVICE *dptr, UNIT *uptr, MTAB *mptr, CONST char *cptr, int32 flag) { t_stat r = SCPE_OK; //t_value val; if (mptr->disp) r = mptr->disp (st, uptr, mptr->match, (CONST void *)(cptr? cptr: mptr->desc)); //else if ((mptr->mask & MTAB_XTD) && (mptr->mask & MTAB_VAL)) { // REG *rptr = (REG *) mptr->desc; // fprintf (st, "%s=", mptr->pstring); // val = get_rval (rptr, 0); // fprint_val (st, val, rptr->radix, rptr->width, // rptr->flags & REG_FMT); // } else fputs (mptr->pstring, st); if ((r == SCPE_OK) && (flag && !((mptr->mask & MTAB_XTD) && MODMASK(mptr,MTAB_NMO)))) fputc ('\n', st); return r; } /* Show show commands */ t_stat show_show_commands (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr) { int32 i; DEVICE *dptr; if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; for (i = 0; (dptr = sim_devices[i]) != NULL; i++) show_dev_show_commands (st, dptr, NULL, flag, cptr); for (i = 0; sim_internal_device_count && (dptr = sim_internal_devices[i]); ++i) show_dev_show_commands (st, dptr, NULL, flag, cptr); return SCPE_OK; } t_stat show_dev_show_commands (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { fprint_show_help (st, dptr); return SCPE_OK; } /* Show/change the current working directiory commands */ t_stat show_default (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { char buffer[PATH_MAX]; char *wd = getcwd(buffer, PATH_MAX); fprintf (st, "%s\n", wd); return SCPE_OK; } t_stat set_default_cmd (int32 flg, CONST char *cptr) { char gbuf[4*CBUFSIZE]; if (sim_is_running) return SCPE_INVREM; if ((!cptr) || (*cptr == 0)) return SCPE_2FARG; gbuf[sizeof(gbuf)-1] = '\0'; strncpy (gbuf, cptr, sizeof(gbuf)-1); sim_trim_endspc(gbuf); if (chdir(gbuf) != 0) return sim_messagef(SCPE_IOERR, "Unable to directory change to: %s\n", gbuf); return SCPE_OK; } t_stat pwd_cmd (int32 flg, CONST char *cptr) { return show_cmd (0, "DEFAULT"); } #if defined (_WIN32) t_stat dir_cmd (int32 flg, CONST char *cptr) { HANDLE hFind; WIN32_FIND_DATAA File; struct stat filestat; char WildName[PATH_MAX + 1]; if (*cptr == '\0') cptr = "./*"; if ((!stat (cptr, &filestat)) && (filestat.st_mode & S_IFDIR)) { sprintf (WildName, "%s%c*", cptr, strchr (cptr, '/') ? '/' : '\\'); cptr = WildName; } if ((hFind = FindFirstFileA (cptr, &File)) != INVALID_HANDLE_VALUE) { t_int64 FileSize, TotalSize = 0; int DirCount = 0, FileCount = 0; char DirName[PATH_MAX + 1], FileName[PATH_MAX + 1]; const char *c; char pathsep = '/'; struct tm *local; GetFullPathNameA(cptr, sizeof(DirName), DirName, (char **)&c); c = strrchr(DirName, pathsep); if (NULL == c) { pathsep = '\\'; c = strrchr(cptr, pathsep); } if (c) { memcpy(DirName, cptr, c - cptr); |
︙ | ︙ | |||
4807 4808 4809 4810 4811 4812 4813 | #else /* !defined (HAVE_GLOB) */ #include <dirent.h> #if defined (HAVE_FNMATCH) #include <fnmatch.h> #endif #endif /* defined (HAVE_GLOB) */ | | | > | | 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 | #else /* !defined (HAVE_GLOB) */ #include <dirent.h> #if defined (HAVE_FNMATCH) #include <fnmatch.h> #endif #endif /* defined (HAVE_GLOB) */ t_stat dir_cmd (int32 flg, CONST char *cptr) { #if defined (HAVE_GLOB) glob_t paths; #else DIR *dir; #endif struct stat filestat; char *c; char DirName[PATH_MAX + 1], WholeName[PATH_MAX + 1], WildName[PATH_MAX + 1]; if (*cptr == '\0') strcpy (WildName, "./*"); else strcpy (WildName, cptr); cptr = WildName; while (strlen(WildName) && sim_isspace(WildName[strlen(WildName)-1])) WildName[strlen(WildName)-1] = '\0'; if ((!stat (WildName, &filestat)) && (filestat.st_mode & S_IFDIR)) strcat (WildName, "/*"); if ((*cptr != '/') || (0 == memcmp (cptr, "./", 2)) || (0 == memcmp (cptr, "../", 3))) { #if defined (VMS) |
︙ | ︙ | |||
4939 4940 4941 4942 4943 4944 4945 4946 4947 | return SCPE_ARG; } return SCPE_OK; } #endif /* !defined(_WIN32) */ /* Breakpoint commands */ | > > > > > > > > > > > > > > > > > > > > > | | | | | > > > | | | | | > | | > | | > > | 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 | return SCPE_ARG; } return SCPE_OK; } #endif /* !defined(_WIN32) */ t_stat type_cmd (int32 flg, CONST char *cptr) { FILE *file; char lbuf[4*CBUFSIZE]; if ((!cptr) || (*cptr == 0)) return SCPE_2FARG; lbuf[sizeof(lbuf)-1] = '\0'; strncpy (lbuf, cptr, sizeof(lbuf)-1); sim_trim_endspc(lbuf); file = sim_fopen (lbuf, "r"); if (file == NULL) /* open failed? */ return SCPE_OPENERR; lbuf[sizeof(lbuf)-1] = '\0'; while (fgets (lbuf, sizeof(lbuf)-1, file)) sim_printf ("%s", lbuf); fclose (file); return SCPE_OK; } /* Breakpoint commands */ t_stat brk_cmd (int32 flg, CONST char *cptr) { GET_SWITCHES (cptr); /* get switches */ return ssh_break (NULL, cptr, flg); /* call common code */ } t_stat ssh_break (FILE *st, const char *cptr, int32 flg) { char gbuf[CBUFSIZE], *aptr, abuf[4*CBUFSIZE]; CONST char *tptr, *t1ptr; DEVICE *dptr = sim_dflt_dev; UNIT *uptr = dptr->units; t_stat r; t_addr lo, hi, max = uptr->capac - 1; int32 cnt; if (sim_brk_types == 0) return sim_messagef (SCPE_NOFNC, "No breakpoint support in this simulator\n"); if ((dptr == NULL) || (uptr == NULL)) return SCPE_IERR; abuf[sizeof(abuf)-1] = '\0'; strncpy (abuf, cptr, sizeof(abuf)-1); cptr = abuf; if ((aptr = strchr (abuf, ';'))) { /* ;action? */ if (flg != SSH_ST) /* only on SET */ return sim_messagef (SCPE_ARG, "Invalid argument: %s\n", aptr); *aptr++ = 0; /* separate strings */ } if (*cptr == 0) { /* no argument? */ lo = (t_addr) get_rval (sim_PC, 0); /* use PC */ return ssh_break_one (st, flg, lo, 0, aptr); } while (*cptr) { cptr = get_glyph (cptr, gbuf, ','); tptr = get_range (dptr, gbuf, &lo, &hi, dptr->aradix, max, 0); if (tptr == NULL) return sim_messagef (SCPE_ARG, "Invalid address specifier: %s\n", gbuf); if (*tptr == '[') { cnt = (int32) strtotv (tptr + 1, &t1ptr, 10); if ((tptr == t1ptr) || (*t1ptr != ']') || (flg != SSH_ST)) return sim_messagef (SCPE_ARG, "Invalid repeat count specifier: %s\n", tptr + 1); tptr = t1ptr + 1; } else cnt = 0; if (*tptr != 0) return sim_messagef (SCPE_ARG, "Unexpected argument: %s\n", tptr); if ((lo == 0) && (hi == max)) { if (flg == SSH_CL) sim_brk_clrall (sim_switches); else if (flg == SSH_SH) sim_brk_showall (st, sim_switches); else return SCPE_ARG; } else { for ( ; lo <= hi; lo = lo + 1) { r = ssh_break_one (st, flg, lo, cnt, aptr); if (r != SCPE_OK) return r; } } } return SCPE_OK; } t_stat ssh_break_one (FILE *st, int32 flg, t_addr lo, int32 cnt, CONST char *aptr) { if (!sim_brk_types) return sim_messagef (SCPE_NOFNC, "No breakpoint support in this simulator\n"); switch (flg) { case SSH_ST: return sim_brk_set (lo, sim_switches, cnt, aptr); break; case SSH_CL: |
︙ | ︙ | |||
5030 5031 5032 5033 5034 5035 5036 | /* Reset command and routines re[set] reset all devices re[set] all reset all devices re[set] device reset specific device */ | > > | > | 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 | /* Reset command and routines re[set] reset all devices re[set] all reset all devices re[set] device reset specific device */ static t_bool run_cmd_did_reset = FALSE; t_stat reset_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; DEVICE *dptr; GET_SWITCHES (cptr); /* get switches */ run_cmd_did_reset = FALSE; if (*cptr == 0) /* reset(cr) */ return (reset_all (0)); cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */ if (*cptr != 0) /* now eol? */ return SCPE_2MARG; if (strcmp (gbuf, "ALL") == 0) return (reset_all (0)); |
︙ | ︙ | |||
5111 5112 5113 5114 5115 5116 5117 | /* Load and dump commands lo[ad] filename {arg} load specified file du[mp] filename {arg} dump to specified file */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > | | | > | > | | | | 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 | /* Load and dump commands lo[ad] filename {arg} load specified file du[mp] filename {arg} dump to specified file */ /* Memory File use (for internal memory static ROM images) when used to read ROM image with internally generated load commands, calling code setups with sim_set_memory_file() sim_load uses Fgetc() instead of fgetc() or getc() */ static const unsigned char *mem_data = NULL; static size_t mem_data_size = 0; t_stat sim_set_memory_load_file (const unsigned char *data, size_t size) { mem_data = data; mem_data_size = size; return SCPE_OK; } int Fgetc (FILE *f) { if (mem_data) { if (mem_data_size == 0) return EOF; --mem_data_size; return (int)(*mem_data++); } else return fgetc (f); } t_stat load_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; FILE *loadfile = NULL; t_stat reason; GET_SWITCHES (cptr); /* get switches */ if (*cptr == 0) /* must be more */ return SCPE_2FARG; cptr = get_glyph_nc (cptr, gbuf, 0); /* get file name */ if (!mem_data) { loadfile = sim_fopen (gbuf, flag? "wb": "rb"); /* open for wr/rd */ if (loadfile == NULL) return SCPE_OPENERR; } GET_SWITCHES (cptr); /* get switches */ reason = sim_load (loadfile, (CONST char *)cptr, gbuf, flag);/* load or dump */ if (loadfile) fclose (loadfile); return reason; } /* Attach command at[tach] unit file attach specified unit to file */ t_stat attach_cmd (int32 flag, CONST char *cptr) { char gbuf[4*CBUFSIZE]; DEVICE *dptr; UNIT *uptr; t_stat r; GET_SWITCHES (cptr); /* get switches */ if (*cptr == 0) /* must be more */ return SCPE_2FARG; |
︙ | ︙ | |||
5166 5167 5168 5169 5170 5171 5172 | return r; } else { if (!(uptr->dynflags & UNIT_ATTMULT)) return SCPE_ALATT; /* Already attached */ } } | > > | | | | | | | > | > | 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 | return r; } else { if (!(uptr->dynflags & UNIT_ATTMULT)) return SCPE_ALATT; /* Already attached */ } } gbuf[sizeof(gbuf)-1] = '\0'; strncpy (gbuf, cptr, sizeof(gbuf)-1); sim_trim_endspc (gbuf); /* trim trailing spc */ return scp_attach_unit (dptr, uptr, gbuf); /* attach */ } /* Call device-specific or file-oriented attach unit routine */ t_stat scp_attach_unit (DEVICE *dptr, UNIT *uptr, const char *cptr) { if (dptr->attach != NULL) /* device routine? */ return dptr->attach (uptr, (CONST char *)cptr); /* call it */ return attach_unit (uptr, (CONST char *)cptr); /* no, std routine */ } /* Attach unit to file */ t_stat attach_unit (UNIT *uptr, CONST char *cptr) { DEVICE *dptr; if (uptr->flags & UNIT_DIS) /* disabled? */ return SCPE_UDIS; if (!(uptr->flags & UNIT_ATTABLE)) /* not attachable? */ return SCPE_NOATT; if ((dptr = find_dev_from_unit (uptr)) == NULL) return SCPE_NOATT; uptr->filename = (char *) calloc (CBUFSIZE, sizeof (char)); /* alloc name buf */ if (uptr->filename == NULL) return SCPE_MEM; strncpy (uptr->filename, cptr, CBUFSIZE); /* save name */ if ((sim_switches & SWMASK ('R')) || /* read only? */ ((uptr->flags & UNIT_RO) != 0)) { if (((uptr->flags & UNIT_ROABLE) == 0) && /* allowed? */ ((uptr->flags & UNIT_RO) == 0)) return attach_err (uptr, SCPE_NORO); /* no, error */ uptr->fileref = sim_fopen (cptr, "rb"); /* open rd only */ if (uptr->fileref == NULL) /* open fail? */ return attach_err (uptr, SCPE_OPENERR); /* yes, error */ uptr->flags = uptr->flags | UNIT_RO; /* set rd only */ if (!sim_quiet && !(sim_switches & SWMASK ('Q'))) { sim_printf ("%s: unit is read only\n", sim_dname (dptr)); |
︙ | ︙ | |||
5277 5278 5279 5280 5281 5282 5283 | /* Detach command det[ach] all detach all units det[ach] unit detach specified unit */ | | | | 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 | /* Detach command det[ach] all detach all units det[ach] unit detach specified unit */ t_stat detach_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; DEVICE *dptr; UNIT *uptr; GET_SWITCHES (cptr); /* get switches */ if (*cptr == 0) /* must be more */ return SCPE_2FARG; cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */ if (*cptr != 0) /* now eol? */ return SCPE_2MARG; if (strcmp (gbuf, "ALL") == 0) return (detach_all (0, FALSE)); dptr = find_unit (gbuf, &uptr); /* locate unit */ if (dptr == NULL) /* found dev? */ return SCPE_NXDEV; if (uptr == NULL) /* valid unit? */ return SCPE_NXUN; return scp_detach_unit (dptr, uptr); /* detach */ } /* Detach devices start..end Inputs: |
︙ | ︙ | |||
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 | uint32 i, j; DEVICE *dptr; UNIT *uptr; t_stat r; if ((start < 0) || (start > 1)) return SCPE_IERR; for (i = start; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */ for (j = 0; j < dptr->numunits; j++) { /* loop thru units */ uptr = (dptr->units) + j; if ((uptr->flags & UNIT_ATT) || /* attached? */ (shutdown && dptr->detach && /* shutdown, spec rtn, */ !(uptr->flags & UNIT_ATTABLE))) { /* !attachable? */ r = scp_detach_unit (dptr, uptr); /* detach unit */ | > > | 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 | uint32 i, j; DEVICE *dptr; UNIT *uptr; t_stat r; if ((start < 0) || (start > 1)) return SCPE_IERR; if (shutdown) sim_switches = sim_switches | SIM_SW_SHUT; /* flag shutdown */ for (i = start; (dptr = sim_devices[i]) != NULL; i++) { /* loop thru dev */ for (j = 0; j < dptr->numunits; j++) { /* loop thru units */ uptr = (dptr->units) + j; if ((uptr->flags & UNIT_ATT) || /* attached? */ (shutdown && dptr->detach && /* shutdown, spec rtn, */ !(uptr->flags & UNIT_ATTABLE))) { /* !attachable? */ r = scp_detach_unit (dptr, uptr); /* detach unit */ |
︙ | ︙ | |||
5395 5396 5397 5398 5399 5400 5401 | } /* Assign command as[sign] device name assign logical name to device */ | | | 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 | } /* Assign command as[sign] device name assign logical name to device */ t_stat assign_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; DEVICE *dptr; GET_SWITCHES (cptr); /* get switches */ if (*cptr == 0) /* must be more */ return SCPE_2FARG; |
︙ | ︙ | |||
5419 5420 5421 5422 5423 5424 5425 | return SCPE_2MARG; if (find_dev (gbuf)) /* name in use */ return SCPE_ARG; deassign_device (dptr); /* release current */ return assign_device (dptr, gbuf); } | | | | | < | | | 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 | return SCPE_2MARG; if (find_dev (gbuf)) /* name in use */ return SCPE_ARG; deassign_device (dptr); /* release current */ return assign_device (dptr, gbuf); } t_stat assign_device (DEVICE *dptr, const char *cptr) { dptr->lname = (char *) calloc (1 + strlen (cptr), sizeof (char)); if (dptr->lname == NULL) return SCPE_MEM; strcpy (dptr->lname, cptr); return SCPE_OK; } /* Deassign command dea[ssign] device deassign logical name */ t_stat deassign_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; DEVICE *dptr; GET_SWITCHES (cptr); /* get switches */ if (*cptr == 0) /* must be more */ return SCPE_2FARG; cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */ if (*cptr != 0) /* now eol? */ return SCPE_2MARG; dptr = find_dev (gbuf); /* locate device */ if (dptr == NULL) /* found dev? */ return SCPE_NXDEV; return deassign_device (dptr); } t_stat deassign_device (DEVICE *dptr) { free (dptr->lname); dptr->lname = NULL; return SCPE_OK; } /* Get device display name */ const char *sim_dname (DEVICE *dptr) { return (dptr ? (dptr->lname? dptr->lname: dptr->name) : ""); } /* Get unit display name */ const char *sim_uname (UNIT *uptr) { DEVICE *d = find_dev_from_unit(uptr); |
︙ | ︙ | |||
5485 5486 5487 5488 5489 5490 5491 | } /* Save command sa[ve] filename save state to specified file */ | | > > > > | | | 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 | } /* Save command sa[ve] filename save state to specified file */ t_stat save_cmd (int32 flag, CONST char *cptr) { FILE *sfile; t_stat r; char gbuf[4*CBUFSIZE]; GET_SWITCHES (cptr); /* get switches */ if (*cptr == 0) /* must be more */ return SCPE_2FARG; gbuf[sizeof(gbuf)-1] = '\0'; strncpy (gbuf, cptr, sizeof(gbuf)-1); sim_trim_endspc (gbuf); if ((sfile = sim_fopen (gbuf, "wb")) == NULL) return SCPE_OPENERR; r = sim_save (sfile); fclose (sfile); return r; } t_stat sim_save (FILE *sfile) |
︙ | ︙ | |||
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 | WRITE_I (t); /* activation time */ WRITE_I (uptr->u3); /* unit specific */ WRITE_I (uptr->u4); WRITE_I (uptr->u5); /* [V3.0] more unit */ WRITE_I (uptr->u6); WRITE_I (uptr->flags); /* [V2.10] flags */ WRITE_I (uptr->dynflags); WRITE_I (uptr->capac); /* [V3.5] capacity */ if (uptr->flags & UNIT_ATT) { fputs (uptr->filename, sfile); if ((uptr->flags & UNIT_BUF) && /* writable buffered */ uptr->hwmark && /* files need to be */ ((uptr->flags & UNIT_RO) == 0)) { /* written on save */ uint32 cap = (uptr->hwmark + dptr->aincr - 1) / dptr->aincr; | > > | 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 | WRITE_I (t); /* activation time */ WRITE_I (uptr->u3); /* unit specific */ WRITE_I (uptr->u4); WRITE_I (uptr->u5); /* [V3.0] more unit */ WRITE_I (uptr->u6); WRITE_I (uptr->flags); /* [V2.10] flags */ WRITE_I (uptr->dynflags); WRITE_I (uptr->wait); WRITE_I (uptr->buf); WRITE_I (uptr->capac); /* [V3.5] capacity */ if (uptr->flags & UNIT_ATT) { fputs (uptr->filename, sfile); if ((uptr->flags & UNIT_BUF) && /* writable buffered */ uptr->hwmark && /* files need to be */ ((uptr->flags & UNIT_RO) == 0)) { /* written on save */ uint32 cap = (uptr->hwmark + dptr->aincr - 1) / dptr->aincr; |
︙ | ︙ | |||
5633 5634 5635 5636 5637 5638 5639 | } /* Restore command re[store] filename restore state from specified file */ | | > > > | | | 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 | } /* Restore command re[store] filename restore state from specified file */ t_stat restore_cmd (int32 flag, CONST char *cptr) { FILE *rfile; t_stat r; char gbuf[4*CBUFSIZE]; GET_SWITCHES (cptr); /* get switches */ if (*cptr == 0) /* must be more */ return SCPE_2FARG; gbuf[sizeof(gbuf)-1] = '\0'; strncpy (gbuf, cptr, sizeof(gbuf)-1); sim_trim_endspc (gbuf); if ((rfile = sim_fopen (gbuf, "rb")) == NULL) return SCPE_OPENERR; r = sim_rest (rfile); fclose (rfile); return r; } t_stat sim_rest (FILE *rfile) |
︙ | ︙ | |||
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 | READ_I (uptr->u3); /* device specific */ READ_I (uptr->u4); READ_I (uptr->u5); /* [V3.0+] more dev spec */ READ_I (uptr->u6); READ_I (flg); /* [V2.10+] unit flags */ if (v40) { /* [V4.0+] dynflags */ READ_I (uptr->dynflags); } old_capac = uptr->capac; /* save current capacity */ if (v35) { /* [V3.5+] capacity */ READ_I (uptr->capac); } if (!v32) flg = ((flg & UNIT_UFMASK_31) << (UNIT_V_UF - UNIT_V_UF_31)) | (flg & ~UNIT_UFMASK_31); /* [V3.2+] flags moved */ uptr->flags = (uptr->flags & ~UNIT_RFLAGS) | (flg & UNIT_RFLAGS); /* restore */ READ_S (buf); /* attached file */ if ((uptr->flags & UNIT_ATT) && /* unit currently attached? */ (!dont_detach_attach)) { r = scp_detach_unit (dptr, uptr); /* detach it */ if (r != SCPE_OK) | > > | | 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 | READ_I (uptr->u3); /* device specific */ READ_I (uptr->u4); READ_I (uptr->u5); /* [V3.0+] more dev spec */ READ_I (uptr->u6); READ_I (flg); /* [V2.10+] unit flags */ if (v40) { /* [V4.0+] dynflags */ READ_I (uptr->dynflags); READ_I (uptr->wait); READ_I (uptr->buf); } old_capac = uptr->capac; /* save current capacity */ if (v35) { /* [V3.5+] capacity */ READ_I (uptr->capac); } if (!v32) flg = ((flg & UNIT_UFMASK_31) << (UNIT_V_UF - UNIT_V_UF_31)) | (flg & ~UNIT_UFMASK_31); /* [V3.2+] flags moved */ uptr->flags = (uptr->flags & ~UNIT_RFLAGS) | (flg & UNIT_RFLAGS); /* restore */ READ_S (buf); /* attached file */ if ((uptr->flags & UNIT_ATT) && /* unit currently attached? */ (!dont_detach_attach)) { r = scp_detach_unit (dptr, uptr); /* detach it */ if (r != SCPE_OK) return sim_messagef (r, "Error detaching %s from %s: %s\n", sim_uname (uptr), uptr->filename, sim_error_text (r)); } if ((buf[0] != '\0') && /* unit to be reattached? */ ((uptr->flags & UNIT_ATTABLE) || /* and unit is attachable */ (dptr->attach != NULL))) { /* or VM attach routine provided? */ uptr->flags = uptr->flags & ~UNIT_DIS; /* ensure device is enabled */ if (flg & UNIT_RO) /* [V2.10+] saved flgs & RO? */ sim_switches |= SWMASK ('R'); /* RO attach */ |
︙ | ︙ | |||
5950 5951 5952 5953 5954 5955 5956 | free (attunits); free (attswitches); if (warned) sim_printf ("restore with the -Q switch to suppress warning messages\n"); return r; } | | > > | | | | > | < | | | | | | | | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 | free (attunits); free (attswitches); if (warned) sim_printf ("restore with the -Q switch to suppress warning messages\n"); return r; } /* Run, go, boot, cont, step, next commands ru[n] [new PC] reset and start simulation go [new PC] start simulation co[nt] start simulation s[tep] [step limit] start simulation for 'limit' instructions next start simulation for 1 instruction stepping over subroutine calls b[oot] device bootstrap from device and start simulation switches: -Q quiet return status -T (only for step), causes the step limit to be a number of microseconds to run for */ t_stat run_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE] = ""; CONST char *tptr; uint32 i, j; int32 sim_next; int32 unitno; t_value pcv, orig_pcv; t_stat r; DEVICE *dptr; UNIT *uptr; GET_SWITCHES (cptr); /* get switches */ sim_step = 0; if ((flag == RU_RUN) || (flag == RU_GO)) { /* run or go */ orig_pcv = get_rval (sim_PC, 0); /* get current PC value */ if (*cptr != 0) { /* argument? */ cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */ if (MATCH_CMD (gbuf, "UNTIL") != 0) { if (sim_vm_parse_addr) /* address parser? */ pcv = sim_vm_parse_addr (sim_dflt_dev, gbuf, &tptr); else pcv = strtotv (gbuf, &tptr, sim_PC->radix);/* parse PC */ if ((tptr == gbuf) || (*tptr != 0) || /* error? */ (pcv > width_mask[sim_PC->width])) return SCPE_ARG; put_rval (sim_PC, 0, pcv); /* Save in PC */ } } if ((flag == RU_RUN) && /* run? */ ((r = sim_run_boot_prep (flag)) != SCPE_OK)) { /* reset sim */ put_rval (sim_PC, 0, orig_pcv); /* restore original PC */ return r; } if ((*cptr) || (MATCH_CMD (gbuf, "UNTIL") == 0)) { /* should be end */ int32 saved_switches = sim_switches; if (MATCH_CMD (gbuf, "UNTIL") != 0) cptr = get_glyph (cptr, gbuf, 0); /* get next glyph */ if (MATCH_CMD (gbuf, "UNTIL") != 0) return sim_messagef (SCPE_2MARG, "Unexpected %s command argument: %s %s\n", (flag == RU_RUN) ? "RUN" : "GO", gbuf, cptr); sim_switches = 0; GET_SWITCHES (cptr); if ((*cptr == '\'') || (*cptr == '"')) { /* Expect UNTIL condition */ r = expect_cmd (1, cptr); if (r != SCPE_OK) return r; } else { /* BREAK UNTIL condition */ if (sim_switches == 0) sim_switches = sim_brk_dflt; sim_switches |= BRK_TYP_TEMP; /* make this a one-shot breakpoint */ sim_brk_types |= BRK_TYP_TEMP; r = ssh_break (NULL, cptr, SSH_ST); if (r != SCPE_OK) return sim_messagef (r, "Unable to establish breakpoint at: %s\n", cptr); } sim_switches = saved_switches; } } else if ((flag == RU_STEP) || ((flag == RU_NEXT) && !sim_vm_is_subroutine_call)) { /* step */ static t_bool not_implemented_message = FALSE; if ((!not_implemented_message) && (flag == RU_NEXT)) { |
︙ | ︙ | |||
6056 6057 6058 6059 6060 6061 6062 | return SCPE_NOFNC; if (uptr->flags & UNIT_DIS) /* disabled? */ return SCPE_UDIS; if ((uptr->flags & UNIT_ATTABLE) && /* if attable, att? */ !(uptr->flags & UNIT_ATT)) return SCPE_UNATT; unitno = (int32) (uptr - dptr->units); /* recover unit# */ | | > | | > > > | 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 | return SCPE_NOFNC; if (uptr->flags & UNIT_DIS) /* disabled? */ return SCPE_UDIS; if ((uptr->flags & UNIT_ATTABLE) && /* if attable, att? */ !(uptr->flags & UNIT_ATT)) return SCPE_UNATT; unitno = (int32) (uptr - dptr->units); /* recover unit# */ if ((r = sim_run_boot_prep (flag)) != SCPE_OK) /* reset sim */ return r; if ((r = dptr->boot (unitno, dptr)) != SCPE_OK) /* boot device */ return r; } else if (flag != RU_CONT) /* must be cont */ return SCPE_IERR; else /* CONTINUE command */ if (*cptr != 0) /* should be end (no arguments allowed) */ return sim_messagef (SCPE_2MARG, "CONTINUE command takes no arguments\n"); if (sim_switches & SIM_SW_HIDE) /* Setup only for Remote Console Mode */ return SCPE_OK; for (i = 1; (dptr = sim_devices[i]) != NULL; i++) { /* reposition all */ for (j = 0; j < dptr->numunits; j++) { /* seq devices */ uptr = dptr->units + j; |
︙ | ︙ | |||
6211 6212 6213 6214 6215 6216 6217 | fprint_stopped (sim_log, r); if (sim_deb && (sim_deb != stdout) && (sim_deb != sim_log))/* debug if enabled */ fprint_stopped (sim_deb, r); } /* Common setup for RUN or BOOT */ | | > > > > > > > > > | | 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 | fprint_stopped (sim_log, r); if (sim_deb && (sim_deb != stdout) && (sim_deb != sim_log))/* debug if enabled */ fprint_stopped (sim_deb, r); } /* Common setup for RUN or BOOT */ t_stat sim_run_boot_prep (int32 flag) { UNIT *uptr; t_stat r; sim_interval = 0; /* reset queue */ sim_time = sim_rtime = 0; noqueue_time = 0; for (uptr = sim_clock_queue; uptr != QUEUE_LIST_END; uptr = sim_clock_queue) { sim_clock_queue = uptr->next; uptr->next = NULL; } r = reset_all (0); if ((r == SCPE_OK) && (flag == RU_RUN)) { if ((run_cmd_did_reset) && (0 == (sim_switches & SWMASK ('Q')))) { sim_printf ("Resetting all devices... This may not have been your intention.\n"); sim_printf ("The GO and CONTINUE commands do not reset devices.\n"); } run_cmd_did_reset = TRUE; } return r; } /* Print stopped message * For VM stops, if a VM-specific "sim_vm_fprint_stopped" pointer is defined, * call the indicated routine to print additional information after the message * and before the PC value is printed. If the routine returns FALSE, skip * printing the PC and its related instruction. |
︙ | ︙ | |||
6335 6336 6337 6338 6339 6340 6341 | ALL all addresses register[:register|-register] register range register[index] register array element register[start:end] register array range STATE all registers */ | | | | | 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 | ALL all addresses register[:register|-register] register range register[index] register array element register[start:end] register array range STATE all registers */ t_stat exdep_cmd (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; CONST char *gptr; CONST char *tptr = NULL; int32 opt; t_addr low, high; t_stat reason; DEVICE *tdptr; REG *lowr, *highr; FILE *ofile; |
︙ | ︙ | |||
6426 6427 6428 6429 6430 6431 6432 | /* Loop controllers for examine/deposit exdep_reg_loop examine/deposit range of registers exdep_addr_loop examine/deposit range of addresses */ | | | 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 | /* Loop controllers for examine/deposit exdep_reg_loop examine/deposit range of registers exdep_addr_loop examine/deposit range of addresses */ t_stat exdep_reg_loop (FILE *ofile, SCHTAB *schptr, int32 flag, CONST char *cptr, REG *lowr, REG *highr, uint32 lows, uint32 highs) { t_stat reason; uint32 idx, val_start=lows; t_value val, last_val; REG *rptr; |
︙ | ︙ | |||
6512 6513 6514 6515 6516 6517 6518 | } } } } return SCPE_OK; } | | | 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 | } } } } return SCPE_OK; } t_stat exdep_addr_loop (FILE *ofile, SCHTAB *schptr, int32 flag, const char *cptr, t_addr low, t_addr high, DEVICE *dptr, UNIT *uptr) { t_addr i, mask; t_stat reason; if (uptr->flags & UNIT_DIS) /* disabled? */ return SCPE_UDIS; |
︙ | ︙ | |||
6603 6604 6605 6606 6607 6608 6609 | return = register value */ t_value get_rval (REG *rptr, uint32 idx) { size_t sz; t_value val; | | | | | | > > > > > > > > > > | 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 | return = register value */ t_value get_rval (REG *rptr, uint32 idx) { size_t sz; t_value val; uint32 *ptr; sz = SZ_R (rptr); if ((rptr->depth > 1) && (rptr->flags & REG_CIRC)) { idx = idx + rptr->qptr; if (idx >= rptr->depth) idx = idx - rptr->depth; } if ((rptr->depth > 1) && (rptr->flags & REG_UNIT)) { ptr = (uint32 *)(((UNIT *) rptr->loc) + idx); #if defined (USE_INT64) if (sz <= sizeof (uint32)) val = *ptr; else val = *((t_uint64 *) ptr); #else val = *ptr; #endif } else if ((rptr->depth > 1) && (rptr->flags & REG_STRUCT)) { ptr = (uint32 *)(((size_t) rptr->loc) + (idx * rptr->str_size)); #if defined (USE_INT64) if (sz <= sizeof (uint32)) val = *ptr; else val = *((t_uint64 *) ptr); #else val = *ptr; #endif } else if (((rptr->depth > 1) || (rptr->flags & REG_FIT)) && (sz == sizeof (uint8))) val = *(((uint8 *) rptr->loc) + idx); else if (((rptr->depth > 1) || (rptr->flags & REG_FIT)) && (sz == sizeof (uint16))) |
︙ | ︙ | |||
6648 6649 6650 6651 6652 6653 6654 | cptr = pointer to input string rptr = pointer to register descriptor idx = index Outputs: return = error status */ | | > | | 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 | cptr = pointer to input string rptr = pointer to register descriptor idx = index Outputs: return = error status */ t_stat dep_reg (int32 flag, CONST char *cptr, REG *rptr, uint32 idx) { t_stat r; t_value val, mask; int32 rdx; CONST char *tptr; char gbuf[CBUFSIZE]; if ((cptr == NULL) || (rptr == NULL)) return SCPE_IERR; if (rptr->flags & REG_RO) return SCPE_RO; if (flag & EX_I) { cptr = read_line (gbuf, sizeof(gbuf), stdin); |
︙ | ︙ | |||
6677 6678 6679 6680 6681 6682 6683 | if ((rptr->flags & REG_VMAD) && sim_vm_parse_addr) { /* address form? */ val = sim_vm_parse_addr (sim_dflt_dev, cptr, &tptr); if ((tptr == cptr) || (*tptr != 0) || (val > mask)) return SCPE_ARG; } else if (!(rptr->flags & REG_VMFLAGS) || /* dont use sym? */ | | | 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 | if ((rptr->flags & REG_VMAD) && sim_vm_parse_addr) { /* address form? */ val = sim_vm_parse_addr (sim_dflt_dev, cptr, &tptr); if ((tptr == cptr) || (*tptr != 0) || (val > mask)) return SCPE_ARG; } else if (!(rptr->flags & REG_VMFLAGS) || /* dont use sym? */ (parse_sym ((CONST char *)cptr, (rptr->flags & REG_UFMASK) | rdx, NULL, &val, sim_switches | SIM_SW_REG) > SCPE_OK)) { val = get_uint (cptr, rdx, mask, &r); if (r != SCPE_OK) return SCPE_ARG; } if ((rptr->flags & REG_NZ) && (val == 0)) return SCPE_ARG; |
︙ | ︙ | |||
6704 6705 6706 6707 6708 6709 6710 | none */ void put_rval (REG *rptr, uint32 idx, t_value val) { size_t sz; t_value mask; | | | | | > > > > > > > > > | > > > > > > | 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 | none */ void put_rval (REG *rptr, uint32 idx, t_value val) { size_t sz; t_value mask; uint32 *ptr; #define PUT_RVAL(sz,rp,id,v,m) \ *(((sz *) rp->loc) + id) = \ (sz)((*(((sz *) rp->loc) + id) & \ ~((m) << (rp)->offset)) | ((v) << (rp)->offset)) if (rptr == sim_PC) sim_brk_npc (0); sz = SZ_R (rptr); mask = width_mask[rptr->width]; if ((rptr->depth > 1) && (rptr->flags & REG_CIRC)) { idx = idx + rptr->qptr; if (idx >= rptr->depth) idx = idx - rptr->depth; } if ((rptr->depth > 1) && (rptr->flags & REG_UNIT)) { ptr = (uint32 *)(((UNIT *) rptr->loc) + idx); #if defined (USE_INT64) if (sz <= sizeof (uint32)) *ptr = (*ptr & ~(((uint32) mask) << rptr->offset)) | (((uint32) val) << rptr->offset); else *((t_uint64 *) ptr) = (*((t_uint64 *) ptr) & ~(mask << rptr->offset)) | (val << rptr->offset); #else *ptr = (*ptr & ~(((uint32) mask) << rptr->offset)) | (((uint32) val) << rptr->offset); #endif } else if ((rptr->depth > 1) && (rptr->flags & REG_STRUCT)) { ptr = (uint32 *)(((size_t) rptr->loc) + (idx * rptr->str_size)); #if defined (USE_INT64) if (sz <= sizeof (uint32)) *((uint32 *) ptr) = (*((uint32 *) ptr) & ~(((uint32) mask) << rptr->offset)) | (((uint32) val) << rptr->offset); else *((t_uint64 *) ptr) = (*((t_uint64 *) ptr) & ~(mask << rptr->offset)) | (val << rptr->offset); #else *ptr = (*ptr & ~(((uint32) mask) << rptr->offset)) | (((uint32) val) << rptr->offset); #endif } else if (((rptr->depth > 1) || (rptr->flags & REG_FIT)) && (sz == sizeof (uint8))) PUT_RVAL (uint8, rptr, idx, (uint32) val, (uint32) mask); |
︙ | ︙ | |||
6867 6868 6869 6870 6871 6872 6873 | uptr = pointer to unit dfltinc = value to return on cr input Outputs: return = if > 0, error status if <= 0, -number of extra address units retired */ | | | 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 | uptr = pointer to unit dfltinc = value to return on cr input Outputs: return = if > 0, error status if <= 0, -number of extra address units retired */ t_stat dep_addr (int32 flag, const char *cptr, t_addr addr, DEVICE *dptr, UNIT *uptr, int32 dfltinc) { int32 i, count, rdx; t_addr j, loc; t_stat r, reason; t_value mask; size_t sz; |
︙ | ︙ | |||
6893 6894 6895 6896 6897 6898 6899 | return dfltinc; } if (uptr->flags & UNIT_RO) /* read only? */ return SCPE_RO; mask = width_mask[dptr->dwidth]; GET_RADIX (rdx, dptr->dradix); | | | 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 | return dfltinc; } if (uptr->flags & UNIT_RO) /* read only? */ return SCPE_RO; mask = width_mask[dptr->dwidth]; GET_RADIX (rdx, dptr->dradix); if ((reason = parse_sym ((CONST char *)cptr, addr, uptr, sim_eval, sim_switches)) > 0) { sim_eval[0] = get_uint (cptr, rdx, mask, &reason); if (reason != SCPE_OK) return reason; reason = dfltinc; } count = (1 - reason + (dptr->aincr - 1)) / dptr->aincr; |
︙ | ︙ | |||
6937 6938 6939 6940 6941 6942 6943 | } } return reason; } /* Evaluate command */ | | | | 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 | } } return reason; } /* Evaluate command */ t_stat eval_cmd (int32 flg, CONST char *cptr) { DEVICE *dptr = sim_dflt_dev; int32 i, rdx, a, lim; t_stat r; GET_SWITCHES (cptr); GET_RADIX (rdx, dptr->dradix); for (i = 0; i < sim_emax; i++) sim_eval[i] = 0; if (*cptr == 0) return SCPE_2FARG; if ((r = parse_sym ((CONST char *)cptr, 0, dptr->units, sim_eval, sim_switches)) > 0) { sim_eval[0] = get_uint (cptr, rdx, width_mask[dptr->dwidth], &r); if (r != SCPE_OK) return r; } lim = 1 - r; for (i = a = 0; a < lim; ) { sim_printf ("%d:\t", a); |
︙ | ︙ | |||
7012 7013 7014 7015 7016 7017 7018 | #if defined(HAVE_DLOPEN) static int initialized = 0; typedef char *(*readline_func)(const char *); static readline_func p_readline = NULL; typedef void (*add_history_func)(const char *); static add_history_func p_add_history = NULL; | | | 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 | #if defined(HAVE_DLOPEN) static int initialized = 0; typedef char *(*readline_func)(const char *); static readline_func p_readline = NULL; typedef void (*add_history_func)(const char *); static add_history_func p_add_history = NULL; if (prompt && (!initialized)) { initialized = 1; void *handle; #define S__STR_QUOTE(tok) #tok #define S__STR(tok) S__STR_QUOTE(tok) handle = dlopen("libncurses." S__STR(HAVE_DLOPEN), RTLD_NOW|RTLD_GLOBAL); handle = dlopen("libcurses." S__STR(HAVE_DLOPEN), RTLD_NOW|RTLD_GLOBAL); |
︙ | ︙ | |||
7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 | return cptr; } /* get_glyph get next glyph (force upper case) get_glyph_nc get next glyph (no conversion) get_glyph_quoted get next glyph (potentially enclosed in quotes, no conversion) get_glyph_gen get next glyph (general case) Inputs: iptr = pointer to input string optr = pointer to output string mchar = optional end of glyph character uc = TRUE for convert to upper case (_gen only) | > | 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 | return cptr; } /* get_glyph get next glyph (force upper case) get_glyph_nc get next glyph (no conversion) get_glyph_quoted get next glyph (potentially enclosed in quotes, no conversion) get_glyph_cmd get command glyph (force upper case, extract leading !) get_glyph_gen get next glyph (general case) Inputs: iptr = pointer to input string optr = pointer to output string mchar = optional end of glyph character uc = TRUE for convert to upper case (_gen only) |
︙ | ︙ | |||
7138 7139 7140 7141 7142 7143 7144 | if (mchar && (*iptr == mchar)) /* skip terminator */ iptr++; while (sim_isspace (*iptr)) /* absorb spaces */ iptr++; return iptr; } | | | | | | | > > > > > > > > > > | 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 | if (mchar && (*iptr == mchar)) /* skip terminator */ iptr++; while (sim_isspace (*iptr)) /* absorb spaces */ iptr++; return iptr; } CONST char *get_glyph (const char *iptr, char *optr, char mchar) { return (CONST char *)get_glyph_gen (iptr, optr, mchar, TRUE, FALSE, 0); } CONST char *get_glyph_nc (const char *iptr, char *optr, char mchar) { return (CONST char *)get_glyph_gen (iptr, optr, mchar, FALSE, FALSE, 0); } CONST char *get_glyph_quoted (const char *iptr, char *optr, char mchar) { return (CONST char *)get_glyph_gen (iptr, optr, mchar, FALSE, TRUE, '\\'); } CONST char *get_glyph_cmd (const char *iptr, char *optr) { /* Tolerate "!subprocess" vs. requiring "! subprocess" */ if ((iptr[0] == '!') && (!sim_isspace(iptr[1]))) { strcpy (optr, "!"); /* return ! as command glyph */ return (CONST char *)(iptr + 1); /* and skip over the leading ! */ } return (CONST char *)get_glyph_gen (iptr, optr, 0, TRUE, FALSE, 0); } /* Trim trailing spaces from a string Inputs: cptr = pointer to string Outputs: |
︙ | ︙ | |||
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 | return (c & 0x80) ? 0 : isgraph (c); } int sim_isalnum (char c) { return (c & 0x80) ? 0 : isalnum (c); } /* get_yn yes/no question Inputs: ques = pointer to question deflt = default answer Outputs: result = true if yes, false if no */ t_stat get_yn (const char *ques, t_stat deflt) { | > > > > > > > > > > > > > > > > > > > > > > > | > > > > > | 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 | return (c & 0x80) ? 0 : isgraph (c); } int sim_isalnum (char c) { return (c & 0x80) ? 0 : isalnum (c); } /* strncasecmp() is not available on all platforms */ int sim_strncasecmp (const char* string1, const char* string2, size_t len) { size_t i; unsigned char s1, s2; for (i=0; i<len; i++) { s1 = (unsigned char)string1[i]; s2 = (unsigned char)string2[i]; if (sim_islower (s1)) s1 = (unsigned char)toupper (s1); if (sim_islower (s2)) s2 = (unsigned char)toupper (s2); if (s1 < s2) return -1; if (s1 > s2) return 1; if (s1 == 0) return 0; } return 0; } /* get_yn yes/no question Inputs: ques = pointer to question deflt = default answer Outputs: result = true if yes, false if no */ t_stat get_yn (const char *ques, t_stat deflt) { char cbuf[CBUFSIZE]; const char *cptr; if (sim_switches & SWMASK ('Y')) return TRUE; if (sim_switches & SWMASK ('N')) return FALSE; if (sim_rem_cmd_active_line != -1) return deflt; cptr = read_line_p (ques, cbuf, sizeof(cbuf), stdin); if ((cptr == NULL) || (*cptr == 0)) return deflt; if ((*cptr == 'Y') || (*cptr == 'y')) return TRUE; |
︙ | ︙ | |||
7243 7244 7245 7246 7247 7248 7249 | Outputs: val = value */ t_value get_uint (const char *cptr, uint32 radix, t_value max, t_stat *status) { t_value val; | | | | 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 | Outputs: val = value */ t_value get_uint (const char *cptr, uint32 radix, t_value max, t_stat *status) { t_value val; CONST char *tptr; *status = SCPE_OK; val = strtotv ((CONST char *)cptr, &tptr, radix); if ((cptr == tptr) || (val > max)) *status = SCPE_ARG; else { while (sim_isspace (*tptr)) tptr++; if (*tptr != 0) *status = SCPE_ARG; } |
︙ | ︙ | |||
7272 7273 7274 7275 7276 7277 7278 | max = default high value term = terminating character, 0 if none Outputs: tptr = input pointer after processing NULL if error */ | | | | > > > > | | > > > > > | | | | | | > > | | | | | | | | | | | | | | | | | | | < > | 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 | max = default high value term = terminating character, 0 if none Outputs: tptr = input pointer after processing NULL if error */ CONST char *get_range (DEVICE *dptr, CONST char *cptr, t_addr *lo, t_addr *hi, uint32 rdx, t_addr max, char term) { CONST char *tptr; if (max && strncmp (cptr, "ALL", strlen ("ALL")) == 0) { /* ALL? */ tptr = cptr + strlen ("ALL"); *lo = 0; *hi = max; } else { if ((strncmp (cptr, ".", strlen (".")) == 0) && /* .? */ ((cptr[1] == '\0') || (cptr[1] == '-') || (cptr[1] == ':') || (cptr[1] == '/'))) { tptr = cptr + strlen ("."); *lo = *hi = sim_last_addr; } else { if (strncmp (cptr, "$", strlen ("$")) == 0) { /* $? */ tptr = cptr + strlen ("$"); *hi = *lo = (t_addr)sim_last_val; } else { if (dptr && sim_vm_parse_addr) /* get low */ *lo = sim_vm_parse_addr (dptr, cptr, &tptr); else *lo = (t_addr) strtotv (cptr, &tptr, rdx); if (cptr == tptr) /* error? */ return NULL; } } if ((*tptr == '-') || (*tptr == ':')) { /* range? */ cptr = tptr + 1; if (dptr && sim_vm_parse_addr) /* get high */ *hi = sim_vm_parse_addr (dptr, cptr, &tptr); else *hi = (t_addr) strtotv (cptr, &tptr, rdx); if (cptr == tptr) return NULL; if (*lo > *hi) return NULL; } else if (*tptr == '/') { /* relative? */ cptr = tptr + 1; *hi = (t_addr) strtotv (cptr, &tptr, rdx); /* get high */ if ((cptr == tptr) || (*hi == 0)) return NULL; *hi = *lo + *hi - 1; } else *hi = *lo; } sim_last_addr = *hi; if (term && (*tptr++ != term)) return NULL; return tptr; } /* sim_decode_quoted_string |
︙ | ︙ | |||
7504 7505 7506 7507 7508 7509 7510 | break; } if (double_quote_found && (!single_quote_found)) quote = '\''; *tptr++ = quote; while (size--) { switch (*iptr) { | > | | 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 | break; } if (double_quote_found && (!single_quote_found)) quote = '\''; *tptr++ = quote; while (size--) { switch (*iptr) { case '\r': *tptr++ = '\\'; *tptr++ = 'r'; break; case '\n': *tptr++ = '\\'; *tptr++ = 'n'; break; case '\f': *tptr++ = '\\'; *tptr++ = 'f'; break; case '\t': *tptr++ = '\\'; *tptr++ = 't'; break; case '\v': |
︙ | ︙ | |||
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 | */ DEVICE *find_dev (const char *cptr) { int32 i; DEVICE *dptr; for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { if ((strcmp (cptr, dptr->name) == 0) || (dptr->lname && (strcmp (cptr, dptr->lname) == 0))) return dptr; } for (i = 0; sim_internal_device_count && (dptr = sim_internal_devices[i]); ++i) { | > > | 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 | */ DEVICE *find_dev (const char *cptr) { int32 i; DEVICE *dptr; if (cptr == NULL) return NULL; for (i = 0; (dptr = sim_devices[i]) != NULL; i++) { if ((strcmp (cptr, dptr->name) == 0) || (dptr->lname && (strcmp (cptr, dptr->lname) == 0))) return dptr; } for (i = 0; sim_internal_device_count && (dptr = sim_internal_devices[i]); ++i) { |
︙ | ︙ | |||
7698 7699 7700 7701 7702 7703 7704 | gdptr = pointer to global device Outputs: result = pointer to register, NULL if error *optr = pointer to next character in input string *gdptr = pointer to device where found */ | | | 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 | gdptr = pointer to global device Outputs: result = pointer to register, NULL if error *optr = pointer to next character in input string *gdptr = pointer to device where found */ REG *find_reg_glob (CONST char *cptr, CONST char **optr, DEVICE **gdptr) { int32 i; DEVICE *dptr; REG *rptr, *srptr = NULL; *gdptr = NULL; for (i = 0; (dptr = sim_devices[i]) != 0; i++) { /* all dev */ |
︙ | ︙ | |||
7729 7730 7731 7732 7733 7734 7735 | optr = pointer to output pointer (can be null) dptr = pointer to device Outputs: result = pointer to register, NULL if error *optr = pointer to next character in input string */ | | | | 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 | optr = pointer to output pointer (can be null) dptr = pointer to device Outputs: result = pointer to register, NULL if error *optr = pointer to next character in input string */ REG *find_reg (CONST char *cptr, CONST char **optr, DEVICE *dptr) { CONST char *tptr; REG *rptr; size_t slnt; if ((cptr == NULL) || (dptr == NULL) || (dptr->registers == NULL)) return NULL; tptr = cptr; do { |
︙ | ︙ | |||
7762 7763 7764 7765 7766 7767 7768 | Inputs: cptr = pointer to input string Outputs: sw = switch bit mask 0 if no switches, -1 if error */ | | | 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 | Inputs: cptr = pointer to input string Outputs: sw = switch bit mask 0 if no switches, -1 if error */ int32 get_switches (const char *cptr) { int32 sw; if (*cptr != '-') return 0; sw = 0; for (cptr++; (sim_isspace (*cptr) == 0) && (*cptr != 0); cptr++) { |
︙ | ︙ | |||
7786 7787 7788 7789 7790 7791 7792 | Inputs: cptr = pointer to input string Outputs: ptr = pointer to first non-string glyph NULL if error */ | | | 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 | Inputs: cptr = pointer to input string Outputs: ptr = pointer to first non-string glyph NULL if error */ CONST char *get_sim_sw (CONST char *cptr) { int32 lsw; char gbuf[CBUFSIZE]; while (*cptr == '-') { /* while switches */ cptr = get_glyph (cptr, gbuf, 0); /* get switch glyph */ lsw = get_switches (gbuf); /* parse */ |
︙ | ︙ | |||
7811 7812 7813 7814 7815 7816 7817 | opt = command options cptr = pointer to input string Outputs: ptr = pointer to next glypsh, NULL if error *stat = error status */ | | | > | 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 | opt = command options cptr = pointer to input string Outputs: ptr = pointer to next glypsh, NULL if error *stat = error status */ CONST char *get_sim_opt (int32 opt, CONST char *cptr, t_stat *st) { int32 t; char gbuf[CBUFSIZE]; CONST char *svptr; DEVICE *tdptr; UNIT *tuptr; sim_switches = 0; /* no switches */ sim_ofile = NULL; /* no output file */ sim_schrptr = NULL; /* no search */ sim_schaptr = NULL; /* no search */ |
︙ | ︙ | |||
7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 | sim_dfunit = tuptr; sim_opt_out |= CMD_OPT_DFT; /* got default */ } else return svptr; /* not rec, break out */ } return cptr; } /* Match file extension Inputs: fnam = file name ext = extension, without period Outputs: cp = pointer to final '.' if match, NULL if not */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 | sim_dfunit = tuptr; sim_opt_out |= CMD_OPT_DFT; /* got default */ } else return svptr; /* not rec, break out */ } return cptr; } /* put_switches put switches into string Inputs: buf = pointer to string buffer bufsize = size of string buffer sw = switch bit mask Outputs: buf = buffer with switches converted to text */ const char *put_switches (char *buf, size_t bufsize, uint32 sw) { char *optr = buf; int32 bit; memset (buf, 0, bufsize); if ((sw == 0) || (bufsize < 3)) return buf; --bufsize; /* leave room for terminating NUL */ *optr++ = '-'; for (bit=0; bit <= ('Z'-'A'); bit++) if (sw & (1 << bit)) if ((size_t)(optr - buf) < bufsize) *optr++ = 'A' + bit; return buf; } /* Match file extension Inputs: fnam = file name ext = extension, without period Outputs: cp = pointer to final '.' if match, NULL if not */ CONST char *match_ext (CONST char *fnam, const char *ext) { CONST char *pptr, *fptr; const char *eptr; if ((fnam == NULL) || (ext == NULL)) /* bad arguments? */ return NULL; pptr = strrchr (fnam, '.'); /* find last . */ if (pptr) { /* any? */ for (fptr = pptr + 1, eptr = ext; /* match characters */ |
︙ | ︙ | |||
7927 7928 7929 7930 7931 7932 7933 | radix = radix for numbers schptr = pointer to search table Outputs: return = NULL if error schptr if valid search specification */ | | | | | | 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 | radix = radix for numbers schptr = pointer to search table Outputs: return = NULL if error schptr if valid search specification */ SCHTAB *get_rsearch (CONST char *cptr, int32 radix, SCHTAB *schptr) { int32 c, logop, cmpop; t_value logval, cmpval; const char *sptr; CONST char *tptr; const char logstr[] = "|&^", cmpstr[] = "=!><"; logval = cmpval = 0; if (*cptr == 0) /* check for clause */ return NULL; for (logop = cmpop = -1; (c = *cptr++); ) { /* loop thru clauses */ if ((sptr = strchr (logstr, c))) { /* check for mask */ logop = (int32)(sptr - logstr); logval = strtotv (cptr, &tptr, radix); if (cptr == tptr) return NULL; cptr = tptr; } else if ((sptr = strchr (cmpstr, c))) { /* check for boolop */ cmpop = (int32)(sptr - cmpstr); if (*cptr == '=') { cmpop = cmpop + strlen (cmpstr); cptr++; } cmpval = strtotv (cptr, &tptr, radix); if (cptr == tptr) return NULL; cptr = tptr; } else return NULL; } /* end for */ if (schptr->count != 1) { free (schptr->mask); schptr->mask = (t_value *)calloc (sim_emax, sizeof(*schptr->mask)); free (schptr->comp); |
︙ | ︙ | |||
7988 7989 7990 7991 7992 7993 7994 | radix = radix for numbers schptr = pointer to search table Outputs: return = NULL if error schptr if valid search specification */ | | | | 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 | radix = radix for numbers schptr = pointer to search table Outputs: return = NULL if error schptr if valid search specification */ SCHTAB *get_asearch (CONST char *cptr, int32 radix, SCHTAB *schptr) { int32 c, logop, cmpop; t_value *logval, *cmpval; t_stat reason; CONST char *ocptr = cptr; const char *sptr; char gbuf[CBUFSIZE]; const char logstr[] = "|&^", cmpstr[] = "=!><"; if (*cptr == 0) /* check for clause */ return NULL; logval = (t_value *)calloc (sim_emax, sizeof(*logval)); |
︙ | ︙ | |||
8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 | schptr->comp = (t_value *)calloc (sim_emax, sizeof(*schptr->comp)); } if (logop >= 0) { schptr->logic = logop; free (schptr->mask); schptr->mask = logval; } if (cmpop >= 0) { schptr->boolop = cmpop; free (schptr->comp); schptr->comp = cmpval; } return schptr; } /* Test value against search specification Inputs: val = value list to test | > > > > > > | 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 | schptr->comp = (t_value *)calloc (sim_emax, sizeof(*schptr->comp)); } if (logop >= 0) { schptr->logic = logop; free (schptr->mask); schptr->mask = logval; } else { free (logval); } if (cmpop >= 0) { schptr->boolop = cmpop; free (schptr->comp); schptr->comp = cmpval; } else { free (cmpval); } return schptr; } /* Test value against search specification Inputs: val = value list to test |
︙ | ︙ | |||
8152 8153 8154 8155 8156 8157 8158 | radix = radix for input Outputs: value = converted value On an error, the endptr will equal the inptr. */ | | | | | | 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 | radix = radix for input Outputs: value = converted value On an error, the endptr will equal the inptr. */ t_value strtotv (CONST char *inptr, CONST char **endptr, uint32 radix) { int32 nodigit; t_value val; uint32 c, digit; *endptr = inptr; /* assume fails */ if ((radix < 2) || (radix > 36)) return 0; while (sim_isspace (*inptr)) /* bypass white space */ inptr++; val = 0; nodigit = 1; for (c = *inptr; sim_isalnum(c); c = *++inptr) { /* loop through char */ if (sim_islower (c)) c = toupper (c); if (sim_isdigit (c)) /* digit? */ digit = c - (uint32) '0'; else if (radix <= 10) /* stop if not expected */ break; else digit = c + 10 - (uint32) 'A'; /* convert letter */ if (digit >= radix) /* valid in radix? */ return 0; val = (val * radix) + digit; /* add to value */ nodigit = 0; } if (nodigit) /* no digits? */ return 0; *endptr = inptr; /* result pointer */ return val; } /* fprint_val - general radix printing routine Inputs: stream = stream designator |
︙ | ︙ | |||
8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 | } if ((MAX_WIDTH - (ndigits + commas)) < d) d = MAX_WIDTH - (ndigits + commas); break; } if (!buffer) return strlen(dbuf+d); if (width < strlen(dbuf+d)) return SCPE_IOERR; strcpy(buffer, dbuf+d); return SCPE_OK; } t_stat fprint_val (FILE *stream, t_value val, uint32 radix, | > | 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 | } if ((MAX_WIDTH - (ndigits + commas)) < d) d = MAX_WIDTH - (ndigits + commas); break; } if (!buffer) return strlen(dbuf+d); *buffer = '\0'; if (width < strlen(dbuf+d)) return SCPE_IOERR; strcpy(buffer, dbuf+d); return SCPE_OK; } t_stat fprint_val (FILE *stream, t_value val, uint32 radix, |
︙ | ︙ | |||
8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 | if (fputs (dbuf, sim_log) == EOF) return SCPE_IOERR; if (sim_deb && (sim_deb != stdout)) if (fputs (dbuf, sim_deb) == EOF) return SCPE_IOERR; return SCPE_OK; } /* Event queue package sim_activate add entry to event queue sim_activate_abs add entry to event queue even if event already scheduled sim_activate_notbefore add entry to event queue even if event already scheduled but not before the specified time | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 | if (fputs (dbuf, sim_log) == EOF) return SCPE_IOERR; if (sim_deb && (sim_deb != stdout)) if (fputs (dbuf, sim_deb) == EOF) return SCPE_IOERR; return SCPE_OK; } const char *sim_fmt_secs (double seconds) { static char buf[60]; char frac[16] = ""; const char *sign = ""; double val = seconds; double days, hours, mins, secs, msecs, usecs; if (val == 0.0) return ""; if (val < 0.0) { sign = "-"; val = -val; } days = floor (val / (24.0*60.0*60.0)); val -= (days * 24.0*60.0*60.0); hours = floor (val / (60.0*60.0)); val -= (hours * 60.0 * 60.0); mins = floor (val / 60.0); val -= (mins * 60.0); secs = floor (val); val -= secs; val *= 1000.0; msecs = floor (val); val -= msecs; val *= 1000.0; usecs = floor (val+0.5); if (usecs == 1000.0) { usecs = 0.0; msecs += 1; } if ((msecs > 0.0) || (usecs > 0.0)) { sprintf (frac, ".%03.0f%03.0f", msecs, usecs); while (frac[strlen (frac) - 1] == '0') frac[strlen (frac) - 1] = '\0'; if (strlen (frac) == 1) frac[0] = '\0'; } if (days > 0) sprintf (buf, "%s%.0f day%s %02.0f:%02.0f:%02.0f%s hour%s", sign, days, (days != 1)? "s" : "", hours, mins, secs, frac, (days == 1) ? "s" : ""); else if (hours > 0) sprintf (buf, "%s%.0f:%02.0f:%02.0f%s hour", sign, hours, mins, secs, frac); else if (mins > 0) sprintf (buf, "%s%.0f:%02.0f%s minute", sign, mins, secs, frac); else if (secs > 0) sprintf (buf, "%s%.0f%s second", sign, secs, frac); else if (msecs > 0) { if (usecs > 0) sprintf (buf, "%s%.0f.%s msec", sign, msecs, frac+4); else sprintf (buf, "%s%.0f msec", sign, msecs); } else sprintf (buf, "%s%.0f usec", sign, usecs); if (0 != strncmp ("1 ", buf, 2)) strcpy (&buf[strlen (buf)], "s"); return buf; } const char *sim_fmt_numeric (double number) { static char buf[60]; char tmpbuf[60]; size_t len; uint32 c; char *p; sprintf (tmpbuf, "%.0f", number); len = strlen (tmpbuf); for (c=0, p=buf; c < len; c++) { if ((c > 0) && (sim_isdigit (tmpbuf[c])) && (0 == ((len - c) % 3))) *(p++) = ','; *(p++) = tmpbuf[c]; } *p = '\0'; return buf; } /* Event queue package sim_activate add entry to event queue sim_activate_abs add entry to event queue even if event already scheduled sim_activate_notbefore add entry to event queue even if event already scheduled but not before the specified time |
︙ | ︙ | |||
8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 | UPDATE_SIM_TIME; /* update sim time */ if (sim_clock_queue == QUEUE_LIST_END) { /* queue empty? */ sim_interval = noqueue_time = NOQUEUE_WAIT; /* flag queue empty */ sim_debug (SIM_DBG_EVENT, sim_dflt_dev, "Queue Empty New Interval = %d\n", sim_interval); return SCPE_OK; } do { uptr = sim_clock_queue; /* get first */ sim_clock_queue = uptr->next; /* remove first */ uptr->next = NULL; /* hygiene */ uptr->time = 0; if (sim_clock_queue != QUEUE_LIST_END) sim_interval = sim_clock_queue->time; | > | 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 | UPDATE_SIM_TIME; /* update sim time */ if (sim_clock_queue == QUEUE_LIST_END) { /* queue empty? */ sim_interval = noqueue_time = NOQUEUE_WAIT; /* flag queue empty */ sim_debug (SIM_DBG_EVENT, sim_dflt_dev, "Queue Empty New Interval = %d\n", sim_interval); return SCPE_OK; } sim_processing_event = TRUE; do { uptr = sim_clock_queue; /* get first */ sim_clock_queue = uptr->next; /* remove first */ uptr->next = NULL; /* hygiene */ uptr->time = 0; if (sim_clock_queue != QUEUE_LIST_END) sim_interval = sim_clock_queue->time; |
︙ | ︙ | |||
8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 | sim_debug (SIM_DBG_EVENT, sim_dflt_dev, "Processing Queue Complete New Interval = %d\n", sim_interval); } else sim_debug (SIM_DBG_EVENT, sim_dflt_dev, "Processing Queue Complete New Interval = %d(%s)\n", sim_interval, sim_uname(sim_clock_queue)); if ((reason == SCPE_OK) && stop_cpu) reason = SCPE_STOP; return reason; } /* sim_activate - activate (queue) event Inputs: uptr = pointer to unit event_time = relative timeout Outputs: reason = result (SCPE_OK if ok) */ t_stat sim_activate (UNIT *uptr, int32 event_time) { return _sim_activate (uptr, event_time); } t_stat _sim_activate (UNIT *uptr, int32 event_time) { UNIT *cptr, *prvptr; int32 accum; | > > > | 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 | sim_debug (SIM_DBG_EVENT, sim_dflt_dev, "Processing Queue Complete New Interval = %d\n", sim_interval); } else sim_debug (SIM_DBG_EVENT, sim_dflt_dev, "Processing Queue Complete New Interval = %d(%s)\n", sim_interval, sim_uname(sim_clock_queue)); if ((reason == SCPE_OK) && stop_cpu) reason = SCPE_STOP; sim_processing_event = FALSE; return reason; } /* sim_activate - activate (queue) event Inputs: uptr = pointer to unit event_time = relative timeout Outputs: reason = result (SCPE_OK if ok) */ t_stat sim_activate (UNIT *uptr, int32 event_time) { if (uptr->dynflags & UNIT_TMR_UNIT) return sim_timer_activate (uptr, event_time); return _sim_activate (uptr, event_time); } t_stat _sim_activate (UNIT *uptr, int32 event_time) { UNIT *cptr, *prvptr; int32 accum; |
︙ | ︙ | |||
8477 8478 8479 8480 8481 8482 8483 | Inputs: uptr = pointer to unit usec_delay = relative timeout (in microseconds) Outputs: reason = result (SCPE_OK if ok) */ | | > > > > > > > > > > > > | | 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 | Inputs: uptr = pointer to unit usec_delay = relative timeout (in microseconds) Outputs: reason = result (SCPE_OK if ok) */ t_stat sim_activate_after_abs (UNIT *uptr, uint32 event_time) { return _sim_activate_after_abs (uptr, event_time); } t_stat _sim_activate_after_abs (UNIT *uptr, uint32 event_time) { AIO_ACTIVATE (_sim_activate_after_abs, uptr, event_time); sim_cancel (uptr); return _sim_activate_after (uptr, event_time); } t_stat sim_activate_after (UNIT *uptr, uint32 usec_delay) { return _sim_activate_after (uptr, usec_delay); } t_stat _sim_activate_after (UNIT *uptr, uint32 usec_delay) { if (sim_is_active (uptr)) /* already active? */ return SCPE_OK; AIO_ACTIVATE (_sim_activate_after, uptr, usec_delay); return sim_timer_activate_after (uptr, usec_delay); } |
︙ | ︙ | |||
8535 8536 8537 8538 8539 8540 8541 | nptr->time += (uptr->next) ? 0 : uptr->time; if (!uptr->next) uptr->time = 0; if (sim_clock_queue != QUEUE_LIST_END) sim_interval = sim_clock_queue->time; else sim_interval = noqueue_time = NOQUEUE_WAIT; if (uptr->next) { | > | < < | | | > > > > | | 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 | nptr->time += (uptr->next) ? 0 : uptr->time; if (!uptr->next) uptr->time = 0; if (sim_clock_queue != QUEUE_LIST_END) sim_interval = sim_clock_queue->time; else sim_interval = noqueue_time = NOQUEUE_WAIT; if (uptr->next) { sim_printf ("Cancel failed for %s\n", sim_uname(uptr)); if (sim_deb) fclose(sim_deb); abort (); } return SCPE_OK; } /* sim_is_active - test for entry in queue Inputs: uptr = pointer to unit Outputs: result = TRUE if unit is busy, FALSE inactive */ t_bool sim_is_active (UNIT *uptr) { AIO_VALIDATE; AIO_UPDATE_QUEUE; return (((uptr->next) || AIO_IS_ACTIVE(uptr) || ((uptr->dynflags & UNIT_TMR_UNIT) ? sim_timer_is_active (uptr) : FALSE)) ? TRUE : FALSE); } /* sim_activate_time - return activation time Inputs: uptr = pointer to unit Outputs: result = absolute activation time + 1, 0 if inactive */ int32 sim_activate_time (UNIT *uptr) { UNIT *cptr; int32 accum; AIO_VALIDATE; accum = sim_timer_activate_time (uptr); \ if (accum >= 0) \ return accum; \ accum = 0; for (cptr = sim_clock_queue; cptr != QUEUE_LIST_END; cptr = cptr->next) { if (cptr == sim_clock_queue) { if (sim_interval > 0) accum = accum + sim_interval; } else accum = accum + cptr->time; if (cptr == uptr) return accum + 1; } return 0; } /* sim_gtime - return global time |
︙ | ︙ | |||
8630 8631 8632 8633 8634 8635 8636 | return cnt; } /* Breakpoint package. This module replaces the VM-implemented one instruction breakpoint capability. Breakpoints are stored in table sim_brk_tab, which is ordered by address for | | > > | > > > > > > > > > > > > > > | > | 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 | return cnt; } /* Breakpoint package. This module replaces the VM-implemented one instruction breakpoint capability. Breakpoints are stored in table sim_brk_tab, which is ordered by address for efficient binary searching. A breakpoint consists of a six entry structure: addr address of the breakpoint type types of breakpoints set on the address a bit mask representing letters A-Z cnt number of iterations before breakp is taken action pointer command string to be executed when break is taken next list of other breakpoints with the same addr specifier time_fired array of when this breakpoint was fired for each class sim_brk_summ is a summary of the types of breakpoints that are currently set (it is the bitwise OR of all the type fields). A simulator need only check for a breakpoint of type X if bit SWMASK('X') is set in sim_brk_summ. The package contains the following public routines: sim_brk_init initialize sim_brk_set set breakpoint sim_brk_clr clear breakpoint sim_brk_clrall clear all breakpoints sim_brk_show show breakpoint sim_brk_showall show all breakpoints sim_brk_test test for breakpoint sim_brk_npc PC has been changed sim_brk_getact get next action sim_brk_clract clear pending actions Initialize breakpoint system. */ t_stat sim_brk_init (void) { int32 i; for (i=0; i<sim_brk_lnt; i++) { BRKTAB *bp = sim_brk_tab[i]; while (bp) { BRKTAB *bpt = bp->next; free (bp->act); free (bp); bp = bpt; } } memset (sim_brk_tab, 0, sim_brk_lnt*sizeof (BRKTAB*)); sim_brk_lnt = SIM_BRK_INILNT; sim_brk_tab = (BRKTAB **) realloc (sim_brk_tab, sim_brk_lnt*sizeof (BRKTAB*)); if (sim_brk_tab == NULL) return SCPE_MEM; memset (sim_brk_tab, 0, sim_brk_lnt*sizeof (BRKTAB*)); sim_brk_ent = sim_brk_ins = 0; sim_brk_clract (); sim_brk_npc (0); return SCPE_OK; } /* Search for a breakpoint in the sorted breakpoint table */ |
︙ | ︙ | |||
8686 8687 8688 8689 8690 8691 8692 | sim_brk_ins = 0; /* insrt at head */ return NULL; /* sch fails */ } lo = 0; /* initial bounds */ hi = sim_brk_ent - 1; do { p = (lo + hi) >> 1; /* probe */ | | | > > > > > > > > > > > > > > > | | | | | > | > | | | > | > > > | > | | > | | > | > > | | > > > > > > < | | > | > | < | > > > > | < | > > > > > > > | > > > > | > | > > > | | > > | < | > > | | | 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 | sim_brk_ins = 0; /* insrt at head */ return NULL; /* sch fails */ } lo = 0; /* initial bounds */ hi = sim_brk_ent - 1; do { p = (lo + hi) >> 1; /* probe */ bp = sim_brk_tab[p]; /* table addr */ if (loc == bp->addr) { /* match? */ sim_brk_ins = p; return bp; } else if (loc < bp->addr) /* go down? p is upper */ hi = p - 1; else lo = p + 1; /* go up? p is lower */ } while (lo <= hi); if (loc < bp->addr) /* insrt before or */ sim_brk_ins = p; else sim_brk_ins = p + 1; /* after last sch */ return NULL; } BRKTAB *sim_brk_fnd_ex (t_addr loc, uint32 btyp, t_bool any_typ, uint32 spc) { BRKTAB *bp = sim_brk_fnd (loc); while (bp) { if (any_typ ? ((bp->typ & btyp) && (bp->time_fired[spc] != sim_gtime())) : (bp->typ == btyp)) return bp; bp = bp->next; } return bp; } /* Insert a breakpoint */ BRKTAB *sim_brk_new (t_addr loc, uint32 btyp) { int32 i, t; BRKTAB *bp, **newp; if (sim_brk_ins < 0) return NULL; if (sim_brk_ent >= sim_brk_lnt) { /* out of space? */ t = sim_brk_lnt + SIM_BRK_INILNT; /* new size */ newp = (BRKTAB **) calloc (t, sizeof (BRKTAB*)); /* new table */ if (newp == NULL) /* can't extend */ return NULL; memcpy (newp, sim_brk_tab, sim_brk_lnt * sizeof (*sim_brk_tab));/* copy table */ memset (newp + sim_brk_lnt, 0, SIM_BRK_INILNT * sizeof (*newp));/* zero new entries */ free (sim_brk_tab); /* free old table */ sim_brk_tab = newp; /* new base, lnt */ sim_brk_lnt = t; } if ((sim_brk_ins == sim_brk_ent) || ((sim_brk_ins != sim_brk_ent) && (sim_brk_tab[sim_brk_ins]->addr != loc))) { /* need to open a hole? */ for (i = sim_brk_ent; i > sim_brk_ins; --i) sim_brk_tab[i] = sim_brk_tab[i - 1]; sim_brk_tab[sim_brk_ins] = NULL; } bp = (BRKTAB *)calloc (1, sizeof (*bp)); bp->next = sim_brk_tab[sim_brk_ins]; sim_brk_tab[sim_brk_ins] = bp; if (bp->next == NULL) sim_brk_ent += 1; bp->addr = loc; bp->typ = btyp; bp->cnt = 0; bp->act = NULL; for (i = 0; i < SIM_BKPT_N_SPC; i++) bp->time_fired[i] = -1.0; return bp; } /* Set a breakpoint of type sw */ t_stat sim_brk_set (t_addr loc, int32 sw, int32 ncnt, CONST char *act) { BRKTAB *bp; if ((sw == 0) || (sw == BRK_TYP_DYN_STEPOVER)) sw |= sim_brk_dflt; if (~sim_brk_types & sw) { char gbuf[CBUFSIZE]; return sim_messagef (SCPE_NOFNC, "Unknown breakpoint type; %s\n", put_switches(gbuf, sizeof(gbuf), sw & ~sim_brk_types)); } if ((sw & BRK_TYP_DYN_ALL) && act) /* can't specify an action with a dynamic breakpoint */ return SCPE_ARG; bp = sim_brk_fnd (loc); /* loc present? */ if (!bp) /* no, allocate */ bp = sim_brk_new (loc, sw); else { while (bp && (bp->typ != sw)) bp = bp->next; if (!bp) bp = sim_brk_new (loc, sw); } if (!bp) /* still no? mem err */ return SCPE_MEM; bp->cnt = ncnt; /* set count */ if ((!(sw & BRK_TYP_DYN_ALL)) && /* Not Dynamic and */ (bp->act != NULL) && (act != NULL)) { /* replace old action? */ free (bp->act); /* deallocate */ bp->act = NULL; /* now no action */ } if ((act != NULL) && (*act != 0)) { /* new action? */ char *newp = (char *) calloc (CBUFSIZE+1, sizeof (char)); /* alloc buf */ if (newp == NULL) /* mem err? */ return SCPE_MEM; strncpy (newp, act, CBUFSIZE); /* copy action */ bp->act = newp; /* set pointer */ } sim_brk_summ = sim_brk_summ | (sw & ~BRK_TYP_TEMP); return SCPE_OK; } /* Clear a breakpoint */ t_stat sim_brk_clr (t_addr loc, int32 sw) { BRKTAB *bpl, *bp = sim_brk_fnd (loc); int32 i; if (!bp) /* not there? ok */ return SCPE_OK; if (sw == 0) sw = SIM_BRK_ALLTYP; while (bp) { if (bp->typ == (bp->typ & sw)) { free (bp->act); /* deallocate action */ if (bp == sim_brk_tab[sim_brk_ins]) bpl = sim_brk_tab[sim_brk_ins] = bp->next; else bpl->next = bp->next; free (bp); bp = bpl; } else { bpl = bp; bp = bp->next; } } if (sim_brk_tab[sim_brk_ins] == NULL) { /* erased entry */ sim_brk_ent = sim_brk_ent - 1; /* decrement count */ for (i = sim_brk_ins; i < sim_brk_ent; i++) /* shuffle remaining entries */ sim_brk_tab[i] = sim_brk_tab[i+1]; } sim_brk_summ = 0; /* recalc summary */ for (i = 0; i < sim_brk_ent; i++) { bp = sim_brk_tab[i]; while (bp) { sim_brk_summ |= (bp->typ & ~BRK_TYP_TEMP); bp = bp->next; } } return SCPE_OK; } /* Clear all breakpoints */ t_stat sim_brk_clrall (int32 sw) { int32 i; if (sw == 0) sw = SIM_BRK_ALLTYP; for (i = 0; i < sim_brk_ent;) { t_addr loc = sim_brk_tab[i]->addr; sim_brk_clr (loc, sw); if ((i < sim_brk_ent) && (loc == sim_brk_tab[i]->addr)) ++i; } return SCPE_OK; } /* Show a breakpoint */ t_stat sim_brk_show (FILE *st, t_addr loc, int32 sw) { BRKTAB *bp = sim_brk_fnd_ex (loc, sw & (~SWMASK ('C')), FALSE, 0); DEVICE *dptr; int32 i, any; if ((sw == 0) || (sw == SWMASK ('C'))) sw = SIM_BRK_ALLTYP | ((sw == SWMASK ('C')) ? SWMASK ('C') : 0); if (!bp || (!(bp->typ & sw))) return SCPE_OK; |
︙ | ︙ | |||
8848 8849 8850 8851 8852 8853 8854 | if (sw & SWMASK ('C')) { fprintf (st, " "); if (sim_vm_fprint_addr) sim_vm_fprint_addr (st, dptr, loc); else fprint_val (st, loc, dptr->aradix, dptr->awidth, PV_LEFT); } if (bp->cnt > 0) | | > | > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > | | > > > > > > > > > > > > > | | > > | | | > | > | < | | | 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 | if (sw & SWMASK ('C')) { fprintf (st, " "); if (sim_vm_fprint_addr) sim_vm_fprint_addr (st, dptr, loc); else fprint_val (st, loc, dptr->aradix, dptr->awidth, PV_LEFT); } if (bp->cnt > 0) fprintf (st, "[%d]", bp->cnt); if (bp->act != NULL) fprintf (st, "; %s", bp->act); fprintf (st, "\n"); return SCPE_OK; } /* Show all breakpoints */ t_stat sim_brk_showall (FILE *st, int32 sw) { int32 bit, mask, types; BRKTAB **bpt; if ((sw == 0) || (sw == SWMASK ('C'))) sw = SIM_BRK_ALLTYP | ((sw == SWMASK ('C')) ? SWMASK ('C') : 0); for (types=bit=0; bit <= ('Z'-'A'); bit++) if (sim_brk_types & (1 << bit)) ++types; if ((!(sw & SWMASK ('C'))) && sim_brk_types && (types > 1)) { fprintf (st, "Supported Breakpoint Types:"); for (bit=0; bit <= ('Z'-'A'); bit++) if (sim_brk_types & (1 << bit)) fprintf (st, " -%c", 'A' + bit); fprintf (st, "\n"); } if (((sw & sim_brk_types) != sim_brk_types) && (types > 1)) { mask = (sw & sim_brk_types); fprintf (st, "Displaying Breakpoint Types:"); for (bit=0; bit <= ('Z'-'A'); bit++) if (mask & (1 << bit)) fprintf (st, " -%c", 'A' + bit); fprintf (st, "\n"); } for (bpt = sim_brk_tab; bpt < (sim_brk_tab + sim_brk_ent); bpt++) { BRKTAB *prev = NULL; BRKTAB *cur = *bpt; BRKTAB *next; /* First reverse the list */ while (cur) { next = cur->next; cur->next = prev; prev = cur; cur = next; } /* save reversed list in the head pointer so lookups work */ *bpt = prev; /* Walk the reversed list and print it in the order it was defined in */ cur = prev; while (cur) { if (cur->typ & sw) sim_brk_show (st, cur->addr, cur->typ | ((sw & SWMASK ('C')) ? SWMASK ('C') : 0)); cur = cur->next; } /* reversing the list again */ cur = prev; prev = NULL; while (cur) { next = cur->next; cur->next = prev; prev = cur; cur = next; } /* restore original list */ *bpt = prev; } return SCPE_OK; } /* Test for breakpoint */ uint32 sim_brk_test (t_addr loc, uint32 btyp) { BRKTAB *bp; uint32 spc = (btyp >> SIM_BKPT_V_SPC) & (SIM_BKPT_N_SPC - 1); if (sim_brk_summ & BRK_TYP_DYN_ALL) btyp |= BRK_TYP_DYN_ALL; if ((bp = sim_brk_fnd_ex (loc, btyp, TRUE, spc))) { /* in table, and type match? */ if (bp->time_fired[spc] == sim_time) /* already taken? */ return 0; bp->time_fired[spc] = sim_time; /* remember match time */ if (--bp->cnt > 0) /* count > 0? */ return 0; bp->cnt = 0; /* reset count */ sim_brk_setact (bp->act); /* set up actions */ sim_brk_match_type = btyp & bp->typ; /* set return value */ if (bp->typ & BRK_TYP_TEMP) sim_brk_clr (loc, bp->typ); /* delete one-shot breakpoint */ sim_brk_match_addr = loc; return sim_brk_match_type; } return 0; } /* Get next pending action, if any */ CONST char *sim_brk_getact (char *buf, int32 size) { char *ep; size_t lnt; if (sim_brk_act[sim_do_depth] == NULL) /* any action? */ return NULL; while (sim_isspace (*sim_brk_act[sim_do_depth])) /* skip spaces */ sim_brk_act[sim_do_depth]++; if (*sim_brk_act[sim_do_depth] == 0) { /* now empty? */ return sim_brk_clract (); } if ((ep = strchr (sim_brk_act[sim_do_depth], ';'))) { /* cmd delimiter? */ lnt = ep - sim_brk_act[sim_do_depth]; /* cmd length */ memcpy (buf, sim_brk_act[sim_do_depth], lnt + 1); /* copy with ; */ |
︙ | ︙ | |||
8946 8947 8948 8949 8950 8951 8952 | sim_brk_clract (); } /* New PC */ void sim_brk_npc (uint32 cnt) { | | > > | | | | < > | > > > > > | > > > > > > > > > > > > > > > | > | > > > > > > > > > > > | | 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 | sim_brk_clract (); } /* New PC */ void sim_brk_npc (uint32 cnt) { uint32 spc; BRKTAB **bpt, *bp; if ((cnt == 0) || (cnt > SIM_BKPT_N_SPC)) cnt = SIM_BKPT_N_SPC; for (bpt = sim_brk_tab; bpt < (sim_brk_tab + sim_brk_ent); bpt++) { for (bp = *bpt; bp; bp = bp->next) { for (spc = 0; spc < cnt; spc++) bp->time_fired[spc] = -1.0; } } } /* Clear breakpoint space */ void sim_brk_clrspc (uint32 spc, uint32 btyp) { BRKTAB **bpt, *bp; if (spc < SIM_BKPT_N_SPC) { for (bpt = sim_brk_tab; bpt < (sim_brk_tab + sim_brk_ent); bpt++) { for (bp = *bpt; bp; bp = bp->next) { if (bp->typ & btyp) bp->time_fired[spc] = -1.0; } } } } const char *sim_brk_message(void) { static char msg[256]; char addr[65]; char buf[32]; msg[0] = '\0'; if (sim_vm_sprint_addr) sim_vm_sprint_addr (addr, sim_dflt_dev, (t_value)sim_brk_match_addr); else sprint_val (addr, (t_value)sim_brk_match_addr, sim_dflt_dev->aradix, sim_dflt_dev->awidth, PV_LEFT); if (sim_brk_type_desc) { BRKTYPTAB *brk = sim_brk_type_desc; while (2 == strlen (put_switches (buf, sizeof(buf), brk->btyp))) { if (brk->btyp == sim_brk_match_type) { sprintf (msg, "%s: %s", brk->desc, addr); break; } brk++; } } if (!msg[0]) sprintf (msg, "%s Breakpoint at: %s\n", put_switches (buf, sizeof(buf), sim_brk_match_type), addr); return msg; } /* Expect package. This code provides a mechanism to stop and control simulator execution based on traffic coming out of simulated ports and as well as a means to inject data into those ports. It can conceptually viewed as a string breakpoint package. |
︙ | ︙ | |||
9013 9014 9015 9016 9017 9018 9019 | { memset (exp, 0, sizeof(*exp)); return SCPE_OK; } /* Set expect */ | | | > | > | > | | | | | 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 | { memset (exp, 0, sizeof(*exp)); return SCPE_OK; } /* Set expect */ t_stat sim_set_expect (EXPECT *exp, CONST char *cptr) { char gbuf[CBUFSIZE]; CONST char *tptr; CONST char *c1ptr; t_bool after_set = FALSE; uint32 after = exp->after; int32 cnt = 0; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_2FARG; if (*cptr == '[') { cnt = (int32) strtotv (cptr + 1, &c1ptr, 10); if ((cptr == c1ptr) || (*c1ptr != ']')) return sim_messagef (SCPE_ARG, "Invalid Repeat count specification\n"); cptr = c1ptr + 1; while (sim_isspace(*cptr)) ++cptr; } tptr = get_glyph (cptr, gbuf, ','); if ((!strncmp(gbuf, "HALTAFTER=", 10)) && (gbuf[10])) { after = (uint32)get_uint (&gbuf[10], 10, 100000000, &r); if (r != SCPE_OK) return sim_messagef (SCPE_ARG, "Invalid Halt After Value\n"); after_set = TRUE; cptr = tptr; } if ((*cptr != '"') && (*cptr != '\'')) return sim_messagef (SCPE_ARG, "String must be quote delimited\n"); cptr = get_glyph_quoted (cptr, gbuf, 0); return sim_exp_set (exp, gbuf, cnt, (after_set ? after : exp->after), sim_switches, cptr); } /* Clear expect */ t_stat sim_set_noexpect (EXPECT *exp, const char *cptr) { char gbuf[CBUFSIZE]; if (!cptr || !*cptr) return sim_exp_clrall (exp); /* clear all rules */ if ((*cptr != '"') && (*cptr != '\'')) return sim_messagef (SCPE_ARG, "String must be quote delimited\n"); cptr = get_glyph_quoted (cptr, gbuf, 0); if (*cptr != '\0') return SCPE_2MARG; /* No more arguments */ return sim_exp_clr (exp, gbuf); /* clear one rule */ } /* Search for an expect rule in an expect context */ CONST EXPTAB *sim_exp_fnd (CONST EXPECT *exp, const char *match, int32 start_rule) { int32 i; if (!exp->rules) return NULL; for (i=start_rule; i<exp->size; i++) if (!strcmp (exp->rules[i].match_pattern, match)) return &exp->rules[i]; return NULL; } /* Clear (delete) an expect rule */ |
︙ | ︙ | |||
9102 9103 9104 9105 9106 9107 9108 | exp->rules = NULL; } return SCPE_OK; } t_stat sim_exp_clr (EXPECT *exp, const char *match) { | > > > | > > > | 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 | exp->rules = NULL; } return SCPE_OK; } t_stat sim_exp_clr (EXPECT *exp, const char *match) { EXPTAB *ep = (EXPTAB *)sim_exp_fnd (exp, match, 0); while (ep) { sim_exp_clr_tab (exp, ep); ep = (EXPTAB *)sim_exp_fnd (exp, match, ep - exp->rules); } return SCPE_OK; } /* Clear all expect rules */ t_stat sim_exp_clrall (EXPECT *exp) { int32 i; |
︙ | ︙ | |||
9128 9129 9130 9131 9132 9133 9134 | exp->buf_size = 0; exp->buf_ins = 0; return SCPE_OK; } /* Set/Add an expect rule */ | | | 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 | exp->buf_size = 0; exp->buf_ins = 0; return SCPE_OK; } /* Set/Add an expect rule */ t_stat sim_exp_set (EXPECT *exp, const char *match, int32 cnt, uint32 after, int32 switches, const char *act) { EXPTAB *ep; uint8 *match_buf; uint32 match_size; int i; /* Validate the match string */ |
︙ | ︙ | |||
9171 9172 9173 9174 9175 9176 9177 | } #endif else { if (switches & EXP_TYP_REGEX_I) { free (match_buf); return sim_messagef (SCPE_ARG, "Case independed matching is only valid for RegEx expect rules\n"); } | | | | | > > > | | | | 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 | } #endif else { if (switches & EXP_TYP_REGEX_I) { free (match_buf); return sim_messagef (SCPE_ARG, "Case independed matching is only valid for RegEx expect rules\n"); } sim_data_trace(exp->dptr, exp->dptr->units, (const uint8 *)match, "", strlen(match)+1, "Expect Match String", exp->dbit); if (SCPE_OK != sim_decode_quoted_string (match, match_buf, &match_size)) { free (match_buf); return sim_messagef (SCPE_ARG, "Invalid quoted string\n"); } } free (match_buf); for (i=0; i<exp->size; i++) { /* Make sure this rule won't be occluded */ if ((0 == strcmp (match, exp->rules[i].match_pattern)) && (exp->rules[i].switches & EXP_TYP_PERSIST)) return sim_messagef (SCPE_ARG, "Persistent Expect rule with identical match string already exists\n"); } if (after && exp->size) return sim_messagef (SCPE_ARG, "Multiple concurrent EXPECT rules aren't valid when a HALTAFTER parameter is non-zero\n"); exp->rules = (EXPTAB *) realloc (exp->rules, sizeof (*exp->rules)*(exp->size + 1)); ep = &exp->rules[exp->size]; exp->size += 1; exp->after = after; /* set halt after value */ memset (ep, 0, sizeof(*ep)); ep->match_pattern = (char *)malloc (strlen (match) + 1); if (ep->match_pattern) strcpy (ep->match_pattern, match); ep->cnt = cnt; /* set proceed count */ ep->switches = switches; /* set switches */ match_buf = (uint8 *)calloc (strlen (match) + 1, 1); if ((match_buf == NULL) || (ep->match_pattern == NULL)) { sim_exp_clr_tab (exp, ep); /* clear it */ return SCPE_MEM; } if (switches & EXP_TYP_REGEX) { #if defined(USE_REGEX) memcpy (match_buf, match+1, strlen(match)-2); /* extract string without surrounding quotes */ match_buf[strlen(match)-2] = '\0'; regcomp (&ep->regex, (char *)match_buf, REG_EXTENDED); #endif free (match_buf); match_buf = NULL; } else { sim_data_trace(exp->dptr, exp->dptr->units, (const uint8 *)match, "", strlen(match)+1, "Expect Match String", exp->dbit); sim_decode_quoted_string (match, match_buf, &match_size); ep->match = match_buf; ep->size = match_size; } ep->match_pattern = (char *)malloc (strlen (match) + 1); strcpy (ep->match_pattern, match); if (ep->act) { /* replace old action? */ |
︙ | ︙ | |||
9239 9240 9241 9242 9243 9244 9245 | } } return SCPE_OK; } /* Show an expect rule */ | | | 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 | } } return SCPE_OK; } /* Show an expect rule */ t_stat sim_exp_show_tab (FILE *st, const EXPECT *exp, const EXPTAB *ep) { if (!ep) return SCPE_OK; fprintf (st, "EXPECT"); if (ep->switches & EXP_TYP_PERSIST) fprintf (st, " -p"); if (ep->switches & EXP_TYP_CLEARALL) |
︙ | ︙ | |||
9261 9262 9263 9264 9265 9266 9267 | fprintf (st, " [%d]", ep->cnt); if (ep->act) fprintf (st, " %s", ep->act); fprintf (st, "\n"); return SCPE_OK; } | | | > | > > > | > > > | | 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 | fprintf (st, " [%d]", ep->cnt); if (ep->act) fprintf (st, " %s", ep->act); fprintf (st, "\n"); return SCPE_OK; } t_stat sim_exp_show (FILE *st, CONST EXPECT *exp, const char *match) { CONST EXPTAB *ep = (CONST EXPTAB *)sim_exp_fnd (exp, match, 0); if (exp->buf_size) { char *bstr = sim_encode_quoted_string (exp->buf, exp->buf_ins); fprintf (st, "Match Buffer Size: %d\n", exp->buf_size); fprintf (st, "Buffer Insert Offset: %d\n", exp->buf_ins); fprintf (st, "Buffer Contents: %s\n", bstr); free (bstr); } if (exp->after) fprintf (st, "Halt After: %d instructions\n", exp->after); if (exp->dptr && exp->dbit) fprintf (st, "Debugging via: SET %s DEBUG%s%s\n", sim_dname(exp->dptr), exp->dptr->debflags ? "=" : "", exp->dptr->debflags ? get_dbg_verb (exp->dbit, exp->dptr) : ""); fprintf (st, "Match Rules:\n"); if (!*match) return sim_exp_showall (st, exp); if (!ep) { fprintf (st, "No Rules match '%s'\n", match); return SCPE_ARG; } do { sim_exp_show_tab (st, exp, ep); ep = (CONST EXPTAB *)sim_exp_fnd (exp, match, 1 + (ep - exp->rules)); } while (ep); return SCPE_OK; } /* Show all expect rules */ t_stat sim_exp_showall (FILE *st, const EXPECT *exp) { int32 i; for (i=0; i < exp->size; i++) sim_exp_show_tab (st, exp, &exp->rules[i]); return SCPE_OK; } |
︙ | ︙ | |||
9500 9501 9502 9503 9504 9505 9506 | snd->insoff = 0; snd->extoff = 0; return SCPE_OK; } /* Display console Queued input data status */ | | | 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 | snd->insoff = 0; snd->extoff = 0; return SCPE_OK; } /* Display console Queued input data status */ t_stat sim_show_send_input (FILE *st, const SEND *snd) { if (snd->extoff < snd->insoff) { fprintf (st, "%d bytes of pending input Data:\n ", snd->insoff-snd->extoff); fprint_buffer_string (st, snd->buffer+snd->extoff, snd->insoff-snd->extoff); fprintf (st, "\n"); } else |
︙ | ︙ | |||
9564 9565 9566 9567 9568 9569 9570 | return "No Error"; if ((stat >= SCPE_BASE) && (stat <= SCPE_MAX_ERR)) return scp_errors[stat-SCPE_BASE].message; sprintf(msgbuf, "Error %d", stat); return msgbuf; } | | | 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 | return "No Error"; if ((stat >= SCPE_BASE) && (stat <= SCPE_MAX_ERR)) return scp_errors[stat-SCPE_BASE].message; sprintf(msgbuf, "Error %d", stat); return msgbuf; } t_stat sim_string_to_stat (const char *cptr, t_stat *stat) { char gbuf[CBUFSIZE]; int32 cond; *stat = SCPE_ARG; cptr = get_glyph (cptr, gbuf, 0); if (0 == memcmp("SCPE_", gbuf, 5)) |
︙ | ︙ | |||
9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 | /* Finds debug phrase matching bitmask from from device DEBTAB table */ static const char *get_dbg_verb (uint32 dbits, DEVICE* dptr) { static const char *debtab_none = "DEBTAB_ISNULL"; static const char *debtab_nomatch = "DEBTAB_NOMATCH"; int32 offset = 0; if (dptr->debflags == 0) return debtab_none; /* Find matching words for bitmask */ while (dptr->debflags[offset].name && (offset < 32)) { | > > > | > > | | 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 | /* Finds debug phrase matching bitmask from from device DEBTAB table */ static const char *get_dbg_verb (uint32 dbits, DEVICE* dptr) { static const char *debtab_none = "DEBTAB_ISNULL"; static const char *debtab_nomatch = "DEBTAB_NOMATCH"; const char *some_match = NULL; int32 offset = 0; if (dptr->debflags == 0) return debtab_none; dbits &= dptr->dctrl; /* Look for just the bits tha matched */ /* Find matching words for bitmask */ while (dptr->debflags[offset].name && (offset < 32)) { if (dptr->debflags[offset].mask == dbits) /* All Bits Match */ return dptr->debflags[offset].name; if (dptr->debflags[offset].mask & dbits) some_match = dptr->debflags[offset].name; offset++; } return some_match ? some_match : debtab_nomatch; } /* Prints standard debug prefix unless previous call unterminated */ static const char *sim_debug_prefix (uint32 dbits, DEVICE* dptr) { const char* debug_type = get_dbg_verb (dbits, dptr); |
︙ | ︙ | |||
9870 9871 9872 9873 9874 9875 9876 | set and the bitmask matches the current device debug options. Extra returns are added for un*x systems, since the output device is set into 'raw' mode when the cpu is booted, and the extra returns don't hurt any other systems. Callers should be calling sim_debug() which is a macro defined in scp.h which evaluates the action condition before incurring call overhead. */ | | > > | > > | 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 | set and the bitmask matches the current device debug options. Extra returns are added for un*x systems, since the output device is set into 'raw' mode when the cpu is booted, and the extra returns don't hurt any other systems. Callers should be calling sim_debug() which is a macro defined in scp.h which evaluates the action condition before incurring call overhead. */ #if defined(__cplusplus) void _sim_debug (uint32 dbits, void* vdptr, const char* fmt, ...) #else void _sim_debug (uint32 dbits, DEVICE* vdptr, const char* fmt, ...) #endif { DEVICE *dptr = (DEVICE *)vdptr; if (sim_deb && dptr && (dptr->dctrl & dbits)) { char stackbuf[STACKBUFSIZE]; int32 bufsize = sizeof(stackbuf); char *buf = stackbuf; va_list arglist; int32 i, j, len; |
︙ | ︙ | |||
9946 9947 9948 9949 9950 9951 9952 | return; } void sim_data_trace(DEVICE *dptr, UNIT *uptr, const uint8 *data, const char *position, size_t len, const char *txt, uint32 reason) { if (sim_deb && (dptr->dctrl & reason)) { | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > | > > > > > > > > > > > > > > > > > > > > | | | < | | | 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 | return; } void sim_data_trace(DEVICE *dptr, UNIT *uptr, const uint8 *data, const char *position, size_t len, const char *txt, uint32 reason) { if (sim_deb && (dptr->dctrl & reason)) { sim_debug (reason, dptr, "%s %s %slen: %08X\n", sim_uname(uptr), txt, position, (unsigned int)len); if (data && len) { unsigned int i, same, group, sidx, oidx, ridx, eidx, soff; char outbuf[80], strbuf[28], rad50buf[36], ebcdicbuf[32]; static char hex[] = "0123456789ABCDEF"; static char rad50[] = " ABCDEFGHIJKLMNOPQRSTUVWXYZ$._0123456789"; static unsigned char ebcdic2ascii[] = { 0000,0001,0002,0003,0234,0011,0206,0177, 0227,0215,0216,0013,0014,0015,0016,0017, 0020,0021,0022,0023,0235,0205,0010,0207, 0030,0031,0222,0217,0034,0035,0036,0037, 0200,0201,0202,0203,0204,0012,0027,0033, 0210,0211,0212,0213,0214,0005,0006,0007, 0220,0221,0026,0223,0224,0225,0226,0004, 0230,0231,0232,0233,0024,0025,0236,0032, 0040,0240,0241,0242,0243,0244,0245,0246, 0247,0250,0133,0056,0074,0050,0053,0041, 0046,0251,0252,0253,0254,0255,0256,0257, 0260,0261,0135,0044,0052,0051,0073,0136, 0055,0057,0262,0263,0264,0265,0266,0267, 0270,0271,0174,0054,0045,0137,0076,0077, 0272,0273,0274,0275,0276,0277,0300,0301, 0302,0140,0072,0043,0100,0047,0075,0042, 0303,0141,0142,0143,0144,0145,0146,0147, 0150,0151,0304,0305,0306,0307,0310,0311, 0312,0152,0153,0154,0155,0156,0157,0160, 0161,0162,0313,0314,0315,0316,0317,0320, 0321,0176,0163,0164,0165,0166,0167,0170, 0171,0172,0322,0323,0324,0325,0326,0327, 0330,0331,0332,0333,0334,0335,0336,0337, 0340,0341,0342,0343,0344,0345,0346,0347, 0173,0101,0102,0103,0104,0105,0106,0107, 0110,0111,0350,0351,0352,0353,0354,0355, 0175,0112,0113,0114,0115,0116,0117,0120, 0121,0122,0356,0357,0360,0361,0362,0363, 0134,0237,0123,0124,0125,0126,0127,0130, 0131,0132,0364,0365,0366,0367,0370,0371, 0060,0061,0062,0063,0064,0065,0066,0067, 0070,0071,0372,0373,0374,0375,0376,0377, }; for (i=same=0; i<len; i += 16) { if ((i > 0) && (0 == memcmp (&data[i], &data[i-16], 16))) { ++same; continue; } if (same > 0) { sim_debug (reason, dptr, "%04X thru %04X same as above\n", i-(16*same), i-1); same = 0; } group = (((len - i) > 16) ? 16 : (len - i)); strcpy (ebcdicbuf, (sim_deb_switches & SWMASK ('E')) ? " EBCDIC:" : ""); eidx = strlen(ebcdicbuf); strcpy (rad50buf, (sim_deb_switches & SWMASK ('D')) ? " RAD50:" : ""); ridx = strlen(rad50buf); strcpy (strbuf, (sim_deb_switches & (SWMASK ('E') | SWMASK ('D'))) ? "ASCII:" : ""); soff = strlen(strbuf); for (sidx=oidx=0; sidx<group; ++sidx) { outbuf[oidx++] = ' '; outbuf[oidx++] = hex[(data[i+sidx]>>4)&0xf]; outbuf[oidx++] = hex[data[i+sidx]&0xf]; if (sim_isprint (data[i+sidx])) strbuf[soff+sidx] = data[i+sidx]; else strbuf[soff+sidx] = '.'; if (ridx && ((sidx&1) == 0)) { uint16 word = data[i+sidx] + (((uint16)data[i+sidx+1]) << 8); if (word >= 64000) { rad50buf[ridx++] = '|'; /* Invalid RAD-50 character */ rad50buf[ridx++] = '|'; /* Invalid RAD-50 character */ rad50buf[ridx++] = '|'; /* Invalid RAD-50 character */ } else { rad50buf[ridx++] = rad50[word/1600]; rad50buf[ridx++] = rad50[(word/40)%40]; rad50buf[ridx++] = rad50[word%40]; } } if (eidx) { if (sim_isprint (ebcdic2ascii[data[i+sidx]])) ebcdicbuf[eidx++] = ebcdic2ascii[data[i+sidx]]; else ebcdicbuf[eidx++] = '.'; } } outbuf[oidx] = '\0'; strbuf[soff+sidx] = '\0'; ebcdicbuf[eidx] = '\0'; rad50buf[ridx] = '\0'; sim_debug (reason, dptr, "%04X%-48s %s%s%s\n", i, outbuf, strbuf, ebcdicbuf, rad50buf); } if (same > 0) { sim_debug (reason, dptr, "%04X thru %04X same as above\n", i-(16*same), (unsigned int)(len-1)); } } } } int Fprintf (FILE *f, const char* fmt, ...) { int ret = 0; va_list args; va_start (args, fmt); if (sim_oline) tmxr_linemsgvf (sim_oline, fmt, args); else ret = vfprintf (f, fmt, args); va_end (args); return ret; } /* Hierarchical help presentation * * Device help can be presented hierarchically by calling * * t_stat scp_help (FILE *st, DEVICE *dptr, * UNIT *uptr, int flag, const char *help, char *cptr) * * or one of its three cousins from the device HELP routine. * * *help is the pointer to the structured help text to be displayed. * * The format and usage, and some helper macros can be found in scp_help.h * If you don't use the macros, it is not necessary to #include "scp_help.h". |
︙ | ︙ | |||
10084 10085 10086 10087 10088 10089 10090 | free (topic->children); return; } /* Build a help tree from a string. * Handles substitutions, formatting. */ | | | | | | | 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 | free (topic->children); return; } /* Build a help tree from a string. * Handles substitutions, formatting. */ static TOPIC *buildHelp (TOPIC *topic, DEVICE *dptr, UNIT *uptr, const char *htext, va_list ap) { char *end; size_t n, ilvl; #define VSMAX 100 char *vstrings[VSMAX]; size_t vsnum = 0; char * astrings[VSMAX+1]; size_t asnum = 0; char *const *hblock; const char *ep; t_bool excluded = FALSE; /* variable arguments consumed table. * The scheme used allows arguments to be accessed in random * order, but for portability, all arguments must be char *. * If you try to violate this, there ARE machines that WILL break. */ memset (vstrings, 0, sizeof (vstrings)); memset (astrings, 0, sizeof (astrings)); astrings[asnum++] = (char *) htext; for (hblock = astrings; (htext = *hblock) != NULL; hblock++) { help_where.block = hblock - astrings; help_where.line = 0; while (*htext) { const char *start; |
︙ | ︙ | |||
10369 10370 10371 10372 10373 10374 10375 | strcat (newp, " "); } strcat (newp, pstring); free (prefix); return newp; } | | | 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 | strcat (newp, " "); } strcat (newp, pstring); free (prefix); return newp; } static void displayMagicTopic (FILE *st, DEVICE *dptr, TOPIC *topic) { char tbuf[CBUFSIZE]; size_t i, skiplines; #ifdef _WIN32 FILE *tmp; char *tmpnam; |
︙ | ︙ | |||
10435 10436 10437 10438 10439 10440 10441 | free (tmpnam); #endif return; } /* Flatten and display help for those who say they prefer it. */ | | | | 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 | free (tmpnam); #endif return; } /* Flatten and display help for those who say they prefer it. */ static t_stat displayFlatHelp (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, TOPIC *topic, va_list ap ) { size_t i; if (topic->flags & HLP_MAGIC_TOPIC) { fprintf (st, "\n%s ", topic->label); displayMagicTopic (st, dptr, topic); |
︙ | ︙ | |||
10499 10500 10501 10502 10503 10504 10505 | return match; } /* Main help routine * Takes a va_list */ | | | | 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 | return match; } /* Main help routine * Takes a va_list */ t_stat scp_vhelp (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *help, const char *cptr, va_list ap) { TOPIC top; TOPIC *topic = ⊤ int failed; size_t match; |
︙ | ︙ | |||
10732 10733 10734 10735 10736 10737 10738 | return SCPE_OK; } /* variable argument list shell - most commonly used */ | | | | | | 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 | return SCPE_OK; } /* variable argument list shell - most commonly used */ t_stat scp_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *help, const char *cptr, ...) { t_stat r; va_list ap; va_start (ap, cptr); r = scp_vhelp (st, dptr, uptr, flag, help, cptr, ap); va_end (ap); return r; } #if 01 /* Read help from a file * * Not recommended due to OS-dependent issues finding the file, + maintenance. * Don't hardcode any path - just name.hlp - so there's a chance the file can * be found. */ t_stat scp_vhelpFromFile (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *helpfile, const char *cptr, va_list ap) { FILE *fp; char *help, *p; t_offset size, n; int c; |
︙ | ︙ | |||
10779 10780 10781 10782 10783 10784 10785 | * work (one reason files are probably not a good idea), * but we might as well try. Some OSs won't include a * path. Having failed in the CWD, try to find the location * of the executable. Failing that, try the 'help' subdirectory * of the executable. Failing that, we're out of luck. */ strncpy (fbuf, sim_argv[0], sizeof (fbuf)); | | | 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 | * work (one reason files are probably not a good idea), * but we might as well try. Some OSs won't include a * path. Having failed in the CWD, try to find the location * of the executable. Failing that, try the 'help' subdirectory * of the executable. Failing that, we're out of luck. */ strncpy (fbuf, sim_argv[0], sizeof (fbuf)); if ((p = (char *)match_ext (fbuf, "EXE"))) *p = '\0'; if ((p = strrchr (fbuf, '\\'))) { p[1] = '\0'; d = "%s\\"; } else { if ((p = strrchr (fbuf, '/'))) { |
︙ | ︙ | |||
10851 10852 10853 10854 10855 10856 10857 | r = scp_vhelp (st, dptr, uptr, flag, help, cptr, ap); free (help); return r; } | | | | 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 | r = scp_vhelp (st, dptr, uptr, flag, help, cptr, ap); free (help); return r; } t_stat scp_helpFromFile (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *helpfile, const char *cptr, ...) { t_stat r; va_list ap; va_start (ap, cptr); r = scp_vhelpFromFile (st, dptr, uptr, flag, helpfile, cptr, ap); va_end (ap); return r; } #endif |
Changes to src/scp.h.
︙ | ︙ | |||
32 33 34 35 36 37 38 39 40 41 42 43 44 45 | 09-Sep-04 RMS Added reset_all_p 14-Feb-04 RMS Added debug prototypes (from Dave Hittner) 02-Jan-04 RMS Split out from SCP */ #ifndef SIM_SCP_H_ #define SIM_SCP_H_ 0 /* run_cmd parameters */ #define RU_RUN 0 /* run */ #define RU_GO 1 /* go */ #define RU_STEP 2 /* step */ #define RU_NEXT 3 /* step or step/over */ | > > > > | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | 09-Sep-04 RMS Added reset_all_p 14-Feb-04 RMS Added debug prototypes (from Dave Hittner) 02-Jan-04 RMS Split out from SCP */ #ifndef SIM_SCP_H_ #define SIM_SCP_H_ 0 #ifdef __cplusplus extern "C" { #endif /* run_cmd parameters */ #define RU_RUN 0 /* run */ #define RU_GO 1 /* go */ #define RU_STEP 2 /* step */ #define RU_NEXT 3 /* step or step/over */ |
︙ | ︙ | |||
63 64 65 66 67 68 69 | #define CMD_OPT_SW 001 /* switches */ #define CMD_OPT_OF 002 /* output file */ #define CMD_OPT_SCH 004 /* search */ #define CMD_OPT_DFT 010 /* defaults */ /* Command processors */ | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | | | > > > > > > > > | | > > | | | > | > | | | > | | | > > > > > > | | | > | | | | | | | | | | | | | | > > > > > > > > > | | | > | | | | | | | | > > > | | > > > > > | | | | > | > > > > | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | #define CMD_OPT_SW 001 /* switches */ #define CMD_OPT_OF 002 /* output file */ #define CMD_OPT_SCH 004 /* search */ #define CMD_OPT_DFT 010 /* defaults */ /* Command processors */ t_stat reset_cmd (int32 flag, CONST char *ptr); t_stat exdep_cmd (int32 flag, CONST char *ptr); t_stat eval_cmd (int32 flag, CONST char *ptr); t_stat load_cmd (int32 flag, CONST char *ptr); t_stat run_cmd (int32 flag, CONST char *ptr); void run_cmd_message (const char *unechod_cmdline, t_stat r); t_stat attach_cmd (int32 flag, CONST char *ptr); t_stat detach_cmd (int32 flag, CONST char *ptr); t_stat assign_cmd (int32 flag, CONST char *ptr); t_stat deassign_cmd (int32 flag, CONST char *ptr); t_stat save_cmd (int32 flag, CONST char *ptr); t_stat restore_cmd (int32 flag, CONST char *ptr); t_stat exit_cmd (int32 flag, CONST char *ptr); t_stat set_cmd (int32 flag, CONST char *ptr); t_stat show_cmd (int32 flag, CONST char *ptr); t_stat set_default_cmd (int32 flg, CONST char *cptr); t_stat pwd_cmd (int32 flg, CONST char *cptr); t_stat dir_cmd (int32 flg, CONST char *cptr); t_stat type_cmd (int32 flg, CONST char *cptr); t_stat brk_cmd (int32 flag, CONST char *ptr); t_stat do_cmd (int32 flag, CONST char *ptr); t_stat goto_cmd (int32 flag, CONST char *ptr); t_stat return_cmd (int32 flag, CONST char *ptr); t_stat shift_cmd (int32 flag, CONST char *ptr); t_stat call_cmd (int32 flag, CONST char *ptr); t_stat on_cmd (int32 flag, CONST char *ptr); t_stat noop_cmd (int32 flag, CONST char *ptr); t_stat assert_cmd (int32 flag, CONST char *ptr); t_stat send_cmd (int32 flag, CONST char *ptr); t_stat expect_cmd (int32 flag, CONST char *ptr); t_stat help_cmd (int32 flag, CONST char *ptr); t_stat screenshot_cmd (int32 flag, CONST char *ptr); t_stat spawn_cmd (int32 flag, CONST char *ptr); t_stat echo_cmd (int32 flag, CONST char *ptr); /* Allow compiler to help validate printf style format arguments */ #if !defined __GNUC__ #define GCC_FMT_ATTR(n, m) #endif #if !defined(GCC_FMT_ATTR) #define GCC_FMT_ATTR(n, m) __attribute__ ((format (__printf__, n, m))) #endif /* Utility routines */ t_stat sim_process_event (void); t_stat sim_activate (UNIT *uptr, int32 interval); t_stat _sim_activate (UNIT *uptr, int32 interval); t_stat sim_activate_abs (UNIT *uptr, int32 interval); t_stat sim_activate_notbefore (UNIT *uptr, int32 rtime); t_stat sim_activate_after (UNIT *uptr, uint32 usecs_walltime); t_stat _sim_activate_after (UNIT *uptr, uint32 usecs_walltime); t_stat sim_activate_after_abs (UNIT *uptr, uint32 usecs_walltime); t_stat _sim_activate_after_abs (UNIT *uptr, uint32 usecs_walltime); t_stat sim_cancel (UNIT *uptr); t_bool sim_is_active (UNIT *uptr); int32 sim_activate_time (UNIT *uptr); t_stat sim_run_boot_prep (int32 flag); double sim_gtime (void); uint32 sim_grtime (void); int32 sim_qcount (void); t_stat attach_unit (UNIT *uptr, CONST char *cptr); t_stat detach_unit (UNIT *uptr); t_stat assign_device (DEVICE *dptr, const char *cptr); t_stat deassign_device (DEVICE *dptr); t_stat reset_all (uint32 start_device); t_stat reset_all_p (uint32 start_device); const char *sim_dname (DEVICE *dptr); const char *sim_uname (UNIT *dptr); t_stat get_yn (const char *ques, t_stat deflt); int sim_isspace (char c); int sim_islower (char c); int sim_isalpha (char c); int sim_isprint (char c); int sim_isdigit (char c); int sim_isgraph (char c); int sim_isalnum (char c); int sim_strncasecmp (const char *string1, const char *string2, size_t len); CONST char *get_sim_opt (int32 opt, CONST char *cptr, t_stat *st); const char *put_switches (char *buf, size_t bufsize, uint32 sw); CONST char *get_glyph (const char *iptr, char *optr, char mchar); CONST char *get_glyph_nc (const char *iptr, char *optr, char mchar); CONST char *get_glyph_quoted (const char *iptr, char *optr, char mchar); CONST char *get_glyph_cmd (const char *iptr, char *optr); t_value get_uint (const char *cptr, uint32 radix, t_value max, t_stat *status); CONST char *get_range (DEVICE *dptr, CONST char *cptr, t_addr *lo, t_addr *hi, uint32 rdx, t_addr max, char term); t_stat sim_decode_quoted_string (const char *iptr, uint8 *optr, uint32 *osize); char *sim_encode_quoted_string (const uint8 *iptr, uint32 size); void fprint_buffer_string (FILE *st, const uint8 *buf, uint32 size); t_value strtotv (CONST char *cptr, CONST char **endptr, uint32 radix); int Fprintf (FILE *f, const char *fmt, ...) GCC_FMT_ATTR(2, 3); t_stat sim_set_memory_load_file (const unsigned char *data, size_t size); int Fgetc (FILE *f); t_stat fprint_val (FILE *stream, t_value val, uint32 rdx, uint32 wid, uint32 fmt); t_stat sprint_val (char *buf, t_value val, uint32 rdx, uint32 wid, uint32 fmt); t_stat sim_print_val (t_value val, uint32 radix, uint32 width, uint32 format); const char *sim_fmt_secs (double seconds); const char *sim_fmt_numeric (double number); const char *sprint_capac (DEVICE *dptr, UNIT *uptr); char *read_line (char *cptr, int32 size, FILE *stream); void fprint_reg_help (FILE *st, DEVICE *dptr); void fprint_set_help (FILE *st, DEVICE *dptr); void fprint_show_help (FILE *st, DEVICE *dptr); CTAB *find_cmd (const char *gbuf); DEVICE *find_dev (const char *ptr); DEVICE *find_unit (const char *ptr, UNIT **uptr); DEVICE *find_dev_from_unit (UNIT *uptr); t_stat sim_register_internal_device (DEVICE *dptr); void sim_sub_args (char *in_str, size_t in_str_size, char *do_arg[]); REG *find_reg (CONST char *ptr, CONST char **optr, DEVICE *dptr); CTAB *find_ctab (CTAB *tab, const char *gbuf); C1TAB *find_c1tab (C1TAB *tab, const char *gbuf); SHTAB *find_shtab (SHTAB *tab, const char *gbuf); t_stat get_aval (t_addr addr, DEVICE *dptr, UNIT *uptr); BRKTAB *sim_brk_fnd (t_addr loc); uint32 sim_brk_test (t_addr bloc, uint32 btyp); void sim_brk_clrspc (uint32 spc, uint32 btyp); void sim_brk_npc (uint32 cnt); void sim_brk_setact (const char *action); const char *sim_brk_message(void); t_stat sim_send_input (SEND *snd, uint8 *data, size_t size, uint32 after, uint32 delay); t_stat sim_show_send_input (FILE *st, const SEND *snd); t_bool sim_send_poll_data (SEND *snd, t_stat *stat); t_stat sim_send_clear (SEND *snd); t_stat sim_set_expect (EXPECT *exp, CONST char *cptr); t_stat sim_set_noexpect (EXPECT *exp, const char *cptr); t_stat sim_exp_set (EXPECT *exp, const char *match, int32 cnt, uint32 after, int32 switches, const char *act); t_stat sim_exp_clr (EXPECT *exp, const char *match); t_stat sim_exp_clrall (EXPECT *exp); t_stat sim_exp_show (FILE *st, CONST EXPECT *exp, const char *match); t_stat sim_exp_showall (FILE *st, const EXPECT *exp); t_stat sim_exp_check (EXPECT *exp, uint8 data); CONST char *match_ext (CONST char *fnam, const char *ext); t_stat show_version (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat set_dev_debug (DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat show_dev_debug (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); const char *sim_error_text (t_stat stat); t_stat sim_string_to_stat (const char *cptr, t_stat *cond); t_stat sim_cancel_step (void); void sim_printf (const char *fmt, ...) GCC_FMT_ATTR(1, 2); void sim_perror (const char *msg); t_stat sim_messagef (t_stat stat, const char *fmt, ...) GCC_FMT_ATTR(2, 3); void sim_data_trace(DEVICE *dptr, UNIT *uptr, const uint8 *data, const char *position, size_t len, const char *txt, uint32 reason); void sim_debug_bits_hdr (uint32 dbits, DEVICE* dptr, const char *header, BITFIELD* bitdefs, uint32 before, uint32 after, int terminate); void sim_debug_bits (uint32 dbits, DEVICE* dptr, BITFIELD* bitdefs, uint32 before, uint32 after, int terminate); #if defined (__DECC) && defined (__VMS) && (defined (__VAX) || (__DECC_VER < 60590001)) #define CANT_USE_MACRO_VA_ARGS 1 #endif #if defined(__cplusplus) #ifdef CANT_USE_MACRO_VA_ARGS #define _sim_debug sim_debug void sim_debug (uint32 dbits, void* dptr, const char *fmt, ...) GCC_FMT_ATTR(3, 4); #else void _sim_debug (uint32 dbits, void* dptr, const char *fmt, ...) GCC_FMT_ATTR(3, 4); #define sim_debug(dbits, dptr, ...) do { if (sim_deb && dptr && ((dptr)->dctrl & dbits)) _sim_debug (dbits, dptr, __VA_ARGS__);} while (0) #endif #else #ifdef CANT_USE_MACRO_VA_ARGS #define _sim_debug sim_debug void sim_debug (uint32 dbits, DEVICE* dptr, const char *fmt, ...) GCC_FMT_ATTR(3, 4); #else void _sim_debug (uint32 dbits, DEVICE* dptr, const char *fmt, ...) GCC_FMT_ATTR(3, 4); #define sim_debug(dbits, dptr, ...) do { if (sim_deb && dptr && ((dptr)->dctrl & dbits)) _sim_debug (dbits, dptr, __VA_ARGS__);} while (0) #endif #endif void fprint_stopped_gen (FILE *st, t_stat v, REG *pc, DEVICE *dptr); #define SCP_HELP_FLAT (1u << 31) /* Force flat help when prompting is not possible */ #define SCP_HELP_ONECMD (1u << 30) /* Display one topic, do not prompt */ #define SCP_HELP_ATTACH (1u << 29) /* Top level topic is ATTACH help */ t_stat scp_help (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *help, const char *cptr, ...); t_stat scp_vhelp (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *help, const char *cptr, va_list ap); t_stat scp_helpFromFile (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *help, const char *cptr, ...); t_stat scp_vhelpFromFile (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *help, const char *cptr, va_list ap); /* Global data */ extern DEVICE *sim_dflt_dev; extern int32 sim_interval; extern int32 sim_switches; extern int32 sim_quiet; extern int32 sim_step; extern t_stat sim_last_cmd_stat; /* Command Status */ extern FILE *sim_log; /* log file */ extern FILEREF *sim_log_ref; /* log file file reference */ extern FILE *sim_deb; /* debug file */ extern FILEREF *sim_deb_ref; /* debug file file reference */ extern int32 sim_deb_switches; /* debug display flags */ extern struct timespec sim_deb_basetime; /* debug base time for relative time output */ extern DEVICE **sim_internal_devices; extern uint32 sim_internal_device_count; extern UNIT *sim_clock_queue; extern int32 sim_is_running; extern t_bool sim_processing_event; /* Called from sim_process_event */ extern char *sim_prompt; /* prompt string */ extern const char *sim_savename; /* Simulator Name used in Save/Restore files */ extern t_value *sim_eval; extern volatile int32 stop_cpu; extern uint32 sim_brk_types; /* breakpoint info */ extern uint32 sim_brk_dflt; extern uint32 sim_brk_summ; extern uint32 sim_brk_match_type; extern t_addr sim_brk_match_addr; extern BRKTYPTAB *sim_brk_type_desc; /* type descriptions */ extern FILE *stdnul; extern t_bool sim_asynch_enabled; #if defined(SIM_ASYNCH_IO) int sim_aio_update_queue (void); void sim_aio_activate (ACTIVATE_API caller, UNIT *uptr, int32 event_time); #endif /* VM interface */ extern char sim_name[]; extern DEVICE *sim_devices[]; extern REG *sim_PC; extern const char *sim_stop_messages[]; extern t_stat sim_instr (void); extern t_stat sim_load (FILE *ptr, CONST char *cptr, CONST char *fnam, int flag); extern int32 sim_emax; extern t_stat fprint_sym (FILE *ofile, t_addr addr, t_value *val, UNIT *uptr, int32 sw); extern t_stat parse_sym (CONST char *cptr, t_addr addr, UNIT *uptr, t_value *val, int32 sw); /* The per-simulator init routine is a weak global that defaults to NULL The other per-simulator pointers can be overrriden by the init routine */ WEAK extern void (*sim_vm_init) (void); extern char *(*sim_vm_read) (char *ptr, int32 size, FILE *stream); extern void (*sim_vm_post) (t_bool from_scp); extern CTAB *sim_vm_cmd; extern void (*sim_vm_sprint_addr) (char *buf, DEVICE *dptr, t_addr addr); extern void (*sim_vm_fprint_addr) (FILE *st, DEVICE *dptr, t_addr addr); extern t_addr (*sim_vm_parse_addr) (DEVICE *dptr, CONST char *cptr, CONST char **tptr); extern t_bool (*sim_vm_fprint_stopped) (FILE *st, t_stat reason); extern t_value (*sim_vm_pc_value) (void); extern t_bool (*sim_vm_is_subroutine_call) (t_addr **ret_addrs); #ifdef __cplusplus } #endif #endif |
Changes to src/sim_console.c.
︙ | ︙ | |||
125 126 127 128 129 130 131 | */ #include "sim_defs.h" #include "sim_tmxr.h" #include "sim_serial.h" #include "sim_timer.h" #include <ctype.h> | > | | > | | | | | | > > > | | 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 | */ #include "sim_defs.h" #include "sim_tmxr.h" #include "sim_serial.h" #include "sim_timer.h" #include <ctype.h> #include <math.h> #ifdef __HAIKU__ #define nice(n) ({}) #endif /* Forward Declaraations of Platform specific routines */ static t_stat sim_os_poll_kbd (void); static t_bool sim_os_poll_kbd_ready (int ms_timeout); static t_stat sim_os_putchar (int32 out); static t_stat sim_os_ttinit (void); static t_stat sim_os_ttrun (void); static t_stat sim_os_ttcmd (void); static t_stat sim_os_ttclose (void); static t_bool sim_os_ttisatty (void); static t_stat sim_set_rem_telnet (int32 flag, CONST char *cptr); static t_stat sim_set_rem_bufsize (int32 flag, CONST char *cptr); static t_stat sim_set_rem_connections (int32 flag, CONST char *cptr); static t_stat sim_set_rem_timeout (int32 flag, CONST char *cptr); static t_stat sim_set_rem_master (int32 flag, CONST char *cptr); /* Deprecated CONSOLE HALT, CONSOLE RESPONSE and CONSOLE DELAY support */ static t_stat sim_set_halt (int32 flag, CONST char *cptr); static t_stat sim_set_response (int32 flag, CONST char *cptr); static t_stat sim_set_delay (int32 flag, CONST char *cptr); #define KMAP_WRU 0 #define KMAP_BRK 1 #define KMAP_DEL 2 #define KMAP_MASK 0377 #define KMAP_NZ 0400 int32 sim_int_char = 005; /* interrupt character */ int32 sim_brk_char = 000; /* break character */ int32 sim_tt_pchar = 0x00002780; #if defined (_WIN32) || defined (__OS2__) || (defined (__MWERKS__) && defined (macintosh)) int32 sim_del_char = '\b'; /* delete character */ #else int32 sim_del_char = 0177; #endif static t_stat sim_con_poll_svc (UNIT *uptr); /* console connection poll routine */ static t_stat sim_con_reset (DEVICE *dptr); /* console reset routine */ static t_stat sim_con_attach (UNIT *uptr, CONST char *ptr); /* console attach routine (save,restore) */ static t_stat sim_con_detach (UNIT *uptr); /* console detach routine (save,restore) */ UNIT sim_con_unit = { UDATA (&sim_con_poll_svc, UNIT_ATTABLE, 0) };/* console connection unit */ /* debugging bitmaps */ #define DBG_TRC TMXR_DBG_TRC /* trace routine calls */ #define DBG_XMT TMXR_DBG_XMT /* display Transmitted Data */ #define DBG_RCV TMXR_DBG_RCV /* display Received Data */ #define DBG_RET TMXR_DBG_RET /* display Returned Received Data */ #define DBG_ASY TMXR_DBG_ASY /* asynchronous thread activity */ #define DBG_EXP 0x00000001 /* Expect match activity */ |
︙ | ︙ | |||
201 202 203 204 205 206 207 208 209 210 211 | { ORDATAD (PCHAR, sim_tt_pchar, 32, "printable character mask") }, { 0 }, }; static MTAB sim_con_mod[] = { { 0 }, }; DEVICE sim_con_telnet = { "CON-TEL", &sim_con_unit, sim_con_reg, sim_con_mod, 1, 0, 0, 0, 0, 0, | > > > > > | | > | 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | { ORDATAD (PCHAR, sim_tt_pchar, 32, "printable character mask") }, { 0 }, }; static MTAB sim_con_mod[] = { { 0 }, }; static const char *sim_con_telnet_description (DEVICE *dptr) { return "Console telnet support"; } DEVICE sim_con_telnet = { "CON-TEL", &sim_con_unit, sim_con_reg, sim_con_mod, 1, 0, 0, 0, 0, 0, NULL, NULL, sim_con_reset, NULL, sim_con_attach, sim_con_detach, NULL, DEV_DEBUG, 0, sim_con_debug, NULL, NULL, NULL, NULL, NULL, sim_con_telnet_description}; TMLN sim_con_ldsc = { 0 }; /* console line descr */ TMXR sim_con_tmxr = { 1, 0, 0, &sim_con_ldsc, NULL, &sim_con_telnet };/* console line mux */ SEND sim_con_send = {SEND_DEFAULT_DELAY, &sim_con_telnet, DBG_SND}; EXPECT sim_con_expect = {&sim_con_telnet, DBG_EXP}; |
︙ | ︙ | |||
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | } static t_stat sim_con_reset (DEVICE *dptr) { return sim_con_poll_svc (&dptr->units[0]); /* establish polling as needed */ } /* Set/show data structures */ static CTAB set_con_tab[] = { { "WRU", &sim_set_kmap, KMAP_WRU | KMAP_NZ }, { "BRK", &sim_set_kmap, KMAP_BRK }, { "DEL", &sim_set_kmap, KMAP_DEL |KMAP_NZ }, { "PCHAR", &sim_set_pchar, 0 }, { "TELNET", &sim_set_telnet, 0 }, { "NOTELNET", &sim_set_notelnet, 0 }, { "SERIAL", &sim_set_serial, 0 }, { "NOSERIAL", &sim_set_noserial, 0 }, { "LOG", &sim_set_logon, 0 }, { "NOLOG", &sim_set_logoff, 0 }, { "DEBUG", &sim_set_debon, 0 }, { "NODEBUG", &sim_set_deboff, 0 }, #define CMD_WANTSTR 0100000 { "HALT", &sim_set_halt, 1 | CMD_WANTSTR }, { "NOHALT", &sim_set_halt, 0 }, { "DELAY", &sim_set_delay, 0 }, { "RESPONSE", &sim_set_response, 1 | CMD_WANTSTR }, { "NORESPONSE", &sim_set_response, 0 }, { NULL, NULL, 0 } }; static CTAB set_rem_con_tab[] = { { "CONNECTIONS", &sim_set_rem_connections, 0 }, { "TELNET", &sim_set_rem_telnet, 1 }, { "NOTELNET", &sim_set_rem_telnet, 0 }, { "TIMEOUT", &sim_set_rem_timeout, 0 }, { "MASTER", &sim_set_rem_master, 1 }, { "NOMASTER", &sim_set_rem_master, 0 }, { NULL, NULL, 0 } }; static SHTAB show_con_tab[] = { { "WRU", &sim_show_kmap, KMAP_WRU }, { "BRK", &sim_show_kmap, KMAP_BRK }, { "DEL", &sim_show_kmap, KMAP_DEL }, { "PCHAR", &sim_show_pchar, 0 }, { "LOG", &sim_show_cons_log, 0 }, { "TELNET", &sim_show_telnet, 0 }, { "DEBUG", &sim_show_cons_debug, 0 }, { "BUFFERED", &sim_show_cons_buff, 0 }, { "EXPECT", &sim_show_cons_expect, 0 }, { "HALT", &sim_show_cons_expect, 0 }, { "INPUT", &sim_show_cons_send_input, 0 }, | > > > > > > > > > > > > > > | 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | } static t_stat sim_con_reset (DEVICE *dptr) { return sim_con_poll_svc (&dptr->units[0]); /* establish polling as needed */ } /* Console Attach/Detach - only used indirectly in restore */ static t_stat sim_con_attach (UNIT *uptr, CONST char *ptr) { return tmxr_attach (&sim_con_tmxr, &sim_con_unit, ptr); } static t_stat sim_con_detach (UNIT *uptr) { return sim_set_notelnet (0, NULL); } /* Set/show data structures */ static CTAB set_con_tab[] = { { "WRU", &sim_set_kmap, KMAP_WRU | KMAP_NZ }, { "BRK", &sim_set_kmap, KMAP_BRK }, { "DEL", &sim_set_kmap, KMAP_DEL |KMAP_NZ }, { "PCHAR", &sim_set_pchar, 0 }, { "SPEED", &sim_set_cons_speed, 0 }, { "TELNET", &sim_set_telnet, 0 }, { "NOTELNET", &sim_set_notelnet, 0 }, { "SERIAL", &sim_set_serial, 0 }, { "NOSERIAL", &sim_set_noserial, 0 }, { "LOG", &sim_set_logon, 0 }, { "NOLOG", &sim_set_logoff, 0 }, { "DEBUG", &sim_set_debon, 0 }, { "NODEBUG", &sim_set_deboff, 0 }, #define CMD_WANTSTR 0100000 { "HALT", &sim_set_halt, 1 | CMD_WANTSTR }, { "NOHALT", &sim_set_halt, 0 }, { "DELAY", &sim_set_delay, 0 }, { "RESPONSE", &sim_set_response, 1 | CMD_WANTSTR }, { "NORESPONSE", &sim_set_response, 0 }, { NULL, NULL, 0 } }; static CTAB set_rem_con_tab[] = { { "CONNECTIONS", &sim_set_rem_connections, 0 }, { "TELNET", &sim_set_rem_telnet, 1 }, { "BUFFERSIZE", &sim_set_rem_bufsize, 1 }, { "NOTELNET", &sim_set_rem_telnet, 0 }, { "TIMEOUT", &sim_set_rem_timeout, 0 }, { "MASTER", &sim_set_rem_master, 1 }, { "NOMASTER", &sim_set_rem_master, 0 }, { NULL, NULL, 0 } }; static SHTAB show_con_tab[] = { { "WRU", &sim_show_kmap, KMAP_WRU }, { "BRK", &sim_show_kmap, KMAP_BRK }, { "DEL", &sim_show_kmap, KMAP_DEL }, { "PCHAR", &sim_show_pchar, 0 }, { "SPEED", &sim_show_cons_speed, 0 }, { "LOG", &sim_show_cons_log, 0 }, { "TELNET", &sim_show_telnet, 0 }, { "DEBUG", &sim_show_cons_debug, 0 }, { "BUFFERED", &sim_show_cons_buff, 0 }, { "EXPECT", &sim_show_cons_expect, 0 }, { "HALT", &sim_show_cons_expect, 0 }, { "INPUT", &sim_show_cons_send_input, 0 }, |
︙ | ︙ | |||
330 331 332 333 334 335 336 | or to a Telnet connection. If attached to a Telnet connection, the console is described by internal terminal multiplexor sim_con_tmxr and internal terminal line description sim_con_ldsc. */ /* SET CONSOLE command */ | | | 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | or to a Telnet connection. If attached to a Telnet connection, the console is described by internal terminal multiplexor sim_con_tmxr and internal terminal line description sim_con_ldsc. */ /* SET CONSOLE command */ t_stat sim_set_console (int32 flag, CONST char *cptr) { char *cvptr, gbuf[CBUFSIZE]; CTAB *ctptr; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_2FARG; |
︙ | ︙ | |||
355 356 357 358 359 360 361 | else return SCPE_NOPARAM; } return SCPE_OK; } /* SHOW CONSOLE command */ | | | 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | else return SCPE_NOPARAM; } return SCPE_OK; } /* SHOW CONSOLE command */ t_stat sim_show_console (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; SHTAB *shptr; int32 i; if (*cptr == 0) { /* show all */ for (i = 0; show_con_tab[i].name; i++) |
︙ | ︙ | |||
379 380 381 382 383 384 385 | return SCPE_OK; } t_stat sim_rem_con_poll_svc (UNIT *uptr); /* remote console connection poll routine */ t_stat sim_rem_con_data_svc (UNIT *uptr); /* remote console connection data routine */ t_stat sim_rem_con_reset (DEVICE *dptr); /* remote console reset routine */ UNIT sim_rem_con_unit[2] = { | | | > > > > > | > | 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | return SCPE_OK; } t_stat sim_rem_con_poll_svc (UNIT *uptr); /* remote console connection poll routine */ t_stat sim_rem_con_data_svc (UNIT *uptr); /* remote console connection data routine */ t_stat sim_rem_con_reset (DEVICE *dptr); /* remote console reset routine */ UNIT sim_rem_con_unit[2] = { { UDATA (&sim_rem_con_poll_svc, UNIT_IDLE, 0) }, /* remote console connection polling unit */ { UDATA (&sim_rem_con_data_svc, UNIT_IDLE|UNIT_DIS, 0) }}; /* console data handling unit */ DEBTAB sim_rem_con_debug[] = { {"TRC", DBG_TRC}, {"XMT", DBG_XMT}, {"RCV", DBG_RCV}, {0} }; MTAB sim_rem_con_mod[] = { { 0 }, }; static const char *sim_rem_con_description (DEVICE *dptr) { return "Remote Console Facility"; } DEVICE sim_remote_console = { "REM-CON", sim_rem_con_unit, NULL, sim_rem_con_mod, 2, 0, 0, 0, 0, 0, NULL, NULL, sim_rem_con_reset, NULL, NULL, NULL, NULL, DEV_DEBUG | DEV_NOSAVE, 0, sim_rem_con_debug, NULL, NULL, NULL, NULL, NULL, sim_rem_con_description}; #define MAX_REMOTE_SESSIONS 40 /* Arbitrary Session Limit */ static int32 *sim_rem_buf_size = NULL; static int32 *sim_rem_buf_ptr = NULL; static char **sim_rem_buf = NULL; static t_bool *sim_rem_single_mode = NULL; /* per line command mode (single command or must continue) */ static TMXR sim_rem_con_tmxr = { 0, 0, 0, NULL, NULL, &sim_remote_console };/* remote console line mux */ static uint32 sim_rem_read_timeout = 30; /* seconds before automatic continue */ |
︙ | ︙ | |||
420 421 422 423 424 425 426 | static t_bool sim_rem_master_was_enabled = FALSE; /* Master was Enabled */ static t_bool sim_rem_master_was_connected = FALSE; /* Master Mode has been connected */ static t_offset sim_rem_cmd_log_start = 0; /* Log File saved position */ /* SET REMOTE CONSOLE command */ | | | 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | static t_bool sim_rem_master_was_enabled = FALSE; /* Master was Enabled */ static t_bool sim_rem_master_was_connected = FALSE; /* Master Mode has been connected */ static t_offset sim_rem_cmd_log_start = 0; /* Log File saved position */ /* SET REMOTE CONSOLE command */ t_stat sim_set_remote_console (int32 flag, CONST char *cptr) { char *cvptr, gbuf[CBUFSIZE]; CTAB *ctptr; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_2FARG; |
︙ | ︙ | |||
445 446 447 448 449 450 451 | else return SCPE_NOPARAM; } return SCPE_OK; } /* SHOW REMOTE CONSOLE command */ | | | > > | 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 | else return SCPE_NOPARAM; } return SCPE_OK; } /* SHOW REMOTE CONSOLE command */ t_stat sim_show_remote_console (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { int32 i, connections; TMLN *lp; if (*cptr != 0) return SCPE_NOPARAM; if (sim_rem_active_number >= 0) { if (sim_rem_master_mode && (sim_rem_active_number == 0)) fprintf (st, "Running from Master Mode Remote Console Connection\n"); else fprintf (st, "Running from Remote Console Connection %d\n", sim_rem_active_number); } if (sim_rem_con_tmxr.lines > 1) fprintf (st, "Remote Console Input Connections from %d sources are supported concurrently\n", sim_rem_con_tmxr.lines); if (sim_rem_read_timeout) fprintf (st, "Remote Console Input automatically continues after %d seconds\n", sim_rem_read_timeout); if (!sim_rem_con_tmxr.master) fprintf (st, "Remote Console Command input is disabled\n"); else { fprintf (st, "Remote Console Command Input listening on TCP port: %s\n", sim_rem_con_unit[0].filename); fprintf (st, "Remote Console Per Command Output buffer size: %d bytes\n", sim_rem_con_tmxr.buffered); } for (i=connections=0; i<sim_rem_con_tmxr.lines; i++) { lp = &sim_rem_con_tmxr.ldsc[i]; if (!lp->conn) continue; ++connections; if (connections == 1) fprintf (st, "Remote Console Connections:\n"); |
︙ | ︙ | |||
522 523 524 525 526 527 528 | } sim_activate_after(uptr, 1000000); /* check again in 1 second */ if (sim_con_ldsc.conn) tmxr_send_buffered_data (&sim_con_ldsc); /* try to flush any buffered data */ return SCPE_OK; } | | > > > > > | < < < < < | | 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 | } sim_activate_after(uptr, 1000000); /* check again in 1 second */ if (sim_con_ldsc.conn) tmxr_send_buffered_data (&sim_con_ldsc); /* try to flush any buffered data */ return SCPE_OK; } static t_stat x_continue_cmd (int32 flag, CONST char *cptr) { return SCPE_IERR; /* This routine should never be called */ } static t_stat x_step_cmd (int32 flag, CONST char *cptr) { return SCPE_IERR; /* This routine should never be called */ } static t_stat x_run_cmd (int32 flag, CONST char *cptr) { return SCPE_IERR; /* This routine should never be called */ } static t_stat x_help_cmd (int32 flag, CONST char *cptr); static CTAB allowed_remote_cmds[] = { { "EXAMINE", &exdep_cmd, EX_E }, { "DEPOSIT", &exdep_cmd, EX_D }, { "EVALUATE", &eval_cmd, 0 }, { "ATTACH", &attach_cmd, 0 }, { "DETACH", &detach_cmd, 0 }, |
︙ | ︙ | |||
603 604 605 606 607 608 609 | { "LS", &dir_cmd, 0 }, { "ECHO", &echo_cmd, 0 }, { "SHOW", &show_cmd, 0 }, { "HELP", &x_help_cmd, 0 }, { NULL, NULL } }; | | | 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 | { "LS", &dir_cmd, 0 }, { "ECHO", &echo_cmd, 0 }, { "SHOW", &show_cmd, 0 }, { "HELP", &x_help_cmd, 0 }, { NULL, NULL } }; static t_stat x_help_cmd (int32 flag, CONST char *cptr) { CTAB *cmdp, *cmdph; if (*cptr) { int32 saved_switches = sim_switches; t_stat r; |
︙ | ︙ | |||
668 669 670 671 672 673 674 | } while (unwritten == lp->txbsz); } } } void sim_remote_process_command (void) { | | > | 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 | } while (unwritten == lp->txbsz); } } } void sim_remote_process_command (void) { char cbuf[4*CBUFSIZE], gbuf[CBUFSIZE], *argv[1] = {NULL}; CONST char *cptr; int32 saved_switches = sim_switches; t_stat stat; strcpy (cbuf, sim_rem_command_buf); while (isspace(cbuf[0])) memmove (cbuf, cbuf+1, strlen(cbuf+1)+1); /* skip leading whitespace */ sim_sub_args (cbuf, sizeof(cbuf), argv); |
︙ | ︙ | |||
703 704 705 706 707 708 709 | t_stat stat = SCPE_OK; t_bool active_command = FALSE; int32 steps = 0; t_bool was_active_command = (sim_rem_cmd_active_line != -1); t_bool got_command; t_bool close_session = FALSE; TMLN *lp; | | > | 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 | t_stat stat = SCPE_OK; t_bool active_command = FALSE; int32 steps = 0; t_bool was_active_command = (sim_rem_cmd_active_line != -1); t_bool got_command; t_bool close_session = FALSE; TMLN *lp; char cbuf[4*CBUFSIZE], gbuf[CBUFSIZE], *argv[1] = {NULL}; CONST char *cptr; CTAB *cmdp = NULL; CTAB *basecmdp = NULL; uint32 read_start_time = 0; tmxr_poll_rx (&sim_rem_con_tmxr); /* poll input */ for (i=(was_active_command ? sim_rem_cmd_active_line : 0); (i < sim_rem_con_tmxr.lines) && (!active_command); |
︙ | ︙ | |||
1106 1107 1108 1109 1110 1111 1112 | if (i != sim_rem_con_tmxr.lines) sim_activate_after (&dptr->units[1], 100000); /* continue polling for open sessions */ return sim_rem_con_poll_svc (&dptr->units[0]); /* establish polling as needed */ } return SCPE_OK; } | | | | 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 | if (i != sim_rem_con_tmxr.lines) sim_activate_after (&dptr->units[1], 100000); /* continue polling for open sessions */ return sim_rem_con_poll_svc (&dptr->units[0]); /* establish polling as needed */ } return SCPE_OK; } static t_stat sim_set_rem_telnet (int32 flag, CONST char *cptr) { t_stat r; if (flag) { r = sim_parse_addr (cptr, NULL, 0, NULL, NULL, 0, NULL, NULL); if (r == SCPE_OK) { if (sim_rem_con_tmxr.master) /* already open? */ sim_set_rem_telnet (0, NULL); /* close first */ if (sim_rem_con_tmxr.lines == 0) /* Ir no connection limit set */ sim_set_rem_connections (0, "1"); /* use 1 */ sim_rem_con_tmxr.buffered = 8192; /* Use big enough buffers */ sim_register_internal_device (&sim_remote_console); r = tmxr_attach (&sim_rem_con_tmxr, &sim_rem_con_unit[0], cptr);/* open master socket */ if (r == SCPE_OK) sim_activate_after(&sim_rem_con_unit[0], 1000000); /* check for connection in 1 second */ return r; } return SCPE_NOPARAM; |
︙ | ︙ | |||
1143 1144 1145 1146 1147 1148 1149 | sim_rem_single_mode[i] = TRUE; } } } return SCPE_OK; } | | | 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 | sim_rem_single_mode[i] = TRUE; } } } return SCPE_OK; } static t_stat sim_set_rem_connections (int32 flag, CONST char *cptr) { int32 lines; t_stat r; int32 i; if (cptr == NULL) return SCPE_ARG; |
︙ | ︙ | |||
1176 1177 1178 1179 1180 1181 1182 | sim_rem_read_timeouts = (uint32 *)realloc (sim_rem_read_timeouts, sizeof(*sim_rem_read_timeouts)*lines); memset (sim_rem_read_timeouts, 0, sizeof(*sim_rem_read_timeouts)*lines); sim_rem_command_buf = (char *)realloc (sim_rem_command_buf, 4*CBUFSIZE+1); memset (sim_rem_command_buf, 0, 4*CBUFSIZE+1); return SCPE_OK; } | | > > > > > > > > > > > > > > > > > | | 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 | sim_rem_read_timeouts = (uint32 *)realloc (sim_rem_read_timeouts, sizeof(*sim_rem_read_timeouts)*lines); memset (sim_rem_read_timeouts, 0, sizeof(*sim_rem_read_timeouts)*lines); sim_rem_command_buf = (char *)realloc (sim_rem_command_buf, 4*CBUFSIZE+1); memset (sim_rem_command_buf, 0, 4*CBUFSIZE+1); return SCPE_OK; } static t_stat sim_set_rem_timeout (int32 flag, CONST char *cptr) { int32 timeout; t_stat r; if (cptr == NULL) return SCPE_ARG; timeout = (int32) get_uint (cptr, 10, 3600, &r); if (r != SCPE_OK) return r; if (sim_rem_active_number >= 0) sim_rem_read_timeouts[sim_rem_active_number] = timeout; else sim_rem_read_timeout = timeout; return SCPE_OK; } static t_stat sim_set_rem_bufsize (int32 flag, CONST char *cptr) { char cmdbuf[CBUFSIZE]; int32 bufsize; t_stat r; if (cptr == NULL) return SCPE_ARG; bufsize = (int32) get_uint (cptr, 10, 32768, &r); if (r != SCPE_OK) return r; if (bufsize < 1400) return sim_messagef (SCPE_ARG, "%d is too small. Minimum size is 1400\n", bufsize); sprintf(cmdbuf, "BUFFERED=%d", bufsize); return tmxr_open_master (&sim_rem_con_tmxr, cmdbuf); /* open master socket */ } /* Enable or disable Remote Console master mode */ /* In master mode, commands are subsequently processed from the primary/initial (master mode) remote console session. Commands are processed from that source until that source disables master mode or the simulator exits */ static t_stat sim_set_rem_master (int32 flag, CONST char *cptr) { t_stat stat = SCPE_OK; if (cptr && *cptr) return SCPE_2MARG; if (sim_rem_active_number > 0) { |
︙ | ︙ | |||
1224 1225 1226 1227 1228 1229 1230 | return SCPE_INVREM; } if (sim_rem_master_mode) { t_stat stat_nomessage; sim_printf ("Command input starting on Master Remote Console Session\n"); | | | 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 | return SCPE_INVREM; } if (sim_rem_master_mode) { t_stat stat_nomessage; sim_printf ("Command input starting on Master Remote Console Session\n"); stat = sim_run_boot_prep (0); sim_rem_master_was_enabled = TRUE; while (sim_rem_master_mode) { sim_rem_single_mode[0] = FALSE; sim_cancel (&sim_rem_con_unit[1]); sim_activate (&sim_rem_con_unit[1], -1); stat = run_cmd (RU_GO, ""); if (stat != SCPE_TTMO) { |
︙ | ︙ | |||
1260 1261 1262 1263 1264 1265 1266 | } return stat; } /* Set keyboard map */ | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 | } return stat; } /* Set keyboard map */ t_stat sim_set_kmap (int32 flag, CONST char *cptr) { DEVICE *dptr = sim_devices[0]; int32 val, rdx; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_2FARG; if (dptr->dradix == 16) rdx = 16; else rdx = 8; val = (int32) get_uint (cptr, rdx, 0177, &r); if ((r != SCPE_OK) || ((val == 0) && (flag & KMAP_NZ))) return SCPE_ARG; *(cons_kmap[flag & KMAP_MASK]) = val; return SCPE_OK; } /* Show keyboard map */ t_stat sim_show_kmap (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (sim_devices[0]->dradix == 16) fprintf (st, "%s = %X\n", show_con_tab[flag].name, *(cons_kmap[flag & KMAP_MASK])); else fprintf (st, "%s = %o\n", show_con_tab[flag].name, *(cons_kmap[flag & KMAP_MASK])); return SCPE_OK; } /* Set printable characters */ t_stat sim_set_pchar (int32 flag, CONST char *cptr) { DEVICE *dptr = sim_devices[0]; uint32 val, rdx; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_2FARG; if (dptr->dradix == 16) rdx = 16; else rdx = 8; val = (uint32) get_uint (cptr, rdx, 0xFFFFFFFF, &r); if ((r != SCPE_OK) || ((val & 0x00002400) == 0)) return SCPE_ARG; sim_tt_pchar = val; return SCPE_OK; } /* Show printable characters */ t_stat sim_show_pchar (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (sim_devices[0]->dradix == 16) fprintf (st, "pchar mask = %X", sim_tt_pchar); else fprintf (st, "pchar mask = %o", sim_tt_pchar); if (sim_tt_pchar) { static const char *pchars[] = {"NUL(^@)", "SOH(^A)", "STX(^B)", "ETX(^C)", "EOT(^D)", "ENQ(^E)", "ACK(^F)", "BEL(^G)", "BS(^H)" , "HT(^I)", "LF(^J)", "VT(^K)", "FF(^L)", "CR(^M)", "SO(^N)", "SI(^O)", "DLE(^P)", "DC1(^Q)", "DC2(^R)", "DC3(^S)", "DC4(^T)", "NAK(^U)", "SYN(^V)", "ETB(^W)", "CAN(^X)", "EM(^Y)", "SUB(^Z)", "ESC", "FS", "GS", "RS", "US"}; int i; t_bool found = FALSE; fprintf (st, " {"); for (i=31; i>=0; i--) if (sim_tt_pchar & (1 << i)) { fprintf (st, "%s%s", found ? "," : "", pchars[i]); found = TRUE; } fprintf (st, "}"); } fprintf (st, "\n"); return SCPE_OK; } /* Set input speed (bps) */ t_stat sim_set_cons_speed (int32 flag, CONST char *cptr) { return tmxr_set_line_speed (&sim_con_ldsc, cptr); } t_stat sim_show_cons_speed (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (sim_con_ldsc.rxbps) { fprintf (st, "Speed = %d", sim_con_ldsc.rxbps); if (sim_con_ldsc.rxbpsfactor != TMXR_RX_BPS_UNIT_SCALE) fprintf (st, "*%.0f", sim_con_ldsc.rxbpsfactor/TMXR_RX_BPS_UNIT_SCALE); fprintf (st, " bps\n"); } return SCPE_OK; } /* Set log routine */ t_stat sim_set_logon (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; t_stat r; time_t now; if ((cptr == NULL) || (*cptr == 0)) /* need arg */ return SCPE_2FARG; |
︙ | ︙ | |||
1347 1348 1349 1350 1351 1352 1353 | time(&now); fprintf (sim_log, "Logging to file \"%s\" at %s", sim_logfile_name (sim_log, sim_log_ref), ctime(&now)); return SCPE_OK; } /* Set nolog routine */ | | | | | 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 | time(&now); fprintf (sim_log, "Logging to file \"%s\" at %s", sim_logfile_name (sim_log, sim_log_ref), ctime(&now)); return SCPE_OK; } /* Set nolog routine */ t_stat sim_set_logoff (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; if (sim_log == NULL) /* no log? */ return SCPE_OK; if (!sim_quiet) printf ("Log file closed\n"); fprintf (sim_log, "Log file closed\n"); sim_close_logfile (&sim_log_ref); /* close log */ sim_log = NULL; return SCPE_OK; } /* Show log status */ t_stat sim_show_log (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) return SCPE_2MARG; if (sim_log) fprintf (st, "Logging enabled to \"%s\"\n", sim_logfile_name (sim_log, sim_log_ref)); else fprintf (st, "Logging disabled\n"); return SCPE_OK; } /* Set debug routine */ t_stat sim_set_debon (int32 flag, CONST char *cptr) { char gbuf[CBUFSIZE]; t_stat r; time_t now; sim_deb_switches = sim_switches; /* save debug switches */ if ((cptr == NULL) || (*cptr == 0)) /* need arg */ |
︙ | ︙ | |||
1446 1447 1448 1449 1450 1451 1452 | sim_switches = saved_sim_switches; sim_quiet = saved_quiet; return SCPE_OK; } /* Set nodebug routine */ | | | | 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 | sim_switches = saved_sim_switches; sim_quiet = saved_quiet; return SCPE_OK; } /* Set nodebug routine */ t_stat sim_set_deboff (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* now eol? */ return SCPE_2MARG; if (sim_deb == NULL) /* no debug? */ return SCPE_OK; sim_close_logfile (&sim_deb_ref); sim_deb = NULL; sim_deb_switches = 0; if (!sim_quiet) sim_printf ("Debug output disabled\n"); return SCPE_OK; } /* Show debug routine */ t_stat sim_show_debug (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { int32 i; if (cptr && (*cptr != 0)) return SCPE_2MARG; if (sim_deb) { fprintf (st, "Debug output enabled to \"%s\"\n", |
︙ | ︙ | |||
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 | if (!(dptr->flags & DEV_DIS) && (dptr->flags & DEV_DEBUG) && (dptr->dctrl)) { fprintf (st, "Device: %-6s ", dptr->name); show_dev_debug (st, dptr, NULL, 0, NULL); } } } else fprintf (st, "Debug output disabled\n"); return SCPE_OK; } /* SET CONSOLE command */ /* Set console to Telnet port (and parameters) */ | > > > > > > > > | | 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 | if (!(dptr->flags & DEV_DIS) && (dptr->flags & DEV_DEBUG) && (dptr->dctrl)) { fprintf (st, "Device: %-6s ", dptr->name); show_dev_debug (st, dptr, NULL, 0, NULL); } } for (i = 0; sim_internal_device_count && (dptr = sim_internal_devices[i]); ++i) { if (!(dptr->flags & DEV_DIS) && (dptr->flags & DEV_DEBUG) && (dptr->dctrl)) { fprintf (st, "Device: %-6s ", dptr->name); show_dev_debug (st, dptr, NULL, 0, NULL); } } } else fprintf (st, "Debug output disabled\n"); return SCPE_OK; } /* SET CONSOLE command */ /* Set console to Telnet port (and parameters) */ t_stat sim_set_telnet (int32 flag, CONST char *cptr) { char *cvptr, gbuf[CBUFSIZE]; CTAB *ctptr; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_2FARG; |
︙ | ︙ | |||
1527 1528 1529 1530 1531 1532 1533 | } } return SCPE_OK; } /* Close console Telnet port */ | | | | 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 | } } return SCPE_OK; } /* Close console Telnet port */ t_stat sim_set_notelnet (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* too many arguments? */ return SCPE_2MARG; if (sim_con_tmxr.master == 0) /* ignore if already closed */ return SCPE_OK; return tmxr_close_master (&sim_con_tmxr); /* close master socket */ } /* Show console Telnet status */ t_stat sim_show_telnet (FILE *st, DEVICE *dunused, UNIT *uunused, int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) return SCPE_2MARG; if ((sim_con_tmxr.master == 0) && (sim_con_ldsc.serport == 0)) fprintf (st, "Connected to console window\n"); else { |
︙ | ︙ | |||
1565 1566 1567 1568 1569 1570 1571 | tmxr_fstats (st, &sim_con_ldsc, -1); } return SCPE_OK; } /* Set console to Buffering */ | | | | | | | | | | | 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 | tmxr_fstats (st, &sim_con_ldsc, -1); } return SCPE_OK; } /* Set console to Buffering */ t_stat sim_set_cons_buff (int32 flg, CONST char *cptr) { char cmdbuf[CBUFSIZE]; sprintf(cmdbuf, "BUFFERED%c%s", cptr ? '=' : '\0', cptr ? cptr : ""); return tmxr_open_master (&sim_con_tmxr, cmdbuf); /* open master socket */ } /* Set console to NoBuffering */ t_stat sim_set_cons_unbuff (int32 flg, CONST char *cptr) { char cmdbuf[CBUFSIZE]; sprintf(cmdbuf, "UNBUFFERED%c%s", cptr ? '=' : '\0', cptr ? cptr : ""); return tmxr_open_master (&sim_con_tmxr, cmdbuf); /* open master socket */ } /* Set console to Logging */ t_stat sim_set_cons_log (int32 flg, CONST char *cptr) { char cmdbuf[CBUFSIZE]; sprintf(cmdbuf, "LOG%c%s", cptr ? '=' : '\0', cptr ? cptr : ""); return tmxr_open_master (&sim_con_tmxr, cmdbuf); /* open master socket */ } /* Set console to NoLogging */ t_stat sim_set_cons_nolog (int32 flg, CONST char *cptr) { char cmdbuf[CBUFSIZE]; sprintf(cmdbuf, "NOLOG%c%s", cptr ? '=' : '\0', cptr ? cptr : ""); return tmxr_open_master (&sim_con_tmxr, cmdbuf); /* open master socket */ } t_stat sim_show_cons_log (FILE *st, DEVICE *dunused, UNIT *uunused, int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) return SCPE_2MARG; if (sim_con_tmxr.ldsc->txlog) fprintf (st, "Log File being written to %s\n", sim_con_tmxr.ldsc->txlogname); else fprintf (st, "No Logging\n"); return SCPE_OK; } t_stat sim_show_cons_buff (FILE *st, DEVICE *dunused, UNIT *uunused, int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) return SCPE_2MARG; if (!sim_con_tmxr.ldsc->txbfd) fprintf (st, "Unbuffered\n"); else fprintf (st, "Buffer Size = %d\n", sim_con_tmxr.ldsc->txbsz); return SCPE_OK; } /* Set console Debug Mode */ t_stat sim_set_cons_debug (int32 flg, CONST char *cptr) { return set_dev_debug (&sim_con_telnet, &sim_con_unit, flg, cptr); } t_stat sim_show_cons_debug (FILE *st, DEVICE *dunused, UNIT *uunused, int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) return SCPE_2MARG; return show_dev_debug (st, &sim_con_telnet, &sim_con_unit, flag, cptr); } /* Set console to Serial port (and parameters) */ t_stat sim_set_serial (int32 flag, CONST char *cptr) { char *cvptr, gbuf[CBUFSIZE], ubuf[CBUFSIZE]; CTAB *ctptr; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_2FARG; |
︙ | ︙ | |||
1684 1685 1686 1687 1688 1689 1690 | } } return SCPE_OK; } /* Close console Serial port */ | | | | | | > | 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 | } } return SCPE_OK; } /* Close console Serial port */ t_stat sim_set_noserial (int32 flag, CONST char *cptr) { if (cptr && (*cptr != 0)) /* too many arguments? */ return SCPE_2MARG; if (sim_con_ldsc.serport == 0) /* ignore if already closed */ return SCPE_OK; return tmxr_close_master (&sim_con_tmxr); /* close master socket */ } /* Show the console expect rules and state */ t_stat sim_show_cons_expect (FILE *st, DEVICE *dunused, UNIT *uunused, int32 flag, CONST char *cptr) { return sim_exp_show (st, &sim_con_expect, cptr); } /* Log File Open/Close/Show Support */ /* Open log file */ t_stat sim_open_logfile (const char *filename, t_bool binary, FILE **pf, FILEREF **pref) { char gbuf[CBUFSIZE]; const char *tptr; if ((filename == NULL) || (*filename == 0)) /* too few arguments? */ return SCPE_2FARG; tptr = get_glyph (filename, gbuf, 0); if (*tptr != 0) /* now eol? */ return SCPE_2MARG; sim_close_logfile (pref); |
︙ | ︙ | |||
1888 1889 1890 1891 1892 1893 1894 | EXPECT *sim_cons_get_expect (void) { return &sim_con_expect; } /* Display console Queued input data status */ | | > > > | > > > > | 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 | EXPECT *sim_cons_get_expect (void) { return &sim_con_expect; } /* Display console Queued input data status */ t_stat sim_show_cons_send_input (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { return sim_show_send_input (st, &sim_con_send); } /* Poll for character */ t_stat sim_poll_kbd (void) { t_stat c; if (sim_send_poll_data (&sim_con_send, &c)) /* injected input characters available? */ return c; if (!sim_rem_master_mode) { if ((sim_con_ldsc.rxbps) && /* rate limiting && */ (sim_gtime () < sim_con_ldsc.rxnexttime)) /* too soon? */ return SCPE_OK; /* not yet */ c = sim_os_poll_kbd (); /* get character */ if (c == SCPE_STOP) { /* ^E */ stop_cpu = 1; /* Force a stop (which is picked up by sim_process_event */ return SCPE_OK; } if ((sim_con_tmxr.master == 0) && /* not Telnet? */ (sim_con_ldsc.serport == 0)) { /* and not serial? */ if (c && sim_con_ldsc.rxbps) /* got something && rate limiting? */ sim_con_ldsc.rxnexttime = /* compute next input time */ floor (sim_gtime () + ((sim_con_ldsc.rxdelta * sim_timer_inst_per_sec ())/sim_con_ldsc.rxbpsfactor)); return c; /* in-window */ } if (!sim_con_ldsc.conn) { /* no telnet or serial connection? */ if (!sim_con_ldsc.txbfd) /* unbuffered? */ return SCPE_LOST; /* connection lost */ if (tmxr_poll_conn (&sim_con_tmxr) >= 0) /* poll connect */ sim_con_ldsc.rcve = 1; /* rcv enabled */ else /* fall through to poll reception */ return SCPE_OK; /* unconnected and buffered - nothing to receive */ |
︙ | ︙ | |||
1978 1979 1980 1981 1982 1983 1984 | /* Input character processing */ int32 sim_tt_inpcvt (int32 c, uint32 mode) { uint32 md = mode & TTUF_M_MODE; if (md != TTUF_MODE_8B) { | < | 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 | /* Input character processing */ int32 sim_tt_inpcvt (int32 c, uint32 mode) { uint32 md = mode & TTUF_M_MODE; if (md != TTUF_MODE_8B) { uint32 par_mode = (mode >> TTUF_W_MODE) & TTUF_M_PAR; static int32 nibble_even_parity = 0x699600; /* bit array indicating the even parity for each index (offset by 8) */ c = c & 0177; if (md == TTUF_MODE_UC) { if (islower (c)) c = toupper (c); |
︙ | ︙ | |||
2034 2035 2036 2037 2038 2039 2040 | /* Tab stop array handling *desc points to a uint8 array of length val Columns with tabs set are non-zero; columns without tabs are 0 */ | | | 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 | /* Tab stop array handling *desc points to a uint8 array of length val Columns with tabs set are non-zero; columns without tabs are 0 */ t_stat sim_tt_settabs (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { uint8 *temptabs, *tabs = (uint8 *) desc; int32 i, d; t_stat r; char gbuf[CBUFSIZE]; if ((cptr == NULL) || (tabs == NULL) || (val <= 1)) |
︙ | ︙ | |||
2064 2065 2066 2067 2068 2069 2070 | } while (*cptr != 0); for (i = 0; i < val; i++) tabs[i] = temptabs[i]; free (temptabs); return SCPE_OK; } | | | | 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 | } while (*cptr != 0); for (i = 0; i < val; i++) tabs[i] = temptabs[i]; free (temptabs); return SCPE_OK; } t_stat sim_tt_showtabs (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { const uint8 *tabs = (const uint8 *) desc; int32 i, any; if ((st == NULL) || (val == 0) || (desc == NULL)) return SCPE_IERR; for (i = any = 0; i < val; i++) { if (tabs[i] != 0) { fprintf (st, (any? ";%d": "%d"), i + 1); |
︙ | ︙ | |||
2096 2097 2098 2099 2100 2101 2102 | pthread_t sim_console_poll_thread; /* Keyboard Polling Thread Id */ t_bool sim_console_poll_running = FALSE; pthread_cond_t sim_console_startup_cond; static void * _console_poll(void *arg) { | < < < | < | 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 | pthread_t sim_console_poll_thread; /* Keyboard Polling Thread Id */ t_bool sim_console_poll_running = FALSE; pthread_cond_t sim_console_startup_cond; static void * _console_poll(void *arg) { int wait_count = 0; DEVICE *d; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which, in general, won't be readily yielding the processor when this thread needs to run */ sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); sim_debug (DBG_ASY, &sim_con_telnet, "_console_poll() - starting\n"); pthread_mutex_lock (&sim_tmxr_poll_lock); pthread_cond_signal (&sim_console_startup_cond); /* Signal we're ready to go */ while (sim_asynch_enabled) { |
︙ | ︙ | |||
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 | #endif /* defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_MUX) */ t_stat sim_ttinit (void) { sim_register_internal_device (&sim_con_telnet); tmxr_startup (); return sim_os_ttinit (); } t_stat sim_ttrun (void) { | > | 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 | #endif /* defined(SIM_ASYNCH_IO) && defined(SIM_ASYNCH_MUX) */ t_stat sim_ttinit (void) { sim_con_tmxr.ldsc->mp = &sim_con_tmxr; sim_register_internal_device (&sim_con_telnet); tmxr_startup (); return sim_os_ttinit (); } t_stat sim_ttrun (void) { |
︙ | ︙ | |||
2468 2469 2470 2471 2472 2473 2474 | (!GetConsoleMode(std_input, &saved_mode) || /* Set mode to RAW */ !SetConsoleMode(std_input, RAW_MODE))) return SCPE_TTYERR; if (sim_log) { fflush (sim_log); _setmode (_fileno (sim_log), _O_BINARY); } | | | | 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 | (!GetConsoleMode(std_input, &saved_mode) || /* Set mode to RAW */ !SetConsoleMode(std_input, RAW_MODE))) return SCPE_TTYERR; if (sim_log) { fflush (sim_log); _setmode (_fileno (sim_log), _O_BINARY); } sim_os_set_thread_priority (PRIORITY_BELOW_NORMAL); return SCPE_OK; } static t_stat sim_os_ttcmd (void) { if (sim_log) { fflush (sim_log); _setmode (_fileno (sim_log), _O_TEXT); } sim_os_set_thread_priority (PRIORITY_NORMAL); if ((std_input) && /* If Not Background process? */ (std_input != INVALID_HANDLE_VALUE) && (!SetConsoleMode(std_input, saved_mode))) /* Restore Normal mode */ return SCPE_TTYERR; return SCPE_OK; } |
︙ | ︙ | |||
2891 2892 2893 2894 2895 2896 2897 | fcntl (0, F_SETFL, runfl); /* non-block mode */ if (ioctl (0, TIOCSETP, &runtty) < 0) return SCPE_TTIERR; if (ioctl (0, TIOCSETC, &runtchars) < 0) return SCPE_TTIERR; if (ioctl (0, TIOCSLTC, &runltchars) < 0) return SCPE_TTIERR; | | | | 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 | fcntl (0, F_SETFL, runfl); /* non-block mode */ if (ioctl (0, TIOCSETP, &runtty) < 0) return SCPE_TTIERR; if (ioctl (0, TIOCSETC, &runtchars) < 0) return SCPE_TTIERR; if (ioctl (0, TIOCSLTC, &runltchars) < 0) return SCPE_TTIERR; sim_os_set_thread_priority (PRIORITY_BELOW_NORMAL)l /* lower priority */ return SCPE_OK; } static t_stat sim_os_ttcmd (void) { sim_os_set_thread_priority (PRIORITY_NORMAL); /* restore priority */ fcntl (0, F_SETFL, cmdfl); /* block mode */ if (ioctl (0, TIOCSETP, &cmdtty) < 0) return SCPE_TTIERR; if (ioctl (0, TIOCSETC, &cmdtchars) < 0) return SCPE_TTIERR; if (ioctl (0, TIOCSLTC, &cmdltchars) < 0) return SCPE_TTIERR; |
︙ | ︙ | |||
2965 2966 2967 2968 2969 2970 2971 | #else #include <termios.h> #include <unistd.h> struct termios cmdtty, runtty; | < | 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 | #else #include <termios.h> #include <unistd.h> struct termios cmdtty, runtty; static t_stat sim_os_ttinit (void) { if (!isatty (fileno (stdin))) /* skip if !tty */ return SCPE_OK; if (tcgetattr (0, &cmdtty) < 0) /* get old flags */ return SCPE_TTIERR; |
︙ | ︙ | |||
3024 3025 3026 3027 3028 3029 3030 | #if defined(USE_SIM_VIDEO) && defined(HAVE_LIBSDL) runtty.c_cc[VINTR] = 0; /* OS X doesn't deliver SIGINT to main thread when enabled */ #else runtty.c_cc[VINTR] = sim_int_char; /* in case changed */ #endif if (tcsetattr (0, TCSAFLUSH, &runtty) < 0) return SCPE_TTIERR; | < < | < < < < | < < | 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 | #if defined(USE_SIM_VIDEO) && defined(HAVE_LIBSDL) runtty.c_cc[VINTR] = 0; /* OS X doesn't deliver SIGINT to main thread when enabled */ #else runtty.c_cc[VINTR] = sim_int_char; /* in case changed */ #endif if (tcsetattr (0, TCSAFLUSH, &runtty) < 0) return SCPE_TTIERR; sim_os_set_thread_priority (PRIORITY_BELOW_NORMAL); /* try to lower pri */ return SCPE_OK; } static t_stat sim_os_ttcmd (void) { if (!isatty (fileno (stdin))) /* skip if !tty */ return SCPE_OK; sim_os_set_thread_priority (PRIORITY_NORMAL); /* try to raise pri */ if (tcsetattr (0, TCSAFLUSH, &cmdtty) < 0) return SCPE_TTIERR; return SCPE_OK; } static t_stat sim_os_ttclose (void) { |
︙ | ︙ | |||
3127 3128 3129 3130 3131 3132 3133 | } } return; } /* Set console halt */ | | | 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 | } } return; } /* Set console halt */ static t_stat sim_set_halt (int32 flag, CONST char *cptr) { if (flag == 0) /* no halt? */ sim_exp_clrall (&sim_con_expect); /* disable halt checks */ else { char *mbuf; char *mbuf2; |
︙ | ︙ | |||
3160 3161 3162 3163 3164 3165 3166 | return SCPE_OK; } /* Set console response */ | | | 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 | return SCPE_OK; } /* Set console response */ static t_stat sim_set_response (int32 flag, CONST char *cptr) { if (flag == 0) /* no response? */ sim_send_clear (&sim_con_send); else { uint8 *rbuf; if (cptr == NULL || *cptr == 0) |
︙ | ︙ | |||
3182 3183 3184 3185 3186 3187 3188 | } return SCPE_OK; } /* Set console delay */ | | | 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 | } return SCPE_OK; } /* Set console delay */ static t_stat sim_set_delay (int32 flag, CONST char *cptr) { int32 val; t_stat r; if (cptr == NULL || *cptr == 0) /* no argument string? */ return SCPE_2FARG; /* need an argument */ |
︙ | ︙ |
Changes to src/sim_console.h.
︙ | ︙ | |||
30 31 32 33 34 35 36 37 38 39 40 41 42 43 | 05-Nov-04 RMS Moved SET/SHOW DEBUG under CONSOLE hierarchy 28-May-04 RMS Added SET/SHOW CONSOLE 02-Jan-04 RMS Removed timer routines, added Telnet console routines */ #ifndef SIM_CONSOLE_H_ #define SIM_CONSOLE_H_ 0 #define TTUF_V_MODE (UNIT_V_UF + 0) #define TTUF_W_MODE 2 #define TTUF_MODE_7B 0 #define TTUF_MODE_8B 1 #define TTUF_MODE_UC 2 #define TTUF_MODE_7P 3 | > > > > | 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | 05-Nov-04 RMS Moved SET/SHOW DEBUG under CONSOLE hierarchy 28-May-04 RMS Added SET/SHOW CONSOLE 02-Jan-04 RMS Removed timer routines, added Telnet console routines */ #ifndef SIM_CONSOLE_H_ #define SIM_CONSOLE_H_ 0 #ifdef __cplusplus extern "C" { #endif #define TTUF_V_MODE (UNIT_V_UF + 0) #define TTUF_W_MODE 2 #define TTUF_MODE_7B 0 #define TTUF_MODE_8B 1 #define TTUF_MODE_UC 2 #define TTUF_MODE_7P 3 |
︙ | ︙ | |||
63 64 65 66 67 68 69 | #define TT_PAR_MARK (TTUF_PAR_MARK << TTUF_V_PAR) #define TT_PAR_EVEN (TTUF_PAR_EVEN << TTUF_V_PAR) #define TT_PAR_ODD (TTUF_PAR_ODD << TTUF_V_PAR) /* TT_GET_MODE returns both the TT_MODE and TT_PAR fields since they together are passed into sim_tt_inpcvt() */ #define TT_GET_MODE(x) (((x) >> TTUF_V_MODE) & (TTUF_M_MODE | (TTUF_M_PAR << TTUF_W_MODE))) | | | | | | | | | | | | | | | | | | | | > | | | | | | | > | | | | | | | | > > > > | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 | #define TT_PAR_MARK (TTUF_PAR_MARK << TTUF_V_PAR) #define TT_PAR_EVEN (TTUF_PAR_EVEN << TTUF_V_PAR) #define TT_PAR_ODD (TTUF_PAR_ODD << TTUF_V_PAR) /* TT_GET_MODE returns both the TT_MODE and TT_PAR fields since they together are passed into sim_tt_inpcvt() */ #define TT_GET_MODE(x) (((x) >> TTUF_V_MODE) & (TTUF_M_MODE | (TTUF_M_PAR << TTUF_W_MODE))) t_stat sim_set_console (int32 flag, CONST char *cptr); t_stat sim_set_remote_console (int32 flag, CONST char *cptr); void sim_remote_process_command (void); t_stat sim_set_kmap (int32 flag, CONST char *cptr); t_stat sim_set_telnet (int32 flag, CONST char *cptr); t_stat sim_set_notelnet (int32 flag, CONST char *cptr); t_stat sim_set_serial (int32 flag, CONST char *cptr); t_stat sim_set_noserial (int32 flag, CONST char *cptr); t_stat sim_set_logon (int32 flag, CONST char *cptr); t_stat sim_set_logoff (int32 flag, CONST char *cptr); t_stat sim_set_debon (int32 flag, CONST char *cptr); t_stat sim_set_cons_debug (int32 flg, CONST char *cptr); t_stat sim_set_cons_buff (int32 flg, CONST char *cptr); t_stat sim_set_cons_unbuff (int32 flg, CONST char *cptr); t_stat sim_set_cons_log (int32 flg, CONST char *cptr); t_stat sim_set_cons_nolog (int32 flg, CONST char *cptr); t_stat sim_set_deboff (int32 flag, CONST char *cptr); t_stat sim_set_cons_expect (int32 flg, CONST char *cptr); t_stat sim_set_cons_noexpect (int32 flg, CONST char *cptr); t_stat sim_debug_flush (void); t_stat sim_set_pchar (int32 flag, CONST char *cptr); t_stat sim_set_cons_speed (int32 flag, CONST char *cptr); t_stat sim_show_console (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_remote_console (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_kmap (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_telnet (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_log (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_debug (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_pchar (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_cons_speed (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_cons_buff (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_cons_log (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_cons_debug (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_show_cons_expect (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_check_console (int32 sec); t_stat sim_open_logfile (const char *filename, t_bool binary, FILE **pf, FILEREF **pref); t_stat sim_close_logfile (FILEREF **pref); const char *sim_logfile_name (FILE *st, FILEREF *ref); SEND *sim_cons_get_send (void); EXPECT *sim_cons_get_expect (void); t_stat sim_show_cons_send_input (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_stat sim_set_noconsole_port (void); t_stat sim_poll_kbd (void); t_stat sim_putchar (int32 c); t_stat sim_putchar_s (int32 c); t_stat sim_ttinit (void); t_stat sim_ttrun (void); t_stat sim_ttcmd (void); t_stat sim_ttclose (void); t_bool sim_ttisatty (void); int32 sim_tt_inpcvt (int32 c, uint32 mode); int32 sim_tt_outcvt (int32 c, uint32 mode); t_stat sim_tt_settabs (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat sim_tt_showtabs (FILE *st, UNIT *uptr, int32 val, CONST void *desc); extern int32 sim_rem_cmd_active_line; /* command in progress on line # */ extern int32 sim_int_char; /* interrupt character */ extern int32 sim_brk_char; /* break character */ extern int32 sim_tt_pchar; /* printable character mask */ extern int32 sim_del_char; /* delete character */ #ifdef __cplusplus } #endif #endif |
Changes to src/sim_defs.h.
︙ | ︙ | |||
104 105 106 107 108 109 110 111 112 113 114 115 116 117 | #ifndef SIM_DEFS_H_ #define SIM_DEFS_H_ 0 #include <stddef.h> #include <stdlib.h> #include <stdio.h> #include <stdarg.h> #include <string.h> #include <errno.h> #include <limits.h> #ifdef _WIN32 #include <winsock2.h> | > > > | 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 | #ifndef SIM_DEFS_H_ #define SIM_DEFS_H_ 0 #include <stddef.h> #include <stdlib.h> #include <stdio.h> #if defined(_MSC_VER) && (_MSC_VER < 1900) #define snprintf _snprintf /* poor man's snprintf which will work most of the time but has different return value */ #endif #include <stdarg.h> #include <string.h> #include <errno.h> #include <limits.h> #ifdef _WIN32 #include <winsock2.h> |
︙ | ︙ | |||
127 128 129 130 131 132 133 134 135 136 137 138 139 140 | #if defined(HAVE_PCREPOSIX_H) #include <pcreposix.h> #define USE_REGEX 1 #elif defined(HAVE_REGEX_H) #include <regex.h> #define USE_REGEX 1 #endif /* avoid macro names collisions */ #ifdef MAX #undef MAX #endif #ifdef MIN #undef MIN | > > > > | 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | #if defined(HAVE_PCREPOSIX_H) #include <pcreposix.h> #define USE_REGEX 1 #elif defined(HAVE_REGEX_H) #include <regex.h> #define USE_REGEX 1 #endif #ifdef __cplusplus extern "C" { #endif /* avoid macro names collisions */ #ifdef MAX #undef MAX #endif #ifdef MIN #undef MIN |
︙ | ︙ | |||
150 151 152 153 154 155 156 157 158 159 160 161 162 163 | #endif #ifndef TRUE #define TRUE 1 #define FALSE 0 #endif /* Length specific integer declarations */ #if defined (VMS) #include <ints.h> #else typedef signed char int8; | > > > > > > > > > > > > | 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | #endif #ifndef TRUE #define TRUE 1 #define FALSE 0 #endif /* SCP API shim. The SCP API for version 4.0 introduces a number of "pointer-to-const" parameter qualifiers that were not present in the 3.x versions. To maintain compatibility with the earlier versions, the new qualifiers are expressed as "CONST" rather than "const". This allows macro removal of the qualifiers when compiling for SIMH 3.x. */ #ifndef CONST #define CONST const #endif /* Length specific integer declarations */ #if defined (VMS) #include <ints.h> #else typedef signed char int8; |
︙ | ︙ | |||
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | #if defined(_MSC_VER) #define SIM_INLINE _inline #elif defined(__GNUC__) #define SIM_INLINE inline #else #define SIM_INLINE #endif /* System independent definitions */ #define FLIP_SIZE (1 << 16) /* flip buf size */ #if !defined (PATH_MAX) /* usually in limits */ #define PATH_MAX 512 #endif #if (PATH_MAX >= 128) #define CBUFSIZE (128 + PATH_MAX) /* string buf size */ #else #define CBUFSIZE 256 #endif /* Breakpoint spaces definitions */ | > > > > > > > > > > > > > > | | > | 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | #if defined(_MSC_VER) #define SIM_INLINE _inline #elif defined(__GNUC__) #define SIM_INLINE inline #else #define SIM_INLINE #endif /* Storage class modifier for weak link definition for sim_vm_init() */ #if defined(__cplusplus) #if defined(__GNUC__) #define WEAK __attribute__((weak)) #elif defined(_MSC_VER) #define WEAK __declspec(selectany) #else #define WEAK extern #endif #else #define WEAK #endif /* System independent definitions */ #define FLIP_SIZE (1 << 16) /* flip buf size */ #if !defined (PATH_MAX) /* usually in limits */ #define PATH_MAX 512 #endif #if (PATH_MAX >= 128) #define CBUFSIZE (128 + PATH_MAX) /* string buf size */ #else #define CBUFSIZE 256 #endif /* Breakpoint spaces definitions */ #define SIM_BKPT_N_SPC (1 << (32 - SIM_BKPT_V_SPC)) /* max number spaces */ #define SIM_BKPT_V_SPC (BRK_TYP_MAX + 1) /* location in arg */ /* Extended switch definitions (bits >= 26) */ #define SIM_SW_HIDE (1u << 26) /* enable hiding */ #define SIM_SW_REST (1u << 27) /* attach/restore */ #define SIM_SW_REG (1u << 28) /* register value */ #define SIM_SW_STOP (1u << 29) /* stop message */ #define SIM_SW_SHUT (1u << 30) /* shutdown */ /* Simulator status codes 0 ok 1 - (SCPE_BASE - 1) simulator specific SCPE_BASE - n general */ |
︙ | ︙ | |||
360 361 362 363 364 365 366 | /* Convert switch letter to bit mask */ #define SWMASK(x) (1u << (((int) (x)) - ((int) 'A'))) /* String match - at least one character required */ | | > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | /* Convert switch letter to bit mask */ #define SWMASK(x) (1u << (((int) (x)) - ((int) 'A'))) /* String match - at least one character required */ #define MATCH_CMD(ptr,cmd) ((NULL == (ptr)) || (!*(ptr)) || sim_strncasecmp ((ptr), (cmd), strlen (ptr))) /* End of Linked List/Queue value */ /* Chosen for 2 reasons: */ /* 1 - to not be NULL, this allowing the NULL value to */ /* indicate inclusion on a list */ /* and */ /* 2 - to not be a valid/possible pointer (alignment) */ #define QUEUE_LIST_END ((UNIT *)1) /* Typedefs for principal structures */ typedef struct DEVICE DEVICE; typedef struct UNIT UNIT; typedef struct REG REG; typedef struct CTAB CTAB; typedef struct C1TAB C1TAB; typedef struct SHTAB SHTAB; typedef struct MTAB MTAB; typedef struct SCHTAB SCHTAB; typedef struct BRKTAB BRKTAB; typedef struct BRKTYPTAB BRKTYPTAB; typedef struct EXPTAB EXPTAB; typedef struct EXPECT EXPECT; typedef struct SEND SEND; typedef struct DEBTAB DEBTAB; typedef struct FILEREF FILEREF; typedef struct BITFIELD BITFIELD; typedef t_stat (*ACTIVATE_API)(UNIT *unit, int32 interval); /* Device data structure */ struct DEVICE { const char *name; /* name */ UNIT *units; /* units */ REG *registers; /* registers */ MTAB *modifiers; /* modifiers */ uint32 numunits; /* #units */ uint32 aradix; /* address radix */ uint32 awidth; /* address width */ uint32 aincr; /* addr increment */ uint32 dradix; /* data radix */ uint32 dwidth; /* data width */ t_stat (*examine)(t_value *v, t_addr a, UNIT *up, int32 sw); /* examine routine */ t_stat (*deposit)(t_value v, t_addr a, UNIT *up, int32 sw); /* deposit routine */ t_stat (*reset)(DEVICE *dp); /* reset routine */ t_stat (*boot)(int32 u, DEVICE *dp); /* boot routine */ t_stat (*attach)(UNIT *up, CONST char *cp); /* attach routine */ t_stat (*detach)(UNIT *up); /* detach routine */ void *ctxt; /* context */ uint32 flags; /* flags */ uint32 dctrl; /* debug control */ DEBTAB *debflags; /* debug flags */ t_stat (*msize)(UNIT *up, int32 v, CONST char *cp, void *dp); /* mem size routine */ char *lname; /* logical name */ t_stat (*help)(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); /* help */ t_stat (*attach_help)(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); /* attach help */ void *help_ctx; /* Context available to help routines */ const char *(*description)(DEVICE *dptr); /* Device Description */ BRKTYPTAB *brk_types; /* Breakpoint types */ }; /* Device flags */ #define DEV_V_DIS 0 /* dev disabled */ #define DEV_V_DISABLE 1 /* dev disable-able */ #define DEV_V_DYNM 2 /* mem size dynamic */ |
︙ | ︙ | |||
459 460 461 462 463 464 465 | Parts of the unit structure are device specific, that is, they are not referenced by the simulator control package and can be freely used by device simulators. Fields starting with 'buf', and flags starting with 'UF', are device specific. The definitions given here are for a typical sequential device. */ | | | | | > > | | < | | < | | 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | Parts of the unit structure are device specific, that is, they are not referenced by the simulator control package and can be freely used by device simulators. Fields starting with 'buf', and flags starting with 'UF', are device specific. The definitions given here are for a typical sequential device. */ struct UNIT { UNIT *next; /* next active */ t_stat (*action)(UNIT *up); /* action routine */ char *filename; /* open file name */ FILE *fileref; /* file reference */ void *filebuf; /* memory buffer */ uint32 hwmark; /* high water mark */ int32 time; /* time out */ uint32 flags; /* flags */ uint32 dynflags; /* dynamic flags */ t_addr capac; /* capacity */ t_addr pos; /* file position */ void (*io_flush)(UNIT *up); /* io flush routine */ uint32 iostarttime; /* I/O start time */ int32 buf; /* buffer */ int32 wait; /* wait */ int32 u3; /* device specific */ int32 u4; /* device specific */ int32 u5; /* device specific */ int32 u6; /* device specific */ void *up7; /* device specific */ void *up8; /* device specific */ void *tmxr; /* TMXR linkage */ void (*cancel)(UNIT *); #ifdef SIM_ASYNCH_IO void (*a_check_completion)(UNIT *); t_bool (*a_is_active)(UNIT *); UNIT *a_next; /* next asynch active */ int32 a_event_time; ACTIVATE_API a_activate_call; /* Asynchronous Polling control */ /* These fields should only be referenced when holding the sim_tmxr_poll_lock */ t_bool a_polling_now; /* polling active flag */ int32 a_poll_waiter_count; /* count of polling threads */ /* waiting for this unit */ /* Asynchronous Timer control */ double a_due_time; /* due time for timer event */ double a_due_gtime; /* due time (in instructions) for timer event */ int32 a_usec_delay; /* time delay for timer event */ #endif }; /* Unit flags */ #define UNIT_V_UF_31 12 /* dev spec, V3.1 */ |
︙ | ︙ | |||
535 536 537 538 539 540 541 | /* Unit dynamic flags (dynflags) */ /* These flags are only set dynamically */ #define UNIT_ATTMULT 0000001 /* Allow multiple attach commands */ #define UNIT_TM_POLL 0000002 /* TMXR Polling unit */ #define UNIT_NO_FIO 0000004 /* fileref is NOT a FILE * */ | > > | | | | | > | | | | > | | | | | | | | | | | | 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 | /* Unit dynamic flags (dynflags) */ /* These flags are only set dynamically */ #define UNIT_ATTMULT 0000001 /* Allow multiple attach commands */ #define UNIT_TM_POLL 0000002 /* TMXR Polling unit */ #define UNIT_NO_FIO 0000004 /* fileref is NOT a FILE * */ #define UNIT_DISK_CHK 0000010 /* disk data debug checking (sim_disk) */ #define UNIT_TMR_UNIT 0000020 /* Unit registered as a calibrated timer */ #define UNIT_V_DF_TAPE 5 /* Bit offset for Tape Density reservation */ #define UNIT_S_DF_TAPE 3 /* Bits Reserved for Tape Density */ struct BITFIELD { const char *name; /* field name */ uint32 offset; /* starting bit */ uint32 width; /* width */ const char **valuenames; /* map of values to strings */ const char *format; /* value format string */ }; /* Register data structure */ struct REG { CONST char *name; /* name */ void *loc; /* location */ uint32 radix; /* radix */ uint32 width; /* width */ uint32 offset; /* starting bit */ uint32 depth; /* save depth */ const char *desc; /* description */ BITFIELD *fields; /* bit fields */ uint32 flags; /* flags */ uint32 qptr; /* circ q ptr */ size_t str_size; /* structure size */ }; /* Register flags */ #define REG_FMT 00003 /* see PV_x */ #define REG_RO 00004 /* read only */ #define REG_HIDDEN 00010 /* hidden */ #define REG_NZ 00020 /* must be non-zero */ #define REG_UNIT 00040 /* in unit struct */ #define REG_STRUCT 00100 /* in structure array */ #define REG_CIRC 00200 /* circular array */ #define REG_VMIO 00400 /* use VM data print/parse */ #define REG_VMAD 01000 /* use VM addr print/parse */ #define REG_FIT 02000 /* fit access to size */ #define REG_HRO (REG_RO | REG_HIDDEN) /* hidden, read only */ #define REG_V_UF 16 /* device specific */ #define REG_UFMASK (~((1u << REG_V_UF) - 1)) /* user flags mask */ #define REG_VMFLAGS (REG_VMIO | REG_UFMASK) /* call VM routine if any of these are set */ /* Command tables, base and alternate formats */ struct CTAB { const char *name; /* name */ t_stat (*action)(int32 flag, CONST char *cptr); /* action routine */ int32 arg; /* argument */ const char *help; /* help string/structured locator */ const char *help_base; /* structured help base*/ void (*message)(const char *unechoed_cmdline, t_stat stat); /* message printing routine */ }; struct C1TAB { const char *name; /* name */ t_stat (*action)(DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr);/* action routine */ int32 arg; /* argument */ const char *help; /* help string */ }; struct SHTAB { const char *name; /* name */ t_stat (*action)(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); int32 arg; /* argument */ const char *help; /* help string */ }; /* Modifier table - only extended entries have disp, reg, or flags */ struct MTAB { uint32 mask; /* mask */ uint32 match; /* match */ const char *pstring; /* print string */ const char *mstring; /* match string */ t_stat (*valid)(UNIT *up, int32 v, CONST char *cp, void *dp); /* validation routine */ t_stat (*disp)(FILE *st, UNIT *up, int32 v, CONST void *dp); /* display routine */ void *desc; /* value descriptor */ /* REG * if MTAB_VAL */ /* int * if not */ const char *help; /* help string */ }; |
︙ | ︙ | |||
640 641 642 643 644 645 646 | #define MTAB_NC (0040 | MTAB_XTD) /* no UC conversion */ #define MTAB_QUOTE (0100 | MTAB_XTD) /* quoted string */ #define MTAB_SHP (0200 | MTAB_XTD) /* show takes parameter */ #define MODMASK(mptr,flag) (((mptr)->mask & (uint32)(flag)) == (uint32)(flag))/* flag mask test */ /* Search table */ | | | > > > > > > > > > > > > > | | | | | | | | > | > > > > > | > > > > > > > < < < > < < > < < | > > > < < > < < > < < | | | | | | | | | | | | | | | | < < | | < | > > < < | | | | | | | | | | | | | > | | | | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | | | | | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < | 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 | #define MTAB_NC (0040 | MTAB_XTD) /* no UC conversion */ #define MTAB_QUOTE (0100 | MTAB_XTD) /* quoted string */ #define MTAB_SHP (0200 | MTAB_XTD) /* show takes parameter */ #define MODMASK(mptr,flag) (((mptr)->mask & (uint32)(flag)) == (uint32)(flag))/* flag mask test */ /* Search table */ struct SCHTAB { int32 logic; /* logical operator */ int32 boolop; /* boolean operator */ uint32 count; /* value count in mask and comp arrays */ t_value *mask; /* mask for logical */ t_value *comp; /* comparison for boolean */ }; /* Breakpoint table */ struct BRKTAB { t_addr addr; /* address */ uint32 typ; /* mask of types */ #define BRK_TYP_USR_TYPES ((1 << ('Z'-'A'+1)) - 1)/* all types A-Z */ #define BRK_TYP_DYN_STEPOVER (SWMASK ('Z'+1)) #define BRK_TYP_DYN_USR (SWMASK ('Z'+2)) #define BRK_TYP_DYN_ALL (BRK_TYP_DYN_USR|BRK_TYP_DYN_STEPOVER) /* Mask of All Dynamic types */ #define BRK_TYP_TEMP (SWMASK ('Z'+3)) /* Temporary (one-shot) */ #define BRK_TYP_MAX (('Z'-'A')+3) /* Maximum breakpoint type */ int32 cnt; /* proceed count */ char *act; /* action string */ double time_fired[SIM_BKPT_N_SPC]; /* instruction count when match occurred */ BRKTAB *next; /* list with same address value */ }; /* Breakpoint table */ struct BRKTYPTAB { uint32 btyp; /* type mask */ const char *desc; /* description */ }; #define BRKTYPE(typ,descrip) {SWMASK(typ), descrip} /* Expect rule */ struct EXPTAB { uint8 *match; /* match string */ uint32 size; /* match string size */ char *match_pattern; /* match pattern for format */ int32 cnt; /* proceed count */ int32 switches; /* flags */ #define EXP_TYP_PERSIST (SWMASK ('P')) /* rule persists after match, default is once a rule matches, it is removed */ #define EXP_TYP_CLEARALL (SWMASK ('C')) /* clear all rules after matching this rule, default is to once a rule matches, it is removed */ #define EXP_TYP_REGEX (SWMASK ('R')) /* rule pattern is a regular expression */ #define EXP_TYP_REGEX_I (SWMASK ('I')) /* regular expression pattern matching should be case independent */ #define EXP_TYP_TIME (SWMASK ('T')) /* halt delay is in microseconds instead of instructions */ #if defined(USE_REGEX) regex_t regex; /* compiled regular expression */ #endif char *act; /* action string */ }; /* Expect Context */ struct EXPECT { DEVICE *dptr; /* Device (for Debug) */ uint32 dbit; /* Debugging Bit */ EXPTAB *rules; /* match rules */ int32 size; /* count of match rules */ uint32 after; /* delay before halting */ uint8 *buf; /* buffer of output data which has produced */ uint32 buf_ins; /* buffer insertion point for the next output data */ uint32 buf_size; /* buffer size */ }; /* Send Context */ struct SEND { uint32 delay; /* instruction delay between sent data */ #define SEND_DEFAULT_DELAY 1000 /* default delay instruction count */ DEVICE *dptr; /* Device (for Debug) */ uint32 dbit; /* Debugging Bit */ uint32 after; /* instruction delay before sending any data */ double next_time; /* execution time when next data can be sent */ uint8 *buffer; /* buffer */ size_t bufsize; /* buffer size */ int32 insoff; /* insert offset */ int32 extoff; /* extra offset */ }; /* Debug table */ struct DEBTAB { const char *name; /* control name */ uint32 mask; /* control bit */ const char *desc; /* description */ }; /* Deprecated Debug macros. Use sim_debug() */ #define DEBUG_PRS(d) (sim_deb && d.dctrl) #define DEBUG_PRD(d) (sim_deb && d->dctrl) #define DEBUG_PRI(d,m) (sim_deb && (d.dctrl & (m))) #define DEBUG_PRJ(d,m) (sim_deb && ((d)->dctrl & (m))) #define SIM_DBG_EVENT 0x10000 #define SIM_DBG_ACTIVATE 0x20000 #define SIM_DBG_AIO_QUEUE 0x40000 /* File Reference */ struct FILEREF { char name[CBUFSIZE]; /* file name */ FILE *file; /* file handle */ int32 refcount; /* reference count */ }; /* The following macros exist to help populate structure contents They are dependent on the declaration order of the fields of the structures they exist to populate. */ #define UDATA(act,fl,cap) NULL,act,NULL,NULL,NULL,0,0,(fl),0,(cap),0,NULL,0,0 #if defined (__STDC__) || defined (_WIN32) /* Variants which depend on how macro arguments are convered to strings */ /* Generic Register declaration for all fields. If the register structure is extended, this macro will be retained and a new macro will be provided that populates the new register structure */ #define REGDATA(nm,loc,rdx,wd,off,dep,desc,flds,fl,qptr,siz) \ #nm, &(loc), (rdx), (wd), (off), (dep), (desc), (flds), (fl), (qptr), (siz) /* Right Justified Octal Register Data */ #define ORDATA(nm,loc,wd) #nm, &(loc), 8, (wd), 0, 1, NULL, NULL /* Right Justified Decimal Register Data */ #define DRDATA(nm,loc,wd) #nm, &(loc), 10, (wd), 0, 1, NULL, NULL /* Right Justified Hexadecimal Register Data */ #define HRDATA(nm,loc,wd) #nm, &(loc), 16, (wd), 0, 1, NULL, NULL /* Right Justified Binary Register Data */ #define BINRDATA(nm,loc,wd) #nm, &(loc), 2, (wd), 0, 1, NULL, NULL /* One-bit binary flag at an arbitrary offset in a 32-bit word Register */ #define FLDATA(nm,loc,pos) #nm, &(loc), 2, 1, (pos), 1, NULL, NULL /* Arbitrary location and Radix Register */ #define GRDATA(nm,loc,rdx,wd,pos) #nm, &(loc), (rdx), (wd), (pos), 1, NULL, NULL /* Arrayed register whose data is kept in a standard C array Register */ #define BRDATA(nm,loc,rdx,wd,dep) #nm, (loc), (rdx), (wd), 0, (dep), NULL, NULL /* Same as above, but with additional description initializer */ #define ORDATAD(nm,loc,wd,desc) #nm, &(loc), 8, (wd), 0, 1, (desc), NULL #define DRDATAD(nm,loc,wd,desc) #nm, &(loc), 10, (wd), 0, 1, (desc), NULL #define HRDATAD(nm,loc,wd,desc) #nm, &(loc), 16, (wd), 0, 1, (desc), NULL #define BINRDATAD(nm,loc,wd,desc) #nm, &(loc), 2, (wd), 0, 1, (desc), NULL #define FLDATAD(nm,loc,pos,desc) #nm, &(loc), 2, 1, (pos), 1, (desc), NULL #define GRDATAD(nm,loc,rdx,wd,pos,desc) #nm, &(loc), (rdx), (wd), (pos), 1, (desc), NULL #define BRDATAD(nm,loc,rdx,wd,dep,desc) #nm, (loc), (rdx), (wd), 0, (dep), (desc), NULL /* Same as above, but with additional description initializer, and bitfields */ #define ORDATADF(nm,loc,wd,desc,flds) #nm, &(loc), 8, (wd), 0, 1, (desc), (flds) #define DRDATADF(nm,loc,wd,desc,flds) #nm, &(loc), 10, (wd), 0, 1, (desc), (flds) #define HRDATADF(nm,loc,wd,desc,flds) #nm, &(loc), 16, (wd), 0, 1, (desc), (flds) #define BINRDATADF(nm,loc,wd) #nm, &(loc), 2, (wd), 0, 1, NULL, NULL #define FLDATADF(nm,loc,pos,desc,flds) #nm, &(loc), 2, 1, (pos), 1, (desc), (flds) #define GRDATADF(nm,loc,rdx,wd,pos,desc,flds) #nm, &(loc), (rdx), (wd), (pos), 1, (desc), (flds) #define BRDATADF(nm,loc,rdx,wd,dep,desc,flds) #nm, (loc), (rdx), (wd), 0, (dep), (desc), (flds) #define BIT(nm) {#nm, 0xffffffff, 1} /* Single Bit definition */ #define BITNC {"", 0xffffffff, 1} /* Don't care Bit definition */ #define BITF(nm,sz) {#nm, 0xffffffff, sz} /* Bit Field definition */ #define BITNCF(sz) {"", 0xffffffff, sz} /* Don't care Bit Field definition */ #define BITFFMT(nm,sz,fmt) {#nm, 0xffffffff, sz, NULL, #fmt}/* Bit Field definition with Output format */ #define BITFNAM(nm,sz,names) {#nm, 0xffffffff, sz, names} /* Bit Field definition with value->name map */ #else /* For non-STD-C compiler which can't stringify macro arguments with # */ #define REGDATA(nm,loc,rdx,wd,off,dep,desc,flds,fl,qptr,siz) \ "nm", &(loc), (rdx), (wd), (off), (dep), (desc), (flds), (fl), (qptr), (siz) #define ORDATA(nm,loc,wd) "nm", &(loc), 8, (wd), 0, 1, NULL, NULL #define DRDATA(nm,loc,wd) "nm", &(loc), 10, (wd), 0, 1, NULL, NULL #define HRDATA(nm,loc,wd) "nm", &(loc), 16, (wd), 0, 1, NULL, NULL #define BINRDATA(nm,loc,wd) "nm", &(loc), 2, (wd), 0, 1, NULL, NULL #define FLDATA(nm,loc,pos) "nm", &(loc), 2, 1, (pos), 1, NULL, NULL #define GRDATA(nm,loc,rdx,wd,pos) "nm", &(loc), (rdx), (wd), (pos), 1, NULL, NULL #define BRDATA(nm,loc,rdx,wd,dep) "nm", (loc), (rdx), (wd), 0, (dep), NULL, NULL #define ORDATAD(nm,loc,wd,desc) "nm", &(loc), 8, (wd), 0, 1, (desc), NULL #define DRDATAD(nm,loc,wd,desc) "nm", &(loc), 10, (wd), 0, 1, (desc), NULL #define HRDATAD(nm,loc,wd,desc) "nm", &(loc), 16, (wd), 0, 1, (desc), NULL #define BINRDATAD(nm,loc,wd,desc) "nm", &(loc), 2, (wd), 0, 1, (desc), NULL #define FLDATAD(nm,loc,pos,desc) "nm", &(loc), 2, 1, (pos), 1, (desc), NULL #define GRDATAD(nm,loc,rdx,wd,pos,desc) "nm", &(loc), (rdx), (wd), (pos), 1, (desc), NULL #define BRDATAD(nm,loc,rdx,wd,dep,desc) "nm", (loc), (rdx), (wd), 0, (dep), (desc), NULL #define ORDATADF(nm,loc,wd,desc,flds) "nm", &(loc), 8, (wd), 0, 1, (desc), (flds) #define DRDATADF(nm,loc,wd,desc,flds) "nm", &(loc), 10, (wd), 0, 1, (desc), (flds) #define HRDATADF(nm,loc,wd,desc,flds) "nm", &(loc), 16, (wd), 0, 1, (desc), (flds) #define BINRDATADF(nm,loc,wd,desc,flds) "nm", &(loc), 2, (wd), 0, 1, (desc), (flds) #define FLDATADF(nm,loc,pos,desc,flds) "nm", &(loc), 2, 1, (pos), 1, (desc), (flds) #define GRDATADF(nm,loc,rdx,wd,pos,desc,flds) "nm", &(loc), (rdx), (wd), (pos), 1, (desc), (flds) #define BRDATADF(nm,loc,rdx,wd,dep,desc,flds) "nm", (loc), (rdx), (wd), 0, (dep), (desc), (flds) #define BIT(nm) {"nm", 0xffffffff, 1} /* Single Bit definition */ #define BITNC {"", 0xffffffff, 1} /* Don't care Bit definition */ #define BITF(nm,sz) {"nm", 0xffffffff, sz} /* Bit Field definition */ #define BITNCF(sz) {"", 0xffffffff, sz} /* Don't care Bit Field definition */ #define BITFFMT(nm,sz,fmt) {"nm", 0xffffffff, sz, NULL, "fmt"}/* Bit Field definition with Output format */ #define BITFNAM(nm,sz,names) {"nm", 0xffffffff, sz, names} /* Bit Field definition with value->name map */ #endif #define ENDBITS {NULL} /* end of bitfield list */ /* Arrayed register whose data is part of the UNIT structure */ #define URDATA(nm,loc,rdx,wd,off,dep,fl) \ REGDATA(nm,(loc),(rdx),(wd),(off),(dep),NULL,NULL,((fl) | REG_UNIT),0,0) /* Arrayed register whose data is part of an arbitrary structure */ #define STRDATA(nm,loc,rdx,wd,off,dep,siz,fl) \ REGDATA(nm,(loc),(rdx),(wd),(off),(dep),NULL,NULL,((fl) | REG_STRUCT),0,(siz)) /* Same as above, but with additional description initializer */ #define URDATAD(nm,loc,rdx,wd,off,dep,fl,desc) \ REGDATA(nm,(loc),(rdx),(wd),(off),(dep),(desc),NULL,((fl) | REG_UNIT),0,0) #define STRDATAD(nm,loc,rdx,wd,off,dep,siz,fl,desc) \ REGDATA(nm,(loc),(rdx),(wd),(off),(dep),(desc),NULL,((fl) | REG_STRUCT),0,(siz)) /* Same as above, but with additional description initializer, and bitfields */ #define URDATADF(nm,loc,rdx,wd,off,dep,fl,desc,flds) \ REGDATA(nm,(loc),(rdx),(wd),(off),(dep),(desc),(flds),((fl) | REG_UNIT),0,0) #define STRDATADF(nm,loc,rdx,wd,off,dep,siz,fl,desc,flds) \ REGDATA(nm,(loc),(rdx),(wd),(off),(dep),(desc),(flds),((fl) | REG_STRUCT),0,(siz)) /* Function prototypes */ #include "scp.h" #include "sim_console.h" #include "sim_timer.h" #include "sim_fio.h" /* Macro to ALWAYS execute the specified expression and fail if it evaluates to false. */ /* This replaces any references to "assert()" which should never be invoked */ /* with an expression which causes side effects (i.e. must be executed for */ /* the program to work correctly) */ #define ASSURE(_Expression) while (!(_Expression)) {fprintf(stderr, "%s failed at %s line %d\n", #_Expression, __FILE__, __LINE__); \ sim_printf("%s failed at %s line %d\n", #_Expression, __FILE__, __LINE__); \ abort();} /* Asynch/Threaded I/O support */ #if defined (SIM_ASYNCH_IO) #include <pthread.h> #define SIM_ASYNCH_CLOCKS 1 extern pthread_mutex_t sim_asynch_lock; extern pthread_cond_t sim_asynch_wake; extern pthread_mutex_t sim_timer_lock; extern pthread_cond_t sim_timer_wake; extern t_bool sim_timer_event_canceled; extern int32 sim_tmxr_poll_count; extern pthread_cond_t sim_tmxr_poll_cond; extern pthread_mutex_t sim_tmxr_poll_lock; extern pthread_t sim_asynch_main_threadid; extern UNIT * volatile sim_asynch_queue; extern volatile t_bool sim_idle_wait; extern int32 sim_asynch_check; extern int32 sim_asynch_latency; extern int32 sim_asynch_inst_latency; /* Thread local storage */ #if defined(__GNUC__) && !defined(__APPLE__) && !defined(__hpux) && !defined(__OpenBSD__) && !defined(_AIX) #define AIO_TLS __thread #elif defined(_MSC_VER) #define AIO_TLS __declspec(thread) #else /* Other compiler environment, then don't worry about thread local storage. */ /* It is primarily used only used in debugging messages */ #define AIO_TLS #endif #define AIO_QUEUE_CHECK(que, lock) \ do { \ UNIT *_cptr; \ if (lock) \ pthread_mutex_lock (lock); \ for (_cptr = que; \ (_cptr != QUEUE_LIST_END); \ _cptr = _cptr->next) \ if (!_cptr->next) { \ if (sim_deb) { \ sim_debug (SIM_DBG_EVENT, sim_dflt_dev, "Queue Corruption detected\n");\ fclose(sim_deb); \ } \ sim_printf("Queue Corruption detected\n"); \ abort(); \ } \ if (lock) \ pthread_mutex_unlock (lock); \ } while (0) #define AIO_MAIN_THREAD (pthread_equal ( pthread_self(), sim_asynch_main_threadid )) #define AIO_LOCK \ pthread_mutex_lock(&sim_asynch_lock) #define AIO_UNLOCK \ pthread_mutex_unlock(&sim_asynch_lock) #define AIO_IS_ACTIVE(uptr) (((uptr)->a_is_active ? (uptr)->a_is_active (uptr) : FALSE) || ((uptr)->a_next)) #if defined(SIM_ASYNCH_MUX) #define AIO_CANCEL(uptr) \ if ((uptr)->cancel) \ (uptr)->cancel (uptr); \ else { \ if (((uptr)->dynflags & UNIT_TM_POLL) && \ !((uptr)->next) && !((uptr)->a_next)) { \ (uptr)->a_polling_now = FALSE; \ sim_tmxr_poll_count -= (uptr)->a_poll_waiter_count; \ (uptr)->a_poll_waiter_count = 0; \ } \ } #endif /* defined(SIM_ASYNCH_MUX) */ #if !defined(AIO_CANCEL) #define AIO_CANCEL(uptr) \ if ((uptr)->cancel) \ (uptr)->cancel (uptr) #endif /* !defined(AIO_CANCEL) */ #define AIO_EVENT_BEGIN(uptr) \ do { \ int __was_poll = uptr->dynflags & UNIT_TM_POLL #define AIO_EVENT_COMPLETE(uptr, reason) \ if (__was_poll) { \ pthread_mutex_lock (&sim_tmxr_poll_lock); \ uptr->a_polling_now = FALSE; \ |
︙ | ︙ | |||
1107 1108 1109 1110 1111 1112 1113 | #endif #ifdef USE_AIO_INTRINSICS /* This approach uses intrinsics to manage access to the link list head */ /* sim_asynch_queue. This implementation is a completely lock free design */ /* which avoids the potential ABA issues. */ #define AIO_QUEUE_MODE "Lock free asynchronous event queue access" #define AIO_INIT \ | | < < < < | | < < | | | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < | | < < | | | 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 | #endif #ifdef USE_AIO_INTRINSICS /* This approach uses intrinsics to manage access to the link list head */ /* sim_asynch_queue. This implementation is a completely lock free design */ /* which avoids the potential ABA issues. */ #define AIO_QUEUE_MODE "Lock free asynchronous event queue access" #define AIO_INIT \ do { \ int tmr; \ sim_asynch_main_threadid = pthread_self(); \ /* Empty list/list end uses the point value (void *)1. \ This allows NULL in an entry's a_next pointer to \ indicate that the entry is not currently in any list */ \ sim_asynch_queue = QUEUE_LIST_END; \ for (tmr=0; tmr<SIM_NTIMERS; tmr++) \ sim_clock_cosched_queue[tmr] = QUEUE_LIST_END; \ } while (0) #define AIO_CLEANUP \ do { \ pthread_mutex_destroy(&sim_asynch_lock); \ pthread_cond_destroy(&sim_asynch_wake); \ pthread_mutex_destroy(&sim_timer_lock); \ pthread_cond_destroy(&sim_timer_wake); \ pthread_mutex_destroy(&sim_tmxr_poll_lock); \ pthread_cond_destroy(&sim_tmxr_poll_cond); \ } while (0) #ifdef _WIN32 #elif defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4) || defined(__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8) #define InterlockedCompareExchangePointer(Destination, Exchange, Comparand) __sync_val_compare_and_swap(Destination, Comparand, Exchange) #elif defined(__DECC_VER) #define InterlockedCompareExchangePointer(Destination, Exchange, Comparand) (void *)((int32)_InterlockedCompareExchange64(Destination, Exchange, Comparand)) #else #error "Implementation of function InterlockedCompareExchangePointer() is needed to build with USE_AIO_INTRINSICS" #endif #define AIO_QUEUE_VAL (UNIT *)(InterlockedCompareExchangePointer((void * volatile *)&sim_asynch_queue, (void *)sim_asynch_queue, NULL)) #define AIO_QUEUE_SET(val, queue) (UNIT *)(InterlockedCompareExchangePointer((void * volatile *)&sim_asynch_queue, (void *)val, queue)) #define AIO_UPDATE_QUEUE sim_aio_update_queue () #define AIO_ACTIVATE(caller, uptr, event_time) \ if (!pthread_equal ( pthread_self(), sim_asynch_main_threadid )) { \ sim_aio_activate ((ACTIVATE_API)caller, uptr, event_time); \ return SCPE_OK; \ } else (void)0 #else /* !USE_AIO_INTRINSICS */ /* This approach uses a pthread mutex to manage access to the link list */ /* head sim_asynch_queue. It will always work, but may be slower than the */ /* lock free approach when using USE_AIO_INTRINSICS */ #define AIO_QUEUE_MODE "Lock based asynchronous event queue access" #define AIO_INIT \ do { \ int tmr; \ pthread_mutexattr_t attr; \ \ pthread_mutexattr_init (&attr); \ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); \ pthread_mutex_init (&sim_asynch_lock, &attr); \ pthread_mutexattr_destroy (&attr); \ sim_asynch_main_threadid = pthread_self(); \ /* Empty list/list end uses the point value (void *)1. \ This allows NULL in an entry's a_next pointer to \ indicate that the entry is not currently in any list */ \ sim_asynch_queue = QUEUE_LIST_END; \ for (tmr=0; tmr<SIM_NTIMERS; tmr++) \ sim_clock_cosched_queue[tmr] = QUEUE_LIST_END; \ } while (0) #define AIO_CLEANUP \ do { \ pthread_mutex_destroy(&sim_asynch_lock); \ pthread_cond_destroy(&sim_asynch_wake); \ pthread_mutex_destroy(&sim_timer_lock); \ pthread_cond_destroy(&sim_timer_wake); \ pthread_mutex_destroy(&sim_tmxr_poll_lock); \ pthread_cond_destroy(&sim_tmxr_poll_cond); \ } while (0) #define AIO_UPDATE_QUEUE \ do { \ UNIT *uptr; \ AIO_LOCK; \ while (sim_asynch_queue != QUEUE_LIST_END) { /* List !Empty */ \ int32 a_event_time; \ uptr = sim_asynch_queue; \ sim_debug (SIM_DBG_AIO_QUEUE, sim_dflt_dev, "Migrating Asynch event for %s after %d instructions\n", sim_uname(uptr), uptr->a_event_time);\ sim_asynch_queue = uptr->a_next; \ |
︙ | ︙ | |||
1288 1289 1290 1291 1292 1293 1294 | AIO_UNLOCK; \ uptr->a_activate_call (uptr, a_event_time); \ if (uptr->a_check_completion) { \ sim_debug (SIM_DBG_AIO_QUEUE, sim_dflt_dev, "Calling Completion Check for asynch event on %s\n", sim_uname(uptr));\ uptr->a_check_completion (uptr); \ } \ AIO_LOCK; \ | | | | < < < < < < < < < < < < < < < < < < < < < | | | | < | > > > > > > | 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 | AIO_UNLOCK; \ uptr->a_activate_call (uptr, a_event_time); \ if (uptr->a_check_completion) { \ sim_debug (SIM_DBG_AIO_QUEUE, sim_dflt_dev, "Calling Completion Check for asynch event on %s\n", sim_uname(uptr));\ uptr->a_check_completion (uptr); \ } \ AIO_LOCK; \ } \ AIO_UNLOCK; \ } while (0) #define AIO_ACTIVATE(caller, uptr, event_time) \ if (!pthread_equal ( pthread_self(), sim_asynch_main_threadid )) { \ sim_debug (SIM_DBG_AIO_QUEUE, sim_dflt_dev, "Queueing Asynch event for %s after %d instructions\n", sim_uname(uptr), event_time);\ AIO_LOCK; \ if (uptr->a_next) { /* already queued? */ \ uptr->a_activate_call = sim_activate_abs; \ } else { \ uptr->a_next = sim_asynch_queue; \ uptr->a_event_time = event_time; \ uptr->a_activate_call = (ACTIVATE_API)&caller; \ sim_asynch_queue = uptr; \ } \ if (sim_idle_wait) { \ sim_debug (TIMER_DBG_IDLE, &sim_timer_dev, "waking due to event on %s after %d instructions\n", sim_uname(uptr), event_time);\ pthread_cond_signal (&sim_asynch_wake); \ } \ AIO_UNLOCK; \ sim_asynch_check = 0; \ return SCPE_OK; \ } else (void)0 #endif /* USE_AIO_INTRINSICS */ #define AIO_VALIDATE if (!pthread_equal ( pthread_self(), sim_asynch_main_threadid )) {sim_printf("Improper thread context for operation\n"); abort();} #define AIO_CHECK_EVENT \ if (0 > --sim_asynch_check) { \ AIO_UPDATE_QUEUE; \ sim_asynch_check = sim_asynch_inst_latency; \ } else (void)0 #define AIO_SET_INTERRUPT_LATENCY(instpersec) \ do { \ sim_asynch_inst_latency = (int32)((((double)(instpersec))*sim_asynch_latency)/1000000000);\ if (sim_asynch_inst_latency == 0) \ sim_asynch_inst_latency = 1; \ } while (0) #else /* !SIM_ASYNCH_IO */ #define AIO_QUEUE_MODE "Asynchronous I/O is not available" #define AIO_UPDATE_QUEUE #define AIO_ACTIVATE(caller, uptr, event_time) #define AIO_VALIDATE #define AIO_CHECK_EVENT #define AIO_INIT #define AIO_MAIN_THREAD TRUE #define AIO_LOCK #define AIO_UNLOCK #define AIO_CLEANUP #define AIO_EVENT_BEGIN(uptr) #define AIO_EVENT_COMPLETE(uptr, reason) #define AIO_IS_ACTIVE(uptr) FALSE #define AIO_CANCEL(uptr) \ if ((uptr)->cancel) \ (uptr)->cancel (uptr) #define AIO_SET_INTERRUPT_LATENCY(instpersec) #define AIO_TLS #endif /* SIM_ASYNCH_IO */ #ifdef __cplusplus } #endif #endif |
Changes to src/sim_disk.c.
︙ | ︙ | |||
158 159 160 161 162 163 164 | #define DOP_WSEC 2 /* sim_disk_wrsect_a */ #define DOP_IAVL 3 /* sim_disk_isavailable_a */ static void * _disk_io(void *arg) { UNIT* volatile uptr = (UNIT*)arg; | < < < | < | 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | #define DOP_WSEC 2 /* sim_disk_wrsect_a */ #define DOP_IAVL 3 /* sim_disk_isavailable_a */ static void * _disk_io(void *arg) { UNIT* volatile uptr = (UNIT*)arg; struct disk_context *ctx = (struct disk_context *)uptr->disk_ctx; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which in general won't be readily yielding the processor when this thread needs to run */ sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); sim_debug (ctx->dbit, ctx->dptr, "_disk_io(unit=%d) starting\n", (int)(uptr-ctx->dptr->units)); pthread_mutex_lock (&ctx->io_lock); pthread_cond_signal (&ctx->startup_cond); /* Signal we're ready to go */ while (ctx->asynch_io) { pthread_cond_wait (&ctx->io_cond, &ctx->io_lock); |
︙ | ︙ | |||
233 234 235 236 237 238 239 | } static t_bool _disk_is_active (UNIT *uptr) { struct disk_context *ctx = (struct disk_context *)uptr->disk_ctx; if (ctx) { | | | | 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | } static t_bool _disk_is_active (UNIT *uptr) { struct disk_context *ctx = (struct disk_context *)uptr->disk_ctx; if (ctx) { sim_debug (ctx->dbit, ctx->dptr, "_disk_is_active(unit=%d, dop=%d)\n", (int)(uptr-ctx->dptr->units), ctx->io_dop); return (ctx->io_dop != DOP_DONE); } return FALSE; } static void _disk_cancel (UNIT *uptr) { struct disk_context *ctx = (struct disk_context *)uptr->disk_ctx; if (ctx) { sim_debug (ctx->dbit, ctx->dptr, "_disk_cancel(unit=%d, dop=%d)\n", (int)(uptr-ctx->dptr->units), ctx->io_dop); if (ctx->asynch_io) { pthread_mutex_lock (&ctx->io_lock); while (ctx->io_dop != DOP_DONE) pthread_cond_wait (&ctx->io_done, &ctx->io_lock); pthread_mutex_unlock (&ctx->io_lock); } } |
︙ | ︙ | |||
305 306 307 308 309 310 311 | { "RAW", 0, DKUF_F_RAW, sim_os_disk_implemented_raw}, { "VHD", 0, DKUF_F_VHD, sim_vhd_disk_implemented}, { NULL, 0, 0} }; /* Set disk format */ | | | 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | { "RAW", 0, DKUF_F_RAW, sim_os_disk_implemented_raw}, { "VHD", 0, DKUF_F_VHD, sim_vhd_disk_implemented}, { NULL, 0, 0} }; /* Set disk format */ t_stat sim_disk_set_fmt (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { uint32 f; if (uptr == NULL) return SCPE_IERR; if (cptr == NULL) return SCPE_ARG; |
︙ | ︙ | |||
327 328 329 330 331 332 333 | } } return SCPE_ARG; } /* Show disk format */ | | | | | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | } } return SCPE_ARG; } /* Show disk format */ t_stat sim_disk_show_fmt (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { int32 f = DK_GET_FMT (uptr); size_t i; for (i = 0; i < DKUF_N_FMT; i++) if (fmts[i].fmtval == f) { fprintf (st, "%s format", fmts[i].name); return SCPE_OK; } fprintf (st, "invalid format"); return SCPE_OK; } /* Set disk capacity */ t_stat sim_disk_set_capac (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { t_offset cap; t_stat r; DEVICE *dptr = find_dev_from_unit (uptr); if ((cptr == NULL) || (*cptr == 0)) return SCPE_ARG; if (uptr->flags & UNIT_ATT) return SCPE_ALATT; cap = (t_offset) get_uint (cptr, 10, sim_taddr_64? 2000000: 2000, &r); if (r != SCPE_OK) return SCPE_ARG; uptr->capac = (t_addr)((cap * ((t_offset) 1000000))/((dptr->flags & DEV_SECTORS) ? 512 : 1)); return SCPE_OK; } /* Show disk capacity */ t_stat sim_disk_show_capac (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { const char *cap_units = "B"; DEVICE *dptr = find_dev_from_unit (uptr); t_offset capac = ((t_offset)uptr->capac)*((dptr->flags & DEV_SECTORS) ? 512 : 1); if ((dptr->dwidth / dptr->aincr) == 16) cap_units = "W"; |
︙ | ︙ | |||
467 468 469 470 471 472 473 | pthread_attr_destroy(&attr); pthread_cond_wait (&ctx->startup_cond, &ctx->io_lock); /* Wait for thread to stabilize */ pthread_mutex_unlock (&ctx->io_lock); pthread_cond_destroy (&ctx->startup_cond); } uptr->a_check_completion = _disk_completion_dispatch; uptr->a_is_active = _disk_is_active; | | | 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 | pthread_attr_destroy(&attr); pthread_cond_wait (&ctx->startup_cond, &ctx->io_lock); /* Wait for thread to stabilize */ pthread_mutex_unlock (&ctx->io_lock); pthread_cond_destroy (&ctx->startup_cond); } uptr->a_check_completion = _disk_completion_dispatch; uptr->a_is_active = _disk_is_active; uptr->cancel = _disk_cancel; return SCPE_OK; #endif } /* Disable asynchronous operation */ t_stat sim_disk_clr_async (UNIT *uptr) |
︙ | ︙ | |||
650 651 652 653 654 655 656 657 658 659 660 661 662 663 | struct disk_context *ctx = (struct disk_context *)uptr->disk_ctx; uint32 f = DK_GET_FMT (uptr); t_stat r; uint8 *tbuf = NULL; sim_debug (ctx->dbit, ctx->dptr, "sim_disk_wrsect(unit=%d, lba=0x%X, sects=%d)\n", (int)(uptr-ctx->dptr->units), lba, sects); if (f == DKUF_F_STD) return _sim_disk_wrsect (uptr, lba, buf, sectswritten, sects); if ((0 == (ctx->sector_size & (ctx->storage_sector_size - 1))) || /* Sector Aligned & whole sector transfers */ ((0 == ((lba*ctx->sector_size) & (ctx->storage_sector_size - 1))) && (0 == ((sects*ctx->sector_size) & (ctx->storage_sector_size - 1))))) { if (sim_end || (ctx->xfer_element_size == sizeof (char))) | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | struct disk_context *ctx = (struct disk_context *)uptr->disk_ctx; uint32 f = DK_GET_FMT (uptr); t_stat r; uint8 *tbuf = NULL; sim_debug (ctx->dbit, ctx->dptr, "sim_disk_wrsect(unit=%d, lba=0x%X, sects=%d)\n", (int)(uptr-ctx->dptr->units), lba, sects); if (uptr->dynflags & UNIT_DISK_CHK) { DEVICE *dptr = find_dev_from_unit (uptr); uint32 capac_factor = ((dptr->dwidth / dptr->aincr) == 16) ? 2 : 1; /* capacity units (word: 2, byte: 1) */ t_lba total_sectors = (t_lba)((uptr->capac*capac_factor)/(ctx->sector_size/((dptr->flags & DEV_SECTORS) ? 512 : 1))); t_lba sect; for (sect = 0; sect < sects; sect++) { t_lba offset; t_bool sect_error = FALSE; for (offset = 0; offset < ctx->sector_size; offset += sizeof(uint32)) { if (*((uint32 *)&buf[sect*ctx->sector_size + offset]) != (uint32)(lba + sect)) { sect_error = TRUE; break; } } if (sect_error) { uint32 save_dctrl = dptr->dctrl; FILE *save_sim_deb = sim_deb; sim_printf ("\n%s%d: Write Address Verification Error on lbn %d(0x%X) of %d(0x%X).\n", sim_dname (dptr), (int)(uptr-dptr->units), (int)(lba+sect), (int)(lba+sect), (int)total_sectors, (int)total_sectors); dptr->dctrl = 0xFFFFFFFF; sim_deb = save_sim_deb ? save_sim_deb : stdout; sim_disk_data_trace (uptr, buf+sect*ctx->sector_size, lba+sect, ctx->sector_size, "Found", TRUE, 1); dptr->dctrl = save_dctrl; sim_deb = save_sim_deb; } } } if (f == DKUF_F_STD) return _sim_disk_wrsect (uptr, lba, buf, sectswritten, sects); if ((0 == (ctx->sector_size & (ctx->storage_sector_size - 1))) || /* Sector Aligned & whole sector transfers */ ((0 == ((lba*ctx->sector_size) & (ctx->storage_sector_size - 1))) && (0 == ((sects*ctx->sector_size) & (ctx->storage_sector_size - 1))))) { if (sim_end || (ctx->xfer_element_size == sizeof (char))) |
︙ | ︙ | |||
808 809 810 811 812 813 814 | free (uptr->filename); uptr->filename = NULL; free (uptr->disk_ctx); uptr->disk_ctx = NULL; return stat; } | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | | 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 | free (uptr->filename); uptr->filename = NULL; free (uptr->disk_ctx); uptr->disk_ctx = NULL; return stat; } #pragma pack(push,1) typedef struct _ODS2_HomeBlock { uint32 hm2_l_homelbn; uint32 hm2_l_alhomelbn; uint32 hm2_l_altidxlbn; uint8 hm2_b_strucver; uint8 hm2_b_struclev; uint16 hm2_w_cluster; uint16 hm2_w_homevbn; uint16 hm2_w_alhomevbn; uint16 hm2_w_altidxvbn; uint16 hm2_w_ibmapvbn; uint32 hm2_l_ibmaplbn; uint32 hm2_l_maxfiles; uint16 hm2_w_ibmapsize; uint16 hm2_w_resfiles; uint16 hm2_w_devtype; uint16 hm2_w_rvn; uint16 hm2_w_setcount; uint16 hm2_w_volchar; uint32 hm2_l_volowner; uint32 hm2_l_reserved; uint16 hm2_w_protect; uint16 hm2_w_fileprot; uint16 hm2_w_reserved; uint16 hm2_w_checksum1; uint32 hm2_q_credate[2]; uint8 hm2_b_window; uint8 hm2_b_lru_lim; uint16 hm2_w_extend; uint32 hm2_q_retainmin[2]; uint32 hm2_q_retainmax[2]; uint32 hm2_q_revdate[2]; uint8 hm2_r_min_class[20]; uint8 hm2_r_max_class[20]; uint8 hm2_r_reserved[320]; uint32 hm2_l_serialnum; uint8 hm2_t_strucname[12]; uint8 hm2_t_volname[12]; uint8 hm2_t_ownername[12]; uint8 hm2_t_format[12]; uint16 hm2_w_reserved2; uint16 hm2_w_checksum2; } ODS2_HomeBlock; typedef struct _ODS2_FileHeader { uint8 fh2_b_idoffset; uint8 fh2_b_mpoffset; uint8 fh2_b_acoffset; uint8 fh2_b_rsoffset; uint16 fh2_w_seg_num; uint16 fh2_w_structlev; uint16 fh2_w_fid[3]; uint16 fh2_w_ext_fid[3]; uint16 fh2_w_recattr[16]; uint32 fh2_l_filechar; uint16 fh2_w_remaining[228]; } ODS2_FileHeader; typedef union _ODS2_Retreval { struct { unsigned fm2___fill : 14; /* type specific data */ unsigned fm2_v_format : 2; /* format type code */ } fm2_r_word0_bits; struct { unsigned fm2_v_exact : 1; /* exact placement specified */ unsigned fm2_v_oncyl : 1; /* on cylinder allocation desired */ unsigned fm2___fill : 10; unsigned fm2_v_lbn : 1; /* use LBN of next map pointer */ unsigned fm2_v_rvn : 1; /* place on specified RVN */ unsigned fm2_v_format0 : 2; } fm2_r_map_bits0; struct { unsigned fm2_b_count1 : 8; /* low byte described below */ unsigned fm2_v_highlbn1 : 6; /* high order LBN */ unsigned fm2_v_format1 : 2; unsigned fm2_w_lowlbn1 : 16; /* low order LBN */ } fm2_r_map_bits1; struct { struct { unsigned fm2_v_count2 : 14; /* count field */ unsigned fm2_v_format2 : 2; unsigned fm2_l_lowlbn2 : 16; /* low order LBN */ } fm2_r_map2_long0; uint16 fm2_l_highlbn2; /* high order LBN */ } fm2_r_map_bits2; struct { struct { unsigned fm2_v_highcount3 : 14; /* low order count field */ unsigned fm2_v_format3 : 2; unsigned fm2_w_lowcount3 : 16; /* high order count field */ } fm2_r_map3_long0; uint32 fm2_l_lbn3; } fm2_r_map_bits3; } ODS2_Retreval; typedef struct _ODS2_StorageControlBlock { uint8 scb_b_strucver; /* 1 */ uint8 scb_b_struclev; /* 2 */ uint16 scb_w_cluster; uint32 scb_l_volsize; uint32 scb_l_blksize; uint32 scb_l_sectors; uint32 scb_l_tracks; uint32 scb_l_cylinder; uint32 scb_l_status; uint32 scb_l_status2; uint16 scb_w_writecnt; uint8 scb_t_volockname[12]; uint32 scb_q_mounttime[2]; uint16 scb_w_backrev; uint32 scb_q_genernum[2]; uint8 scb_b_reserved[446]; uint16 scb_w_checksum; } ODS2_SCB; #pragma pack(pop) static uint16 ODS2Checksum (void *Buffer, uint16 WordCount) { int i; uint16 Sum = 0; uint16 CheckSum = 0; uint16 *Buf = (uint16 *)Buffer; for (i=0; i<WordCount; i++) CheckSum += Buf[i]; return CheckSum; } static t_offset get_filesystem_size (UNIT *uptr) { DEVICE *dptr; t_addr saved_capac; t_offset temp_capac = 512 * (t_offset)0xFFFFFFFFu; /* Make sure we can access the largest sector */ uint32 capac_factor; ODS2_HomeBlock Home; ODS2_FileHeader Header; ODS2_Retreval *Retr; ODS2_SCB Scb; uint16 CheckSum1, CheckSum2; uint32 ScbLbn; t_offset ret_val = (t_offset)-1; if ((dptr = find_dev_from_unit (uptr)) == NULL) return ret_val; capac_factor = ((dptr->dwidth / dptr->aincr) == 16) ? 2 : 1; /* save capacity units (word: 2, byte: 1) */ saved_capac = uptr->capac; uptr->capac = (t_addr)(temp_capac/(capac_factor*((dptr->flags & DEV_SECTORS) ? 512 : 1))); if (sim_disk_rdsect (uptr, 1, (uint8 *)&Home, NULL, 1)) goto Return_Cleanup; CheckSum1 = ODS2Checksum (&Home, (uint16)((((char *)&Home.hm2_w_checksum1)-((char *)&Home.hm2_l_homelbn))/2)); CheckSum2 = ODS2Checksum (&Home, (uint16)((((char *)&Home.hm2_w_checksum2)-((char *)&Home.hm2_l_homelbn))/2)); if ((Home.hm2_l_homelbn == 0) || (Home.hm2_l_alhomelbn == 0) || (Home.hm2_l_altidxlbn == 0) || ((Home.hm2_b_struclev != 2) && (Home.hm2_b_struclev != 5)) || (Home.hm2_b_strucver == 0) || (Home.hm2_w_cluster == 0) || (Home.hm2_w_homevbn == 0) || (Home.hm2_w_alhomevbn == 0) || (Home.hm2_w_ibmapvbn == 0) || (Home.hm2_l_ibmaplbn == 0) || (Home.hm2_w_resfiles >= Home.hm2_l_maxfiles) || (Home.hm2_w_ibmapsize == 0) || (Home.hm2_w_resfiles < 5) || (Home.hm2_w_checksum1 != CheckSum1) || (Home.hm2_w_checksum2 != CheckSum2)) goto Return_Cleanup; if (sim_disk_rdsect (uptr, Home.hm2_l_ibmaplbn+Home.hm2_w_ibmapsize+1, (uint8 *)&Header, NULL, 1)) goto Return_Cleanup; CheckSum1 = ODS2Checksum (&Header, 255); if (CheckSum1 != *(((uint16 *)&Header)+255)) /* Verify Checksum on BITMAP.SYS file header */ goto Return_Cleanup; Retr = (ODS2_Retreval *)(((uint16*)(&Header))+Header.fh2_b_mpoffset); /* The BitMap File has a single extent, which may be preceeded by a placement descriptor */ if (Retr->fm2_r_word0_bits.fm2_v_format == 0) Retr = (ODS2_Retreval *)(((uint16 *)Retr)+1); /* skip placement descriptor */ switch (Retr->fm2_r_word0_bits.fm2_v_format) { case 1: ScbLbn = (Retr->fm2_r_map_bits1.fm2_v_highlbn1<<16)+Retr->fm2_r_map_bits1.fm2_w_lowlbn1; break; case 2: ScbLbn = (Retr->fm2_r_map_bits2.fm2_l_highlbn2<<16)+Retr->fm2_r_map_bits2.fm2_r_map2_long0.fm2_l_lowlbn2; break; case 3: ScbLbn = Retr->fm2_r_map_bits3.fm2_l_lbn3; break; } Retr = (ODS2_Retreval *)(((uint16 *)Retr)+Retr->fm2_r_word0_bits.fm2_v_format+1); if (sim_disk_rdsect (uptr, ScbLbn, (uint8 *)&Scb, NULL, 1)) goto Return_Cleanup; CheckSum1 = ODS2Checksum (&Scb, 255); if (CheckSum1 != *(((uint16 *)&Scb)+255)) /* Verify Checksum on Storage Control Block */ goto Return_Cleanup; if ((Scb.scb_w_cluster != Home.hm2_w_cluster) || (Scb.scb_b_strucver != Home.hm2_b_strucver) || (Scb.scb_b_struclev != Home.hm2_b_struclev)) goto Return_Cleanup; if (!sim_quiet) { sim_printf ("%s%d: '%s' Contains ODS%d File system:\n", sim_dname (dptr), (int)(uptr-dptr->units), uptr->filename, Home.hm2_b_struclev); sim_printf ("%s%d: Volume Name: %12.12s ", sim_dname (dptr), (int)(uptr-dptr->units), Home.hm2_t_volname); sim_printf ("Format: %12.12s ", Home.hm2_t_format); sim_printf ("SectorsInVolume: %d\n", Scb.scb_l_volsize); } ret_val = ((t_offset)Scb.scb_l_volsize) * 512; Return_Cleanup: uptr->capac = saved_capac; return ret_val; } t_stat sim_disk_attach (UNIT *uptr, const char *cptr, size_t sector_size, size_t xfer_element_size, t_bool dontautosize, uint32 dbit, const char *dtype, uint32 pdp11tracksize, int completion_delay) { struct disk_context *ctx; DEVICE *dptr; char tbuf[4*CBUFSIZE]; FILE *(*open_function)(const char *filename, const char *mode) = sim_fopen; FILE *(*create_function)(const char *filename, t_offset desiredsize) = NULL; t_offset (*size_function)(FILE *file); t_stat (*storage_function)(FILE *file, uint32 *sector_size, uint32 *removable) = NULL; t_bool created = FALSE, copied = FALSE; t_bool auto_format = FALSE; t_offset capac, filesystem_capac; if (uptr->flags & UNIT_DIS) /* disabled? */ return SCPE_UDIS; if (!(uptr->flags & UNIT_ATTABLE)) /* not attachable? */ return SCPE_NOATT; if ((dptr = find_dev_from_unit (uptr)) == NULL) return SCPE_NOATT; |
︙ | ︙ | |||
977 978 979 980 981 982 983 | } free (copy_buf); sim_vhd_disk_close (vhd); sim_disk_detach (uptr); if (r == SCPE_OK) { created = TRUE; copied = TRUE; | > > | > | | | | | | | | | | | | | | | > > | 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 | } free (copy_buf); sim_vhd_disk_close (vhd); sim_disk_detach (uptr); if (r == SCPE_OK) { created = TRUE; copied = TRUE; tbuf[sizeof(tbuf)-1] = '\0'; strncpy (tbuf, gbuf, sizeof(tbuf)-1); cptr = tbuf; sim_disk_set_fmt (uptr, 0, "VHD", NULL); sim_switches = saved_sim_switches; } else return r; /* fall through and open/return the newly created & copied vhd */ } } else if (sim_switches & SWMASK ('M')) { /* merge difference disk? */ char gbuf[CBUFSIZE], *Parent = NULL; FILE *vhd; sim_switches = sim_switches & ~(SWMASK ('M')); get_glyph_nc (cptr, gbuf, 0); /* get spec */ vhd = sim_vhd_disk_merge (gbuf, &Parent); if (vhd) { t_stat r; sim_vhd_disk_close (vhd); r = sim_disk_attach (uptr, Parent, sector_size, xfer_element_size, dontautosize, dbit, dtype, pdp11tracksize, completion_delay); free (Parent); return r; } return SCPE_ARG; } switch (DK_GET_FMT (uptr)) { /* case on format */ case DKUF_F_STD: /* SIMH format */ if (NULL == (uptr->fileref = sim_vhd_disk_open (cptr, "rb"))) { if (errno == EBADF) /* VHD but broken */ return SCPE_OPENERR; open_function = sim_fopen; size_function = sim_fsize_ex; break; } sim_disk_set_fmt (uptr, 0, "VHD", NULL); /* set file format to VHD */ sim_vhd_disk_close (uptr->fileref); /* close vhd file*/ auto_format = TRUE; |
︙ | ︙ | |||
1042 1043 1044 1045 1046 1047 1048 | ctx->capac_factor = ((dptr->dwidth / dptr->aincr) == 16) ? 2 : 1; /* save capacity units (word: 2, byte: 1) */ ctx->xfer_element_size = (uint32)xfer_element_size; /* save xfer_element_size */ ctx->dptr = dptr; /* save DEVICE pointer */ ctx->dbit = dbit; /* save debug bit */ sim_debug (ctx->dbit, ctx->dptr, "sim_disk_attach(unit=%d,filename='%s')\n", (int)(uptr-ctx->dptr->units), uptr->filename); ctx->auto_format = auto_format; /* save that we auto selected format */ ctx->storage_sector_size = (uint32)sector_size; /* Default */ | | > | > | 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 | ctx->capac_factor = ((dptr->dwidth / dptr->aincr) == 16) ? 2 : 1; /* save capacity units (word: 2, byte: 1) */ ctx->xfer_element_size = (uint32)xfer_element_size; /* save xfer_element_size */ ctx->dptr = dptr; /* save DEVICE pointer */ ctx->dbit = dbit; /* save debug bit */ sim_debug (ctx->dbit, ctx->dptr, "sim_disk_attach(unit=%d,filename='%s')\n", (int)(uptr-ctx->dptr->units), uptr->filename); ctx->auto_format = auto_format; /* save that we auto selected format */ ctx->storage_sector_size = (uint32)sector_size; /* Default */ if ((sim_switches & SWMASK ('R')) || /* read only? */ ((uptr->flags & UNIT_RO) != 0)) { if (((uptr->flags & UNIT_ROABLE) == 0) && /* allowed? */ ((uptr->flags & UNIT_RO) == 0)) return _err_return (uptr, SCPE_NORO); /* no, error */ uptr->fileref = open_function (cptr, "rb"); /* open rd only */ if (uptr->fileref == NULL) /* open fail? */ return _err_return (uptr, SCPE_OPENERR); /* yes, error */ uptr->flags = uptr->flags | UNIT_RO; /* set rd only */ if (!sim_quiet) { sim_printf ("%s%d: unit is read only\n", sim_dname (dptr), (int)(uptr-dptr->units)); |
︙ | ︙ | |||
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 | r = sim_disk_wrsect (uptr, (t_lba)(0), secbuf, NULL, 1); /* Write First Sector */ free (secbuf); if (r != SCPE_OK) { sim_disk_detach (uptr); /* report error now */ remove (cptr); /* remove the create file */ return SCPE_OPENERR; } if (pdp11tracksize) sim_disk_pdp11_bad_block (uptr, pdp11tracksize); } capac = size_function (uptr->fileref); if (capac && (capac != (t_offset)-1)) { if (dontautosize) { if ((capac < (((t_offset)uptr->capac)*ctx->capac_factor*((dptr->flags & DEV_SECTORS) ? 512 : 1))) && (DKUF_F_STD != DK_GET_FMT (uptr))) { if (!sim_quiet) { | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < < | | > > | > > > | > > | 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 | r = sim_disk_wrsect (uptr, (t_lba)(0), secbuf, NULL, 1); /* Write First Sector */ free (secbuf); if (r != SCPE_OK) { sim_disk_detach (uptr); /* report error now */ remove (cptr); /* remove the create file */ return SCPE_OPENERR; } if (sim_switches & SWMASK ('I')) { /* Initialize To Sector Address */ uint8 *init_buf = (uint8*) malloc (1024*1024); t_lba lba, sect; uint32 capac_factor = ((dptr->dwidth / dptr->aincr) == 16) ? 2 : 1; /* capacity units (word: 2, byte: 1) */ t_seccnt sectors_per_buffer = (t_seccnt)((1024*1024)/sector_size); t_lba total_sectors = (t_lba)((uptr->capac*capac_factor)/(sector_size/((dptr->flags & DEV_SECTORS) ? 512 : 1))); t_seccnt sects = sectors_per_buffer; if (!init_buf) { sim_disk_detach (uptr); /* report error now */ remove (cptr); return SCPE_MEM; } for (lba = 0; (lba < total_sectors) && (r == SCPE_OK); lba += sects) { sects = sectors_per_buffer; if (lba + sects > total_sectors) sects = total_sectors - lba; for (sect = 0; sect < sects; sect++) { t_lba offset; for (offset = 0; offset < sector_size; offset += sizeof(uint32)) *((uint32 *)&init_buf[sect*sector_size + offset]) = (uint32)(lba + sect); } r = sim_disk_wrsect (uptr, lba, init_buf, NULL, sects); if (r != SCPE_OK) { free (init_buf); sim_disk_detach (uptr); /* report error now */ remove (cptr); /* remove the create file */ return SCPE_OPENERR; } if (!sim_quiet) sim_printf ("%s%d: Initialized To Sector Address %dMB. %d%% complete.\r", sim_dname (dptr), (int)(uptr-dptr->units), (int)((((float)lba)*sector_size)/1000000), (int)((((float)lba)*100)/total_sectors)); } if (!sim_quiet) sim_printf ("%s%d: Initialized To Sector Address %dMB. 100%% complete.\n", sim_dname (dptr), (int)(uptr-dptr->units), (int)((((float)lba)*sector_size)/1000000)); } if (pdp11tracksize) sim_disk_pdp11_bad_block (uptr, pdp11tracksize); } if (sim_switches & SWMASK ('K')) { t_stat r = SCPE_OK; t_lba lba, sect; uint32 capac_factor = ((dptr->dwidth / dptr->aincr) == 16) ? 2 : 1; /* capacity units (word: 2, byte: 1) */ t_seccnt sectors_per_buffer = (t_seccnt)((1024*1024)/sector_size); t_lba total_sectors = (t_lba)((uptr->capac*capac_factor)/(sector_size/((dptr->flags & DEV_SECTORS) ? 512 : 1))); t_seccnt sects = sectors_per_buffer; uint8 *verify_buf = (uint8*) malloc (1024*1024); if (!verify_buf) { sim_disk_detach (uptr); /* report error now */ return SCPE_MEM; } for (lba = 0; (lba < total_sectors) && (r == SCPE_OK); lba += sects) { sects = sectors_per_buffer; if (lba + sects > total_sectors) sects = total_sectors - lba; r = sim_disk_rdsect (uptr, lba, verify_buf, NULL, sects); if (r == SCPE_OK) { for (sect = 0; sect < sects; sect++) { t_lba offset; t_bool sect_error = FALSE; for (offset = 0; offset < sector_size; offset += sizeof(uint32)) { if (*((uint32 *)&verify_buf[sect*sector_size + offset]) != (uint32)(lba + sect)) { sect_error = TRUE; break; } } if (sect_error) { uint32 save_dctrl = dptr->dctrl; FILE *save_sim_deb = sim_deb; sim_printf ("\n%s%d: Verification Error on lbn %d(0x%X) of %d(0x%X).\n", sim_dname (dptr), (int)(uptr-dptr->units), (int)(lba+sect), (int)(lba+sect), (int)total_sectors, (int)total_sectors); dptr->dctrl = 0xFFFFFFFF; sim_deb = stdout; sim_disk_data_trace (uptr, verify_buf+sect*sector_size, lba+sect, sector_size, "Found", TRUE, 1); dptr->dctrl = save_dctrl; sim_deb = save_sim_deb; } } } if (!sim_quiet) sim_printf ("%s%d: Verified containing Sector Address %dMB. %d%% complete.\r", sim_dname (dptr), (int)(uptr-dptr->units), (int)((((float)lba)*sector_size)/1000000), (int)((((float)lba)*100)/total_sectors)); } if (!sim_quiet) sim_printf ("%s%d: Verified containing Sector Address %dMB. 100%% complete.\n", sim_dname (dptr), (int)(uptr-dptr->units), (int)((((float)lba)*sector_size)/1000000)); free (verify_buf); uptr->dynflags |= UNIT_DISK_CHK; } filesystem_capac = get_filesystem_size (uptr); capac = size_function (uptr->fileref); if (capac && (capac != (t_offset)-1)) { if (dontautosize) { t_addr saved_capac = uptr->capac; if ((filesystem_capac != (t_offset)-1) && (filesystem_capac > (((t_offset)uptr->capac)*ctx->capac_factor*((dptr->flags & DEV_SECTORS) ? 512 : 1)))) { if (!sim_quiet) { uptr->capac = (t_addr)(filesystem_capac/(ctx->capac_factor*((dptr->flags & DEV_SECTORS) ? 512 : 1))); sim_printf ("%s%d: The file system on the disk %s is larger than simulated device (%s > ", sim_dname (dptr), (int)(uptr-dptr->units), cptr, sprint_capac (dptr, uptr)); uptr->capac = saved_capac; sim_printf ("%s)\n", sprint_capac (dptr, uptr)); } sim_disk_detach (uptr); return SCPE_OPENERR; } if ((capac < (((t_offset)uptr->capac)*ctx->capac_factor*((dptr->flags & DEV_SECTORS) ? 512 : 1))) && (DKUF_F_STD != DK_GET_FMT (uptr))) { if (!sim_quiet) { uptr->capac = (t_addr)(capac/(ctx->capac_factor*((dptr->flags & DEV_SECTORS) ? 512 : 1))); sim_printf ("%s%d: non expandable disk %s is smaller than simulated device (%s < ", sim_dname (dptr), (int)(uptr-dptr->units), cptr, sprint_capac (dptr, uptr)); uptr->capac = saved_capac; sim_printf ("%s)\n", sprint_capac (dptr, uptr)); } sim_disk_detach (uptr); return SCPE_OPENERR; } } else { if ((filesystem_capac != (t_offset)-1) && (filesystem_capac > capac)) capac = filesystem_capac; if ((capac > (((t_offset)uptr->capac)*ctx->capac_factor*((dptr->flags & DEV_SECTORS) ? 512 : 1))) || (DKUF_F_STD != DK_GET_FMT (uptr))) uptr->capac = (t_addr)(capac/(ctx->capac_factor*((dptr->flags & DEV_SECTORS) ? 512 : 1))); } } #if defined (SIM_ASYNCH_IO) sim_disk_set_async (uptr, completion_delay); #endif uptr->io_flush = _sim_disk_io_flush; |
︙ | ︙ | |||
1197 1198 1199 1200 1201 1202 1203 | if (uptr->io_flush) uptr->io_flush (uptr); /* flush buffered data */ sim_disk_clr_async (uptr); uptr->flags &= ~(UNIT_ATT | UNIT_RO); | | | 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 | if (uptr->io_flush) uptr->io_flush (uptr); /* flush buffered data */ sim_disk_clr_async (uptr); uptr->flags &= ~(UNIT_ATT | UNIT_RO); uptr->dynflags &= ~(UNIT_NO_FIO | UNIT_DISK_CHK); free (uptr->filename); uptr->filename = NULL; uptr->fileref = NULL; free (uptr->disk_ctx); uptr->disk_ctx = NULL; uptr->io_flush = NULL; if (auto_format) |
︙ | ︙ | |||
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 | fprintf (st, "\n%s attach command switches\n", dptr->name); fprintf (st, " -R Attach Read Only.\n"); fprintf (st, " -E Must Exist (if not specified an attempt to create the indicated\n"); fprintf (st, " disk container will be attempted).\n"); fprintf (st, " -F Open the indicated disk container in a specific format (default\n"); fprintf (st, " is to autodetect VHD defaulting to simh if the indicated\n"); fprintf (st, " container is not a VHD).\n"); fprintf (st, " -C Create a VHD and copy its contents from another disk (simh, VHD,\n"); fprintf (st, " or RAW format). Add a -V switch to verify a copy operation.\n"); fprintf (st, " -V Perform a verification pass to confirm successful data copy\n"); fprintf (st, " operation.\n"); fprintf (st, " -X When creating a VHD, create a fixed sized VHD (vs a Dynamically\n"); fprintf (st, " expanding one).\n"); fprintf (st, " -D Create a Differencing VHD (relative to an already existing VHD\n"); fprintf (st, " disk)\n"); fprintf (st, " -M Merge a Differencing VHD into its parent VHD disk\n"); fprintf (st, " -O Override consistency checks when attaching differencing disks\n"); fprintf (st, " which have unexpected parent disk GUID or timestamps\n\n"); fprintf (st, "Examples:\n"); fprintf (st, " sim> show rq\n"); fprintf (st, " RQ, address=20001468-2000146B*, no vector, 4 units\n"); fprintf (st, " RQ0, 159MB, not attached, write enabled, RD54, autosize, SIMH format\n"); fprintf (st, " RQ1, 159MB, not attached, write enabled, RD54, autosize, SIMH format\n"); fprintf (st, " RQ2, 159MB, not attached, write enabled, RD54, autosize, SIMH format\n"); fprintf (st, " RQ3, 409KB, not attached, write enabled, RX50, autosize, SIMH format\n"); | > > > > > > > > | 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 | fprintf (st, "\n%s attach command switches\n", dptr->name); fprintf (st, " -R Attach Read Only.\n"); fprintf (st, " -E Must Exist (if not specified an attempt to create the indicated\n"); fprintf (st, " disk container will be attempted).\n"); fprintf (st, " -F Open the indicated disk container in a specific format (default\n"); fprintf (st, " is to autodetect VHD defaulting to simh if the indicated\n"); fprintf (st, " container is not a VHD).\n"); fprintf (st, " -I Initialize newly created disk so that each sector contains its\n"); fprintf (st, " sector address\n"); fprintf (st, " -K Verify that the disk contents contain the sector address in each\n"); fprintf (st, " sector. Whole disk checked at attach time and each sector is\n"); fprintf (st, " checked when written.\n"); fprintf (st, " -C Create a VHD and copy its contents from another disk (simh, VHD,\n"); fprintf (st, " or RAW format). Add a -V switch to verify a copy operation.\n"); fprintf (st, " -V Perform a verification pass to confirm successful data copy\n"); fprintf (st, " operation.\n"); fprintf (st, " -X When creating a VHD, create a fixed sized VHD (vs a Dynamically\n"); fprintf (st, " expanding one).\n"); fprintf (st, " -D Create a Differencing VHD (relative to an already existing VHD\n"); fprintf (st, " disk)\n"); fprintf (st, " -M Merge a Differencing VHD into its parent VHD disk\n"); fprintf (st, " -O Override consistency checks when attaching differencing disks\n"); fprintf (st, " which have unexpected parent disk GUID or timestamps\n\n"); fprintf (st, " -U Fix inconsistencies which are overridden by the -O switch\n"); fprintf (st, " -Y Answer Yes to prompt to overwrite last track (on disk create)\n"); fprintf (st, " -N Answer No to prompt to overwrite last track (on disk create)\n"); fprintf (st, "Examples:\n"); fprintf (st, " sim> show rq\n"); fprintf (st, " RQ, address=20001468-2000146B*, no vector, 4 units\n"); fprintf (st, " RQ0, 159MB, not attached, write enabled, RD54, autosize, SIMH format\n"); fprintf (st, " RQ1, 159MB, not attached, write enabled, RD54, autosize, SIMH format\n"); fprintf (st, " RQ2, 159MB, not attached, write enabled, RD54, autosize, SIMH format\n"); fprintf (st, " RQ3, 409KB, not attached, write enabled, RX50, autosize, SIMH format\n"); |
︙ | ︙ | |||
1382 1383 1384 1385 1386 1387 1388 | } return SCPE_OK; } /* Factory bad block table creation routine | | | > > | | 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 | } return SCPE_OK; } /* Factory bad block table creation routine This routine writes a DEC standard 144 compliant bad block table on the last track of the specified unit as described in: EL-00144_B_DEC_STD_144_Disk_Standard_for_Recording_and_Handling_Bad_Sectors_Nov76.pdf The bad block table consists of 10 repetitions of the same table, formatted as follows: words 0-1 pack id number words 2-3 cylinder/sector/surface specifications : words n-n+1 end of table (-1,-1) Inputs: |
︙ | ︙ | |||
1423 1424 1425 1426 1427 1428 1429 | return SCPE_RO; if (ctx->capac_factor != 2) /* Must be Word oriented Capacity */ return SCPE_IERR; if (!get_yn ("Overwrite last track? [N]", FALSE)) return SCPE_OK; if ((buf = (uint16 *) malloc (wds * sizeof (uint16))) == NULL) return SCPE_MEM; | < < < < | | | | | 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 | return SCPE_RO; if (ctx->capac_factor != 2) /* Must be Word oriented Capacity */ return SCPE_IERR; if (!get_yn ("Overwrite last track? [N]", FALSE)) return SCPE_OK; if ((buf = (uint16 *) malloc (wds * sizeof (uint16))) == NULL) return SCPE_MEM; namebuf = uptr->filename; if ((c = strrchr (namebuf, '/'))) namebuf = c+1; if ((c = strrchr (namebuf, '\\'))) namebuf = c+1; if ((c = strrchr (namebuf, ']'))) namebuf = c+1; packid = eth_crc32(0, namebuf, strlen (namebuf)); buf[0] = (uint16)packid; buf[1] = (uint16)(packid >> 16) & 0x7FFF; /* Make sure MSB is clear */ buf[2] = buf[3] = 0; for (i = 4; i < wds; i++) buf[i] = 0177777u; da = (uptr->capac*((dptr->flags & DEV_SECTORS) ? 512 : 1)) - (sec * wds); |
︙ | ︙ | |||
1544 1545 1546 1547 1548 1549 1550 1551 1552 | } #if defined(__GNUC__) #include <ddk/ntddstor.h> #include <ddk/ntdddisk.h> #else #include <winioctl.h> #endif struct _device_type { int32 Type; | > > > > > > > > > | | 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 | } #if defined(__GNUC__) #include <ddk/ntddstor.h> #include <ddk/ntdddisk.h> #else #include <winioctl.h> #endif #if defined(__cplusplus) extern "C" { #endif WINBASEAPI BOOL WINAPI GetFileSizeEx(HANDLE hFile, PLARGE_INTEGER lpFileSize); #if defined(__cplusplus) } #endif struct _device_type { int32 Type; const char *desc; } DeviceTypes[] = { {FILE_DEVICE_8042_PORT, "8042_PORT"}, {FILE_DEVICE_ACPI, "ACPI"}, {FILE_DEVICE_BATTERY, "BATTERY"}, {FILE_DEVICE_BEEP, "BEEP"}, #ifdef FILE_DEVICE_BLUETOOTH {FILE_DEVICE_BLUETOOTH, "BLUETOOTH"}, |
︙ | ︙ | |||
1654 1655 1656 1657 1658 1659 1660 | if (strchr (openmode, 'w') || strchr (openmode, '+')) DesiredAccess |= GENERIC_WRITE; /* SCP Command Line parsing replaces \\ with \ presuming this is an escape sequence. This only affecdts RAW device names and UNC paths. We handle the RAW device name case here by prepending paths beginning with \.\ with an extra \. */ if (!memcmp ("\\.\\", rawdevicename, 3)) { | | | 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 | if (strchr (openmode, 'w') || strchr (openmode, '+')) DesiredAccess |= GENERIC_WRITE; /* SCP Command Line parsing replaces \\ with \ presuming this is an escape sequence. This only affecdts RAW device names and UNC paths. We handle the RAW device name case here by prepending paths beginning with \.\ with an extra \. */ if (!memcmp ("\\.\\", rawdevicename, 3)) { char *tmpname = (char *)malloc (2 + strlen (rawdevicename)); if (tmpname == NULL) return NULL; *tmpname = '\\'; strcpy (tmpname + 1, rawdevicename); Handle = CreateFileA (tmpname, DesiredAccess, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_FLAG_RANDOM_ACCESS|FILE_FLAG_WRITE_THROUGH, NULL); free (tmpname); |
︙ | ︙ | |||
1691 1692 1693 1694 1695 1696 1697 | FlushFileBuffers ((HANDLE)f); } static t_offset sim_os_disk_size_raw (FILE *Disk) { DWORD IoctlReturnSize; LARGE_INTEGER Size; | < | 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 | FlushFileBuffers ((HANDLE)f); } static t_offset sim_os_disk_size_raw (FILE *Disk) { DWORD IoctlReturnSize; LARGE_INTEGER Size; if (GetFileSizeEx((HANDLE)Disk, &Size)) return (t_offset)(Size.QuadPart); #ifdef IOCTL_STORAGE_READ_CAPACITY if (1) { STORAGE_READ_CAPACITY S; |
︙ | ︙ | |||
2747 2748 2749 2750 2751 2752 2753 | const char *c; if ((c = strrchr (szVHDPath, '\\'))) memcpy (CheckPath, szVHDPath, c-szVHDPath+1); strncpy (CheckPath+strlen(CheckPath), ParentName, sizeof (CheckPath)-(strlen (CheckPath)+1)); } VhdPathToHostPath (CheckPath, CheckPath, sizeof (CheckPath)); | | | | | | | | | | | | | > > > > > > > > > | > > > > > > > | | > | 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 | const char *c; if ((c = strrchr (szVHDPath, '\\'))) memcpy (CheckPath, szVHDPath, c-szVHDPath+1); strncpy (CheckPath+strlen(CheckPath), ParentName, sizeof (CheckPath)-(strlen (CheckPath)+1)); } VhdPathToHostPath (CheckPath, CheckPath, sizeof (CheckPath)); if (0 == GetVHDFooter(CheckPath, &sParentFooter, NULL, NULL, &ParentModificationTime, NULL, 0)) { if ((0 == memcmp (sDynamic->ParentUniqueID, sParentFooter.UniqueID, sizeof (sParentFooter.UniqueID))) && ((sDynamic->ParentTimeStamp == ParentModificationTime) || ((NtoHl(sDynamic->ParentTimeStamp)-NtoHl(ParentModificationTime)) == 3600) || (sim_switches & SWMASK ('O')))) strncpy (szParentVHDPath, CheckPath, ParentVHDPathSize); else { if (0 != memcmp (sDynamic->ParentUniqueID, sParentFooter.UniqueID, sizeof (sParentFooter.UniqueID))) sim_printf ("Error Invalid Parent VHD '%s' for Differencing VHD: %s\n", CheckPath, szVHDPath); else sim_printf ("Error Parent VHD '%s' has been modified since Differencing VHD: %s was created\n", CheckPath, szVHDPath); Return = EINVAL; /* File Corrupt/Invalid */ } break; } else { struct stat statb; if (0 == stat (CheckPath, &statb)) { sim_printf ("Parent VHD '%s' corrupt for Differencing VHD: %s\n", CheckPath, szVHDPath); Return = EBADF; /* File Corrupt/Invalid */ break; } } } if (!*szParentVHDPath) { if (Return != EINVAL) /* File Not Corrupt? */ sim_printf ("Missing Parent VHD for Differencing VHD: %s\n", szVHDPath); Return = EBADF; } } } } Return_Cleanup: if (File) fclose(File); |
︙ | ︙ | |||
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 | return (char *)(&hVHD->Footer.DriveType[0]); } static FILE *sim_vhd_disk_open (const char *szVHDPath, const char *DesiredAccess) { VHDHANDLE hVHD = (VHDHANDLE) calloc (1, sizeof(*hVHD)); int Status; if (!hVHD) return (FILE *)hVHD; Status = GetVHDFooter (szVHDPath, &hVHD->Footer, &hVHD->Dynamic, | > | 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 | return (char *)(&hVHD->Footer.DriveType[0]); } static FILE *sim_vhd_disk_open (const char *szVHDPath, const char *DesiredAccess) { VHDHANDLE hVHD = (VHDHANDLE) calloc (1, sizeof(*hVHD)); int NeedUpdate = FALSE; int Status; if (!hVHD) return (FILE *)hVHD; Status = GetVHDFooter (szVHDPath, &hVHD->Footer, &hVHD->Dynamic, |
︙ | ︙ | |||
2887 2888 2889 2890 2891 2892 2893 | &ParentDynamic, NULL, &ParentModifiedTimeStamp, NULL, 0); if (Status) goto Cleanup_Return; | > | > > > > > > > > > > > | | > > > > > > > > > > > > > | 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 | &ParentDynamic, NULL, &ParentModifiedTimeStamp, NULL, 0); if (Status) goto Cleanup_Return; if ((0 != memcmp (hVHD->Dynamic.ParentUniqueID, ParentFooter.UniqueID, sizeof (ParentFooter.UniqueID))) || (ParentModifiedTimeStamp != hVHD->Dynamic.ParentTimeStamp)) { if (sim_switches & SWMASK ('O')) { /* OVERRIDE consistency checks? */ if ((sim_switches & SWMASK ('U')) && /* FIX (UPDATE) consistency checks AND */ (strchr (DesiredAccess, '+'))) { /* open for write/update? */ memcpy (hVHD->Dynamic.ParentUniqueID, ParentFooter.UniqueID, sizeof (ParentFooter.UniqueID)); hVHD->Dynamic.ParentTimeStamp = ParentModifiedTimeStamp; hVHD->Dynamic.Checksum = 0; hVHD->Dynamic.Checksum = NtoHl (CalculateVhdFooterChecksum (&hVHD->Dynamic, sizeof(hVHD->Dynamic))); NeedUpdate = TRUE; } } else { Status = EBADF; goto Cleanup_Return; } } } if (hVHD->Footer.SavedState) { Status = EAGAIN; /* Busy */ goto Cleanup_Return; } hVHD->File = sim_fopen (szVHDPath, DesiredAccess); if (!hVHD->File) { Status = errno; goto Cleanup_Return; } Cleanup_Return: if (Status) { sim_vhd_disk_close ((FILE *)hVHD); hVHD = NULL; } else { if (NeedUpdate) { /* Update Differencing Disk Header? */ if (WriteFilePosition(hVHD->File, &hVHD->Dynamic, sizeof (hVHD->Dynamic), NULL, NtoHll (hVHD->Footer.DataOffset))) { sim_vhd_disk_close ((FILE *)hVHD); hVHD = NULL; } } } errno = Status; return (FILE *)hVHD; } static t_stat WriteVirtualDiskSectors(VHDHANDLE hVHD, uint8 *buf, |
︙ | ︙ |
Changes to src/sim_disk.h.
︙ | ︙ | |||
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | authorization from Robert M Supnik and Mark Pizzolato. 25-Jan-11 MP Initial Implemementation */ #ifndef SIM_DISK_H_ #define SIM_DISK_H_ 0 /* SIMH/Disk format */ typedef uint32 t_seccnt; /* disk sector count */ typedef uint32 t_lba; /* disk logical block address */ /* Unit flags */ | > > > > | | | | 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | authorization from Robert M Supnik and Mark Pizzolato. 25-Jan-11 MP Initial Implemementation */ #ifndef SIM_DISK_H_ #define SIM_DISK_H_ 0 #ifdef __cplusplus extern "C" { #endif /* SIMH/Disk format */ typedef uint32 t_seccnt; /* disk sector count */ typedef uint32 t_lba; /* disk logical block address */ /* Unit flags */ #define DKUF_V_WLK (UNIT_V_UF + 0) /* write locked */ #define DKUF_V_FMT (UNIT_V_UF + 1) /* disk file format */ #define DKUF_W_FMT 2 /* 2b of formats */ #define DKUF_N_FMT (1u << DKUF_W_FMT) /* number of formats */ #define DKUF_M_FMT ((1u << DKUF_W_FMT) - 1) #define DKUF_F_STD 0 /* SIMH format */ #define DKUF_F_RAW 1 /* Raw Physical Disk Access */ #define DKUF_F_VHD 2 /* VHD format */ #define DKUF_V_UF (DKUF_V_FMT + DKUF_W_FMT) #define DKUF_WLK (1u << DKUF_V_WLK) |
︙ | ︙ | |||
60 61 62 63 64 65 66 | #define DKSE_OK 0 /* no error */ typedef void (*DISK_PCALLBACK)(UNIT *unit, t_stat status); /* Prototypes */ | | | | | | > > > > | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | #define DKSE_OK 0 /* no error */ typedef void (*DISK_PCALLBACK)(UNIT *unit, t_stat status); /* Prototypes */ t_stat sim_disk_attach (UNIT *uptr, const char *cptr, size_t sector_size, size_t xfer_element_size, t_bool dontautosize, uint32 debugbit, const char *drivetype, uint32 pdp11_tracksize, int completion_delay); t_stat sim_disk_detach (UNIT *uptr); t_stat sim_disk_attach_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); t_stat sim_disk_rdsect (UNIT *uptr, t_lba lba, uint8 *buf, t_seccnt *sectsread, t_seccnt sects); t_stat sim_disk_rdsect_a (UNIT *uptr, t_lba lba, uint8 *buf, t_seccnt *sectsread, t_seccnt sects, DISK_PCALLBACK callback); t_stat sim_disk_wrsect (UNIT *uptr, t_lba lba, uint8 *buf, t_seccnt *sectswritten, t_seccnt sects); t_stat sim_disk_wrsect_a (UNIT *uptr, t_lba lba, uint8 *buf, t_seccnt *sectswritten, t_seccnt sects, DISK_PCALLBACK callback); t_stat sim_disk_unload (UNIT *uptr); t_stat sim_disk_set_fmt (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat sim_disk_show_fmt (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat sim_disk_set_capac (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat sim_disk_show_capac (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat sim_disk_set_asynch (UNIT *uptr, int latency); t_stat sim_disk_clr_asynch (UNIT *uptr); t_stat sim_disk_reset (UNIT *uptr); t_stat sim_disk_perror (UNIT *uptr, const char *msg); t_stat sim_disk_clearerr (UNIT *uptr); t_bool sim_disk_isavailable (UNIT *uptr); t_bool sim_disk_isavailable_a (UNIT *uptr, DISK_PCALLBACK callback); t_bool sim_disk_wrp (UNIT *uptr); t_offset sim_disk_size (UNIT *uptr); t_bool sim_disk_vhd_support (void); t_bool sim_disk_raw_support (void); void sim_disk_data_trace (UNIT *uptr, const uint8 *data, size_t lba, size_t len, const char* txt, int detail, uint32 reason); #ifdef __cplusplus } #endif #endif |
Changes to src/sim_ether.c.
︙ | ︙ | |||
146 147 148 149 150 151 152 153 154 155 156 157 158 159 | capabilities to share a single LAN interface. It also can allow a simulator to have useful networking functionality when running without root access. This allows device names of the form vde:/tmp/switch to be specified at open time. This functionality is only available on *nix platforms since the vde api isn't available on Windows. NEED_PCAP_SENDPACKET - Specifies that you are using an older version of libpcap which doesn't provide a pcap_sendpacket API. NOTE: Changing these defines is done in either sim_ether.h OR on the global compiler command line which builds all of the modules included in a | > > > | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 | capabilities to share a single LAN interface. It also can allow a simulator to have useful networking functionality when running without root access. This allows device names of the form vde:/tmp/switch to be specified at open time. This functionality is only available on *nix platforms since the vde api isn't available on Windows. HAVE_SLIRP_NETWORK- Specifies that support for SLiRP networking should be included. This can be leveraged to provide User Mode IP NAT connectivity for simulators. NEED_PCAP_SENDPACKET - Specifies that you are using an older version of libpcap which doesn't provide a pcap_sendpacket API. NOTE: Changing these defines is done in either sim_ether.h OR on the global compiler command line which builds all of the modules included in a |
︙ | ︙ | |||
362 363 364 365 366 367 368 369 370 371 372 373 | ------------------------------------------------------------------------------ */ #include <ctype.h> #include "sim_ether.h" #include "sim_sock.h" #include "sim_timer.h" /*============================================================================*/ /* OS-independant ethernet routines */ /*============================================================================*/ | > > > > > > > > | > > > > > | > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | > | | > > | | > | > | | | > > | > > > > > > > > > > > > > > > > > > | | | | | 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 | ------------------------------------------------------------------------------ */ #include <ctype.h> #include "sim_ether.h" #include "sim_sock.h" #include "sim_timer.h" #if defined(_WIN32) #include <direct.h> #else #include <unistd.h> #endif /* Internal routines - forward declarations */ static int _eth_get_system_id (char *buf, size_t buf_size); /*============================================================================*/ /* OS-independant ethernet routines */ /*============================================================================*/ t_stat eth_mac_scan (ETH_MAC* mac, const char* strmac) { return eth_mac_scan_ex (mac, strmac, NULL); } t_stat eth_mac_scan_ex (ETH_MAC* mac, const char* strmac, UNIT *uptr) { unsigned int a[6], g[6]; FILE *f; char filebuf[64] = ""; uint32 i; static const ETH_MAC zeros = {0,0,0,0,0,0}; static const ETH_MAC ones = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; ETH_MAC newmac; struct { uint32 bits; char system_id[37]; char cwd[PATH_MAX]; char file[PATH_MAX]; ETH_MAC base_mac; char uname[64]; char sim[128]; } state; CONST char *cptr, *tptr; uint32 data; /* Allow generated MAC address */ /* XX:XX:XX:XX:XX:XX{/bits{>file}} */ /* bits (if specified) must be from 16 thru 48 */ memset (&state, 0, sizeof(state)); _eth_get_system_id (state.system_id, sizeof(state.system_id)); strncpy (state.sim, sim_name, sizeof(state.sim)); getcwd (state.cwd, sizeof(state.cwd)); if (uptr) strncpy (state.uname, sim_uname (uptr), sizeof(state.uname)); cptr = strchr (strmac, '>'); if (cptr) { strncpy (state.file, cptr + 1, sizeof(state.file)); if ((f = fopen (state.file, "r"))) { filebuf[sizeof(filebuf)-1] = '\0'; fgets (filebuf, sizeof(filebuf)-1, f); strmac = filebuf; fclose (f); strcpy (state.file, ""); /* avoid saving */ } } cptr = strchr (strmac, '/'); if (cptr) { state.bits = (uint32)strtotv (cptr + 1, &tptr, 10); if ((state.bits < 16) || (state.bits > 48)) return sim_messagef (SCPE_ARG, "Invalid MAC address bits specifier '%d'. Valid values are from 16 thru 48\n", state.bits); } else state.bits = 48; data = eth_crc32 (0, (void *)&state, sizeof(state)); for (i=g[0]=g[1]=0; i<4; i++) g[i+2] = (data >> (i << 3)) & 0xFF; if ((6 != sscanf(strmac, "%x:%x:%x:%x:%x:%x", &a[0], &a[1], &a[2], &a[3], &a[4], &a[5])) && (6 != sscanf(strmac, "%x.%x.%x.%x.%x.%x", &a[0], &a[1], &a[2], &a[3], &a[4], &a[5])) && (6 != sscanf(strmac, "%x-%x-%x-%x-%x-%x", &a[0], &a[1], &a[2], &a[3], &a[4], &a[5]))) return sim_messagef (SCPE_ARG, "Invalid MAC address format: '%s'\n", strmac); for (i=0; i<6; i++) if (a[i] > 0xFF) return sim_messagef (SCPE_ARG, "Invalid MAC address byte value: %02X\n", a[i]); else { uint32 mask, shift; state.base_mac[i] = a[i]; if (((i + 1) << 3) < state.bits) shift = 0; else shift = ((i + 1) << 3) - state.bits; mask = 0xFF << shift; newmac[i] = (unsigned char)((a[i] & mask) | (g[i] & ~mask)); } /* final check - mac cannot be broadcast or multicast address */ if (!memcmp(newmac, zeros, sizeof(ETH_MAC)) || /* broadcast */ !memcmp(newmac, ones, sizeof(ETH_MAC)) || /* broadcast */ (newmac[0] & 0x01) /* multicast */ ) return sim_messagef (SCPE_ARG, "Can't use Broadcast or MultiCast address as interface MAC address\n"); /* new mac is OK */ /* optionally save */ if (state.file[0]) { /* Save File specified? */ f = fopen (state.file, "w"); if (f == NULL) return sim_messagef (SCPE_ARG, "Can't open MAC address configuration file '%s'.\n", state.file); eth_mac_fmt (&newmac, filebuf); fprintf (f, "%s/48\n", filebuf); fprintf (f, "system-id: %s\n", state.system_id); fprintf (f, "directory: %s\n", state.cwd); fprintf (f, "simulator: %s\n", state.sim); fprintf (f, "device: %s\n", state.uname); fprintf (f, "file: %s\n", state.file); eth_mac_fmt (&state.base_mac, filebuf); fprintf (f, "base-mac: %s\n", filebuf); fprintf (f, "specified: %d bits\n", state.bits); fprintf (f, "generated: %d bits\n", 48-state.bits); fclose (f); } /* copy into passed mac */ memcpy (*mac, newmac, sizeof(ETH_MAC)); return SCPE_OK; } void eth_mac_fmt(ETH_MAC* const mac, char* buff) { const uint8* m = (const uint8*) mac; sprintf(buff, "%02X:%02X:%02X:%02X:%02X:%02X", m[0], m[1], m[2], m[3], m[4], m[5]); return; } static const uint32 crcTable[256] = { 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, |
︙ | ︙ | |||
512 513 514 515 516 517 518 | } void eth_packet_trace_ex(ETH_DEV* dev, const uint8 *msg, int len, const char* txt, int detail, uint32 reason) { if (dev->dptr->dctrl & reason) { char src[20]; char dst[20]; | | | | | | 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 | } void eth_packet_trace_ex(ETH_DEV* dev, const uint8 *msg, int len, const char* txt, int detail, uint32 reason) { if (dev->dptr->dctrl & reason) { char src[20]; char dst[20]; const unsigned short* proto = (const unsigned short*) &msg[12]; uint32 crc = eth_crc32(0, msg, len); eth_mac_fmt((ETH_MAC*)msg, dst); eth_mac_fmt((ETH_MAC*)(msg+6), src); sim_debug(reason, dev->dptr, "%s dst: %s src: %s proto: 0x%04X len: %d crc: %X\n", txt, dst, src, ntohs(*proto), len, crc); if (detail) { int i, same, group, sidx, oidx; char outbuf[80], strbuf[18]; static const char hex[] = "0123456789ABCDEF"; for (i=same=0; i<len; i += 16) { if ((i > 0) && (0 == memcmp(&msg[i], &msg[i-16], 16))) { ++same; continue; } if (same > 0) { |
︙ | ︙ | |||
563 564 565 566 567 568 569 | } void eth_packet_trace_detail(ETH_DEV* dev, const uint8 *msg, int len, const char* txt) { eth_packet_trace_ex(dev, msg, len, txt, 1 , dev->dbit); } | | > > > > > > | > < < < < < < < < < < < < < < < < < < < < < | | > | > > > | 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 | } void eth_packet_trace_detail(ETH_DEV* dev, const uint8 *msg, int len, const char* txt) { eth_packet_trace_ex(dev, msg, len, txt, 1 , dev->dbit); } const char* eth_getname(int number, char* name, char *desc) { ETH_LIST list[ETH_MAX_DEVICE]; int count = eth_devices(ETH_MAX_DEVICE, list); if ((number < 0) || (count <= number)) return NULL; if (list[number].eth_api != ETH_API_PCAP) { sim_printf ("Eth: Pcap capable device not found. You may need to run as root\n"); return NULL; } strcpy(name, list[number].name); strcpy(desc, list[number].desc); return name; } const char* eth_getname_bydesc(const char* desc, char* name, char *ndesc) { ETH_LIST list[ETH_MAX_DEVICE]; int count = eth_devices(ETH_MAX_DEVICE, list); int i; size_t j=strlen(desc); for (i=0; i<count; i++) { int found = 1; size_t k = strlen(list[i].desc); if (j != k) continue; for (k=0; k<j; k++) if (tolower(list[i].desc[k]) != tolower(desc[k])) found = 0; if (found == 0) continue; /* found a case-insensitive description match */ strcpy(name, list[i].name); strcpy(ndesc, list[i].desc); return name; } /* not found */ return NULL; } char* eth_getname_byname(const char* name, char* temp, char *desc) { ETH_LIST list[ETH_MAX_DEVICE]; int count = eth_devices(ETH_MAX_DEVICE, list); size_t n; int i, found; found = 0; n = strlen(name); for (i=0; i<count && !found; i++) { if ((n == strlen(list[i].name)) && (sim_strncasecmp(name, list[i].name, n) == 0)) { found = 1; strcpy(temp, list[i].name); /* only case might be different */ strcpy(desc, list[i].desc); } } return (found ? temp : NULL); } char* eth_getdesc_byname(char* name, char* temp) { ETH_LIST list[ETH_MAX_DEVICE]; int count = eth_devices(ETH_MAX_DEVICE, list); size_t n; int i, found; found = 0; n = strlen(name); for (i=0; i<count && !found; i++) { if ((n == strlen(list[i].name)) && (sim_strncasecmp(name, list[i].name, n) == 0)) { found = 1; strcpy(temp, list[i].desc); } } return (found ? temp : NULL); } void eth_zero(ETH_DEV* dev) { /* set all members to NULL OR 0 */ memset(dev, 0, sizeof(ETH_DEV)); dev->reflections = -1; /* not established yet */ } static char* (*p_pcap_lib_version) (void); static ETH_DEV **eth_open_devices = NULL; static int eth_open_device_count = 0; static t_bool eth_show_active = FALSE; #if defined (USE_NETWORK) || defined (USE_SHARED) static void _eth_add_to_open_list (ETH_DEV* dev) { eth_open_devices = (ETH_DEV**)realloc(eth_open_devices, (eth_open_device_count+1)*sizeof(*eth_open_devices)); eth_open_devices[eth_open_device_count++] = dev; } |
︙ | ︙ | |||
689 690 691 692 693 694 695 | eth_open_devices[j-1] = eth_open_devices[j]; --eth_open_device_count; break; } } #endif | | | > > > > > > | | | 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 | eth_open_devices[j-1] = eth_open_devices[j]; --eth_open_device_count; break; } } #endif t_stat eth_show (FILE* st, UNIT* uptr, int32 val, CONST void* desc) { ETH_LIST list[ETH_MAX_DEVICE]; int number; eth_show_active = TRUE; number = eth_devices(ETH_MAX_DEVICE, list); fprintf(st, "ETH devices:\n"); if (number == -1) fprintf(st, " network support not available in simulator\n"); else if (number == 0) fprintf(st, " no network devices are available\n"); else { size_t min, len; int i; for (i=0, min=0; i<number; i++) if ((len = strlen(list[i].name)) > min) min = len; for (i=0; i<number; i++) fprintf(st," eth%d\t%-*s (%s)\n", i, (int)min, list[i].name, list[i].desc); } if (p_pcap_lib_version) { fprintf(st, "%s\n", p_pcap_lib_version()); } if (eth_open_device_count) { int i; char desc[ETH_DEV_DESC_MAX], *d; fprintf(st,"Open ETH Devices:\n"); for (i=0; i<eth_open_device_count; i++) { d = eth_getdesc_byname(eth_open_devices[i]->name, desc); if (d) fprintf(st, " %-7s%s (%s)\n", eth_open_devices[i]->dptr->name, eth_open_devices[i]->dptr->units[0].filename, d); else fprintf(st, " %-7s%s\n", eth_open_devices[i]->dptr->name, eth_open_devices[i]->dptr->units[0].filename); eth_show_dev (st, eth_open_devices[i]); } } eth_show_active = FALSE; return SCPE_OK; } t_stat eth_show_devices (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char *desc) { return eth_show (st, uptr, val, NULL); } t_stat ethq_init(ETH_QUE* que, int max) { /* create dynamic queue if it does not exist */ if (!que->item) { que->item = (struct eth_item *) calloc(max, sizeof(struct eth_item)); |
︙ | ︙ | |||
843 844 845 846 847 848 849 | /*============================================================================*/ /* Non-implemented versions */ /*============================================================================*/ #if !defined (USE_NETWORK) && !defined (USE_SHARED) const char *eth_capabilities(void) {return "no Ethernet";} | | | 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 | /*============================================================================*/ /* Non-implemented versions */ /*============================================================================*/ #if !defined (USE_NETWORK) && !defined (USE_SHARED) const char *eth_capabilities(void) {return "no Ethernet";} t_stat eth_open(ETH_DEV* dev, const char* name, DEVICE* dptr, uint32 dbit) {return SCPE_NOFNC;} t_stat eth_close (ETH_DEV* dev) {return SCPE_NOFNC;} t_stat eth_attach_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { fprintf (st, "%s attach help\n\n", dptr->name); fprintf (st, "This simulator was not built with ethernet device support\n"); |
︙ | ︙ | |||
876 877 878 879 880 881 882 883 884 885 886 | t_stat eth_filter_hash (ETH_DEV* dev, int addr_count, ETH_MAC* const addresses, ETH_BOOL all_multicast, ETH_BOOL promiscuous, ETH_MULTIHASH* const hash) {return SCPE_NOFNC;} int eth_devices (int max, ETH_LIST* dev) {return -1;} void eth_show_dev (FILE* st, ETH_DEV* dev) {} #else /* endif unimplemented */ const char *eth_capabilities(void) { | > > | > > > | 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 | t_stat eth_filter_hash (ETH_DEV* dev, int addr_count, ETH_MAC* const addresses, ETH_BOOL all_multicast, ETH_BOOL promiscuous, ETH_MULTIHASH* const hash) {return SCPE_NOFNC;} int eth_devices (int max, ETH_LIST* dev) {return -1;} void eth_show_dev (FILE* st, ETH_DEV* dev) {} static int _eth_get_system_id (char *buf, size_t buf_size) {memset (buf, 0, buf_size); return 0;} #else /* endif unimplemented */ const char *eth_capabilities(void) { return "Ethernet Packet transports" #if defined (HAVE_PCAP_NETWORK) ":PCAP" #endif #if defined (HAVE_TAP_NETWORK) ":TAP" #endif #if defined (HAVE_VDE_NETWORK) ":VDE" #endif #if defined (HAVE_SLIRP_NETWORK) ":NAT" #endif ":UDP"; } #if (defined (xBSD) || defined (__APPLE__)) && (defined (HAVE_TAP_NETWORK) || defined (HAVE_PCAP_NETWORK)) #include <sys/ioctl.h> #include <net/bpf.h> |
︙ | ︙ | |||
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 | #include <net/if.h> #else /* We don't know how to do this on the current platform */ #undef HAVE_TAP_NETWORK #endif #endif /* HAVE_TAP_NETWORK */ #ifdef HAVE_VDE_NETWORK #include <libvdeplug.h> #endif /* HAVE_VDE_NETWORK */ /* Allows windows to look up user-defined adapter names */ #if defined(_WIN32) #include <winreg.h> #endif #ifdef HAVE_DLOPEN #include <dlfcn.h> #endif #if defined(USE_SHARED) && (defined(_WIN32) || defined(HAVE_DLOPEN)) /* Dynamic DLL loading technique and modified source comes from Etherial/WireShark capture_pcap.c */ /* Dynamic DLL load variables */ #ifdef _WIN32 | > > > > > > > > > > | | | 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 | #include <net/if.h> #else /* We don't know how to do this on the current platform */ #undef HAVE_TAP_NETWORK #endif #endif /* HAVE_TAP_NETWORK */ #ifdef HAVE_VDE_NETWORK #ifdef __cplusplus extern "C" { #endif #include <libvdeplug.h> #ifdef __cplusplus } #endif #endif /* HAVE_VDE_NETWORK */ #ifdef HAVE_SLIRP_NETWORK #include "sim_slirp.h" #endif /* HAVE_SLIRP_NETWORK */ /* Allows windows to look up user-defined adapter names */ #if defined(_WIN32) #include <winreg.h> #endif #ifdef HAVE_DLOPEN #include <dlfcn.h> #endif #if defined(USE_SHARED) && (defined(_WIN32) || defined(HAVE_DLOPEN)) /* Dynamic DLL loading technique and modified source comes from Etherial/WireShark capture_pcap.c */ /* Dynamic DLL load variables */ #ifdef _WIN32 static HINSTANCE hLib = NULL; /* handle to DLL */ #else static void *hLib = 0; /* handle to Library */ #endif static int lib_loaded = 0; /* 0=not loaded, 1=loaded, 2=library load failed, 3=Func load failed */ static const char* lib_name = #if defined(_WIN32) || defined(__CYGWIN__) "wpcap.dll"; #elif defined(__APPLE__) "/usr/lib/libpcap.A.dylib"; #else #define __STR_QUOTE(tok) #tok |
︙ | ︙ | |||
994 995 996 997 998 999 1000 | static int (*p_pcap_get_selectable_fd) (pcap_t *); #endif static int (*p_pcap_fileno) (pcap_t *); #endif static int (*p_pcap_sendpacket) (pcap_t* handle, const u_char* msg, int len); static int (*p_pcap_setfilter) (pcap_t *, struct bpf_program *); static int (*p_pcap_setnonblock)(pcap_t* a, int nonblock, char *errbuf); | < > > > > > > > > > > > > > > > > > > > > | > > > > > | | 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 | static int (*p_pcap_get_selectable_fd) (pcap_t *); #endif static int (*p_pcap_fileno) (pcap_t *); #endif static int (*p_pcap_sendpacket) (pcap_t* handle, const u_char* msg, int len); static int (*p_pcap_setfilter) (pcap_t *, struct bpf_program *); static int (*p_pcap_setnonblock)(pcap_t* a, int nonblock, char *errbuf); /* load function pointer from DLL */ typedef int (*_func)(); static void load_function(const char* function, _func* func_ptr) { #ifdef _WIN32 *func_ptr = (_func)((size_t)GetProcAddress(hLib, function)); #else *func_ptr = (_func)((size_t)dlsym(hLib, function)); #endif if (*func_ptr == 0) { sim_printf ("Eth: Failed to find function '%s' in %s\r\n", function, lib_name); lib_loaded = 3; } } static void try_load_function(const char* function, _func* func_ptr) { #ifdef _WIN32 *func_ptr = (_func)((size_t)GetProcAddress(hLib, function)); #else *func_ptr = (_func)((size_t)dlsym(hLib, function)); #endif } /* load wpcap.dll as required */ int load_pcap(void) { switch(lib_loaded) { case 0: /* not loaded */ /* attempt to load DLL */ #ifdef _WIN32 if (1) { BOOL(WINAPI *p_SetDllDirectory)(LPCTSTR); UINT(WINAPI *p_GetSystemDirectory)(LPTSTR lpBuffer, UINT uSize); p_SetDllDirectory = (BOOL(WINAPI *)(LPCTSTR)) GetProcAddress(GetModuleHandle("kernel32.dll"), "SetDllDirectoryA"); p_GetSystemDirectory = (UINT(WINAPI *)(LPTSTR, UINT)) GetProcAddress(GetModuleHandle("kernel32.dll"), "GetSystemDirectoryA"); if (p_SetDllDirectory && p_GetSystemDirectory) { char npcap_path[512] = ""; if (p_GetSystemDirectory (npcap_path, sizeof(npcap_path) - 7)) strcat (npcap_path, "\\Npcap"); if (p_SetDllDirectory(npcap_path)) hLib = LoadLibraryA(lib_name); p_SetDllDirectory (NULL); } if (hLib == NULL) hLib = LoadLibraryA(lib_name); } #else hLib = dlopen(lib_name, RTLD_NOW); #endif if (hLib == 0) { /* failed to load DLL */ sim_printf ("Eth: Failed to load %s\r\n", lib_name); #ifdef _WIN32 sim_printf ("Eth: You must install Npcap or WinPcap 4.x to use networking\r\n"); #else sim_printf ("Eth: You must install libpcap to use networking\r\n"); #endif lib_loaded = 2; break; } else { /* library loaded OK */ |
︙ | ︙ | |||
1061 1062 1063 1064 1065 1066 1067 | load_function("pcap_fileno", (_func *) &p_pcap_fileno); #endif load_function("pcap_sendpacket", (_func *) &p_pcap_sendpacket); load_function("pcap_setfilter", (_func *) &p_pcap_setfilter); load_function("pcap_setnonblock", (_func *) &p_pcap_setnonblock); load_function("pcap_lib_version", (_func *) &p_pcap_lib_version); | | | 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 | load_function("pcap_fileno", (_func *) &p_pcap_fileno); #endif load_function("pcap_sendpacket", (_func *) &p_pcap_sendpacket); load_function("pcap_setfilter", (_func *) &p_pcap_setfilter); load_function("pcap_setnonblock", (_func *) &p_pcap_setnonblock); load_function("pcap_lib_version", (_func *) &p_pcap_lib_version); if ((lib_loaded == 1) && (!eth_show_active)) { /* log successful load */ sim_printf("%s\n", p_pcap_lib_version()); } break; default: /* loaded or failed */ break; } |
︙ | ︙ | |||
1253 1254 1255 1256 1257 1258 1259 | uint8 Data[1]; ///< variable-lenght field that contains the information passed to or received ///< from the adapter. }; typedef struct _PACKET_OID_DATA PACKET_OID_DATA, *PPACKET_OID_DATA; typedef void **LPADAPTER; #define OID_802_3_CURRENT_ADDRESS 0x01010102 /* Extracted from ntddmdis.h */ | | | | | | 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 | uint8 Data[1]; ///< variable-lenght field that contains the information passed to or received ///< from the adapter. }; typedef struct _PACKET_OID_DATA PACKET_OID_DATA, *PPACKET_OID_DATA; typedef void **LPADAPTER; #define OID_802_3_CURRENT_ADDRESS 0x01010102 /* Extracted from ntddmdis.h */ static int pcap_mac_if_win32(const char *AdapterName, unsigned char MACAddress[6]) { LPADAPTER lpAdapter; PPACKET_OID_DATA OidData; int Status; int ReturnValue; #ifdef _WIN32 HMODULE hDll; /* handle to DLL */ #else static void *hDll = NULL; /* handle to Library */ typedef int BOOLEAN; #endif LPADAPTER (*p_PacketOpenAdapter)(const char *AdapterName); void (*p_PacketCloseAdapter)(LPADAPTER lpAdapter); int (*p_PacketRequest)(LPADAPTER AdapterObject,BOOLEAN Set,PPACKET_OID_DATA OidData); #ifdef _WIN32 hDll = LoadLibraryA("packet.dll"); p_PacketOpenAdapter = (LPADAPTER (*)(const char *AdapterName))GetProcAddress(hDll, "PacketOpenAdapter"); p_PacketCloseAdapter = (void (*)(LPADAPTER lpAdapter))GetProcAddress(hDll, "PacketCloseAdapter"); p_PacketRequest = (int (*)(LPADAPTER AdapterObject,BOOLEAN Set,PPACKET_OID_DATA OidData))GetProcAddress(hDll, "PacketRequest"); #else hDll = dlopen("packet.dll", RTLD_NOW); p_PacketOpenAdapter = (LPADAPTER (*)(const char *AdapterName))dlsym(hDll, "PacketOpenAdapter"); p_PacketCloseAdapter = (void (*)(LPADAPTER lpAdapter))dlsym(hDll, "PacketCloseAdapter"); p_PacketRequest = (int (*)(LPADAPTER AdapterObject,BOOLEAN Set,PPACKET_OID_DATA OidData))dlsym(hDll, "PacketRequest"); #endif /* Open the selected adapter */ lpAdapter = p_PacketOpenAdapter(AdapterName); |
︙ | ︙ | |||
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 | #ifdef _WIN32 FreeLibrary(hDll); #else dlclose(hDll); #endif return ReturnValue; } #endif /* defined(_WIN32) || defined(__CYGWIN__) */ #if defined (__VMS) && !defined(__VAX) #include <descrip.h> #include <iodef.h> #include <ssdef.h> #include <starlet.h> #include <stdio.h> #include <stsdef.h> #include <nmadef.h> | > | | 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 | #ifdef _WIN32 FreeLibrary(hDll); #else dlclose(hDll); #endif return ReturnValue; } #endif /* defined(_WIN32) || defined(__CYGWIN__) */ #if defined (__VMS) && !defined(__VAX) #include <descrip.h> #include <iodef.h> #include <ssdef.h> #include <starlet.h> #include <stdio.h> #include <stsdef.h> #include <nmadef.h> static int pcap_mac_if_vms(const char *AdapterName, unsigned char MACAddress[6]) { char VMS_Device[16]; $DESCRIPTOR(Device, VMS_Device); unsigned short iosb[4]; unsigned short *w; unsigned char *pha = NULL; unsigned char *hwa = NULL; |
︙ | ︙ | |||
1420 1421 1422 1423 1424 1425 1426 | memcpy(MACAddress, hwa, 6); else return -1; return 0; } #endif /* defined (__VMS) && !defined(__VAX) */ | | | 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 | memcpy(MACAddress, hwa, 6); else return -1; return 0; } #endif /* defined (__VMS) && !defined(__VAX) */ static void eth_get_nic_hw_addr(ETH_DEV* dev, const char *devname) { memset(&dev->host_nic_phy_hw_addr, 0, sizeof(dev->host_nic_phy_hw_addr)); dev->have_host_nic_phy_addr = 0; if (dev->eth_api != ETH_API_PCAP) return; #if defined(_WIN32) || defined(__CYGWIN__) if (!pcap_mac_if_win32(devname, dev->host_nic_phy_hw_addr)) |
︙ | ︙ | |||
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 | fclose(f); remove("NIC.hwaddr"); } } } #endif } /* Forward declarations */ static void _eth_callback(u_char* info, const struct pcap_pkthdr* header, const u_char* data); static t_stat _eth_write(ETH_DEV* dev, ETH_PACK* packet, ETH_PCALLBACK routine); static void _eth_error(ETH_DEV* dev, const char* where); #if defined (USE_READER_THREAD) #include <pthread.h> static void * _eth_reader(void *arg) { ETH_DEV* volatile dev = (ETH_DEV*)arg; int status = 0; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < > | | < | < | > > > > > > > > | | | < | | | | | | > | > | 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 | fclose(f); remove("NIC.hwaddr"); } } } #endif } #if defined(__APPLE__) #include <uuid/uuid.h> #include <unistd.h> static int _eth_get_system_id (char *buf, size_t buf_size) { static struct timespec wait = {5, 0}; /* 5 seconds */ static uuid_t uuid; memset (buf, 0, buf_size); if (buf_size < 37) return -1; if (gethostuuid (uuid, &wait)) memset (uuid, 0, sizeof(uuid)); uuid_unparse_lower(uuid, buf); return 0; } #elif defined(_WIN32) static int _eth_get_system_id (char *buf, size_t buf_size) { LONG status; DWORD reglen, regtype; HKEY reghnd; memset (buf, 0, buf_size); #ifndef KEY_WOW64_64KEY #define KEY_WOW64_64KEY (0x0100) #endif if ((status = RegOpenKeyExA (HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\Cryptography", 0, KEY_QUERY_VALUE|KEY_WOW64_64KEY, ®hnd)) != ERROR_SUCCESS) return -1; reglen = buf_size; if ((status = RegQueryValueExA (reghnd, "MachineGuid", NULL, ®type, buf, ®len)) != ERROR_SUCCESS) { RegCloseKey (reghnd); return -1; } RegCloseKey (reghnd ); /* make sure value is the right type, bail if not acceptable */ if ((regtype != REG_SZ) || (reglen > buf_size)) return -1; /* registry value seems OK */ return 0; } #else static int _eth_get_system_id (char *buf, size_t buf_size) { FILE *f; memset (buf, 0, buf_size); if ((f = fopen ("/etc/machine-id", "r"))) { fread (buf, 1, buf_size, f); fclose (f); } else { if ((f = popen ("hostname", "r"))) { fread (buf, 1, buf_size, f); pclose (f); } } while ((strlen (buf) > 0) && sim_isspace(buf[strlen (buf) - 1])) buf[strlen (buf) - 1] = '\0'; return 0; } #endif /* Forward declarations */ static void _eth_callback(u_char* info, const struct pcap_pkthdr* header, const u_char* data); static t_stat _eth_write(ETH_DEV* dev, ETH_PACK* packet, ETH_PCALLBACK routine); static void _eth_error(ETH_DEV* dev, const char* where); #if defined(HAVE_SLIRP_NETWORK) static void _slirp_callback (void *opaque, const unsigned char *buf, int len) { struct pcap_pkthdr header; memset(&header, 0, sizeof(header)); header.caplen = header.len = len; _eth_callback((u_char *)opaque, &header, buf); } #endif #if defined (USE_READER_THREAD) #include <pthread.h> static void * _eth_reader(void *arg) { ETH_DEV* volatile dev = (ETH_DEV*)arg; int status = 0; int sel_ret = 0; int do_select = 0; SOCKET select_fd = 0; #if defined (_WIN32) HANDLE hWait = (dev->eth_api == ETH_API_PCAP) ? pcap_getevent ((pcap_t*)dev->handle) : NULL; #endif switch (dev->eth_api) { case ETH_API_PCAP: #if defined (HAVE_PCAP_NETWORK) #if defined (MUST_DO_SELECT) do_select = 1; select_fd = pcap_get_selectable_fd((pcap_t *)dev->handle); #endif #endif break; case ETH_API_TAP: case ETH_API_VDE: case ETH_API_UDP: case ETH_API_NAT: do_select = 1; select_fd = dev->fd_handle; break; } sim_debug(dev->dbit, dev->dptr, "Reader Thread Starting\n"); /* Boost Priority for this I/O thread vs the CPU instruction execution thread which, in general, won't be readily yielding the processor when this thread needs to run */ sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); while (dev->handle) { #if defined (_WIN32) if (dev->eth_api == ETH_API_PCAP) { if (WAIT_OBJECT_0 == WaitForSingleObject (hWait, 250)) sel_ret = 1; } if ((dev->eth_api == ETH_API_UDP) || (dev->eth_api == ETH_API_NAT)) #endif /* _WIN32 */ if (1) { if (do_select) { #ifdef HAVE_SLIRP_NETWORK if (dev->eth_api == ETH_API_NAT) { sel_ret = sim_slirp_select ((SLIRP*)dev->handle, 250); } else #endif { fd_set setl; struct timeval timeout; FD_ZERO(&setl); FD_SET(select_fd, &setl); timeout.tv_sec = 0; timeout.tv_usec = 250*1000; sel_ret = select(1+select_fd, &setl, NULL, NULL, &timeout); } } else sel_ret = 1; if (sel_ret < 0 && errno != EINTR) break; } if (sel_ret > 0) { if (!dev->handle) break; /* dispatch read request queue available packets */ switch (dev->eth_api) { #ifdef HAVE_PCAP_NETWORK |
︙ | ︙ | |||
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 | status = -1; else status = 0; } } break; #endif /* HAVE_VDE_NETWORK */ case ETH_API_UDP: if (1) { struct pcap_pkthdr header; int len; u_char buf[ETH_MAX_JUMBO_FRAME]; memset(&header, 0, sizeof(header)); | > > > > > > | 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 | status = -1; else status = 0; } } break; #endif /* HAVE_VDE_NETWORK */ #ifdef HAVE_SLIRP_NETWORK case ETH_API_NAT: sim_slirp_dispatch ((SLIRP*)dev->handle); status = 1; break; #endif /* HAVE_SLIRP_NETWORK */ case ETH_API_UDP: if (1) { struct pcap_pkthdr header; int len; u_char buf[ETH_MAX_JUMBO_FRAME]; memset(&header, 0, sizeof(header)); |
︙ | ︙ | |||
1673 1674 1675 1676 1677 1678 1679 | return NULL; } static void * _eth_writer(void *arg) { ETH_DEV* volatile dev = (ETH_DEV*)arg; | | < < < | < | 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 | return NULL; } static void * _eth_writer(void *arg) { ETH_DEV* volatile dev = (ETH_DEV*)arg; ETH_WRITE_REQUEST *request; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which in general won't be readily yielding the processor when this thread needs to run */ sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); sim_debug(dev->dbit, dev->dptr, "Writer Thread Starting\n"); pthread_mutex_lock (&dev->writer_lock); while (dev->handle) { pthread_cond_wait (&dev->writer_cond, &dev->writer_lock); while (NULL != (request = dev->write_requests)) { |
︙ | ︙ | |||
1765 1766 1767 1768 1769 1770 1771 | dev->throttle_time = time; dev->throttle_burst = burst; dev->throttle_delay = delay; dev->throttle_mask = (1 << dev->throttle_burst) - 1; return SCPE_OK; } | | > > > | | | 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 | dev->throttle_time = time; dev->throttle_burst = burst; dev->throttle_delay = delay; dev->throttle_mask = (1 << dev->throttle_burst) - 1; return SCPE_OK; } static t_stat _eth_open_port(char *savname, int *eth_api, void **handle, SOCKET *fd_handle, char errbuf[PCAP_ERRBUF_SIZE], char *bpf_filter, void *opaque, DEVICE *dptr, uint32 dbit) { int bufsz = (BUFSIZ < ETH_MAX_PACKET) ? ETH_MAX_PACKET : BUFSIZ; if (bufsz < ETH_MAX_JUMBO_FRAME) bufsz = ETH_MAX_JUMBO_FRAME; /* Enable handling of jumbo frames */ *eth_api = 0; *handle = NULL; *fd_handle = 0; /* attempt to connect device */ memset(errbuf, 0, PCAP_ERRBUF_SIZE); if (0 == strncmp("tap:", savname, 4)) { int tun = -1; /* TUN/TAP Socket */ int on = 1; const char *devname = savname + 4; while (isspace(*devname)) ++devname; #if defined(HAVE_TAP_NETWORK) if (!strcmp(savname, "tap:tapN")) { sim_printf ("Eth: Must specify actual tap device name (i.e. tap:tap0)\r\n"); return SCPE_OPENERR | SCPE_NOMESSAGE; } #endif #if (defined(__linux) || defined(__linux__)) && defined(HAVE_TAP_NETWORK) if ((tun = open("/dev/net/tun", O_RDWR)) >= 0) { struct ifreq ifr; /* Interface Requests */ memset(&ifr, 0, sizeof(ifr)); /* Set up interface flags */ strcpy(ifr.ifr_name, devname); ifr.ifr_flags = IFF_TAP|IFF_NO_PI; /* Send interface requests to TUN/TAP driver. */ if (ioctl(tun, TUNSETIFF, &ifr) >= 0) { if (ioctl(tun, FIONBIO, &on)) { strncpy(errbuf, strerror(errno), PCAP_ERRBUF_SIZE-1); close(tun); |
︙ | ︙ | |||
1817 1818 1819 1820 1821 1822 1823 | } else strncpy(errbuf, strerror(errno), PCAP_ERRBUF_SIZE-1); #elif defined(HAVE_BSDTUNTAP) && defined(HAVE_TAP_NETWORK) if (1) { char dev_name[64] = ""; | | | | 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 | } else strncpy(errbuf, strerror(errno), PCAP_ERRBUF_SIZE-1); #elif defined(HAVE_BSDTUNTAP) && defined(HAVE_TAP_NETWORK) if (1) { char dev_name[64] = ""; snprintf(dev_name, sizeof(dev_name)-1, "/dev/%s", devname); dev_name[sizeof(dev_name)-1] = '\0'; if ((tun = open(dev_name, O_RDWR)) >= 0) { if (ioctl(tun, FIONBIO, &on)) { strncpy(errbuf, strerror(errno), PCAP_ERRBUF_SIZE-1); close(tun); } else { *fd_handle = tun; strcpy(savname, devname); } #if defined (__APPLE__) if (1) { struct ifreq ifr; int s; memset (&ifr, 0, sizeof(ifr)); |
︙ | ︙ | |||
1861 1862 1863 1864 1865 1866 1867 | strncpy(errbuf, "No support for tap: devices", PCAP_ERRBUF_SIZE-1); #endif /* !defined(__linux) && !defined(HAVE_BSDTUNTAP) */ if (0 == errbuf[0]) { *eth_api = ETH_API_TAP; *handle = (void *)1; /* Flag used to indicated open */ } } | | > | | > > | > > > > > > > > > | > > > > > > > > | | | > | | | | > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | | > | 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 | strncpy(errbuf, "No support for tap: devices", PCAP_ERRBUF_SIZE-1); #endif /* !defined(__linux) && !defined(HAVE_BSDTUNTAP) */ if (0 == errbuf[0]) { *eth_api = ETH_API_TAP; *handle = (void *)1; /* Flag used to indicated open */ } } else { /* !tap: */ if (0 == strncmp("vde:", savname, 4)) { #if defined(HAVE_VDE_NETWORK) struct vde_open_args voa; const char *devname = savname + 4; memset(&voa, 0, sizeof(voa)); if (!strcmp(savname, "vde:vdedevice")) { sim_printf ("Eth: Must specify actual vde device name (i.e. vde:/tmp/switch)\r\n"); return SCPE_OPENERR | SCPE_NOMESSAGE; } while (isspace(*devname)) ++devname; if (!(*handle = (void*) vde_open((char *)devname, (char *)"simh", &voa))) strncpy(errbuf, strerror(errno), PCAP_ERRBUF_SIZE-1); else { *eth_api = ETH_API_VDE; *fd_handle = vde_datafd((VDECONN*)(*handle)); } #else strncpy(errbuf, "No support for vde: network devices", PCAP_ERRBUF_SIZE-1); #endif /* defined(HAVE_VDE_NETWORK) */ } else { /* !vde: */ if (0 == strncmp("nat:", savname, 4)) { #if defined(HAVE_SLIRP_NETWORK) const char *devname = savname + 4; while (isspace(*devname)) ++devname; if (!(*handle = (void*) sim_slirp_open(devname, opaque, &_slirp_callback, dptr, dbit))) strncpy(errbuf, strerror(errno), PCAP_ERRBUF_SIZE-1); else { *eth_api = ETH_API_NAT; *fd_handle = 0; } #else strncpy(errbuf, "No support for nat: network devices", PCAP_ERRBUF_SIZE-1); #endif /* defined(HAVE_SLIRP_NETWORK) */ } else { /* not nat: */ if (0 == strncmp("udp:", savname, 4)) { char localport[CBUFSIZE], host[CBUFSIZE], port[CBUFSIZE]; char hostport[2*CBUFSIZE]; const char *devname = savname + 4; if (!strcmp(savname, "udp:sourceport:remotehost:remoteport")) { sim_printf ("Eth: Must specify actual udp host and ports(i.e. udp:1224:somehost.com:2234)\r\n"); return SCPE_OPENERR | SCPE_NOMESSAGE; } while (isspace(*devname)) ++devname; if (SCPE_OK != sim_parse_addr_ex (devname, host, sizeof(host), "localhost", port, sizeof(port), localport, sizeof(localport), NULL)) return SCPE_OPENERR; if (localport[0] == '\0') strcpy (localport, port); sprintf (hostport, "%s:%s", host, port); if ((SCPE_OK == sim_parse_addr (hostport, NULL, 0, NULL, NULL, 0, NULL, "localhost")) && (0 == strcmp (localport, port))) { sim_printf ("Eth: Must specify different udp localhost ports\r\n"); return SCPE_OPENERR | SCPE_NOMESSAGE; } *fd_handle = sim_connect_sock_ex (localport, hostport, NULL, NULL, SIM_SOCK_OPT_DATAGRAM); if (INVALID_SOCKET == *fd_handle) return SCPE_OPENERR; *eth_api = ETH_API_UDP; *handle = (void *)1; /* Flag used to indicated open */ } else { /* not udp:, so attempt to open the parameter as if it were an explicit device name */ #if defined(HAVE_PCAP_NETWORK) *handle = (void*) pcap_open_live(savname, bufsz, ETH_PROMISC, PCAP_READ_TIMEOUT, errbuf); if (!*handle) { /* can't open device */ sim_printf ("Eth: pcap_open_live error - %s\r\n", errbuf); return SCPE_OPENERR | SCPE_NOMESSAGE; } *eth_api = ETH_API_PCAP; #if !defined(HAS_PCAP_SENDPACKET) && defined (xBSD) && !defined (__APPLE__) /* Tell the kernel that the header is fully-formed when it gets it. This is required in order to fake the src address. */ if (1) { int one = 1; ioctl(pcap_fileno(*handle), BIOCSHDRCMPLT, &one); } #endif /* xBSD */ #if defined(_WIN32) pcap_setmintocopy ((pcap_t*)(*handle), 0); #endif #if !defined (USE_READER_THREAD) #ifdef USE_SETNONBLOCK /* set ethernet device non-blocking so pcap_dispatch() doesn't hang */ if (pcap_setnonblock (*handle, 1, errbuf) == -1) { sim_printf ("Eth: Failed to set non-blocking: %s\r\n", errbuf); } #endif #if defined (__APPLE__) if (1) { /* Deliver packets immediately, needed for OS X 10.6.2 and later * (Snow-Leopard). * See this thread on libpcap and Mac Os X 10.6 Snow Leopard on * the tcpdump mailinglist: http://seclists.org/tcpdump/2010/q1/110 */ int v = 1; ioctl(pcap_fileno(*handle), BIOCIMMEDIATE, &v); } #endif /* defined (__APPLE__) */ #endif /* !defined (USE_READER_THREAD) */ #else strncpy (errbuf, "Unknown or unsupported network device", PCAP_ERRBUF_SIZE-1); #endif /* defined(HAVE_PCAP_NETWORK) */ } /* not udp:, so attempt to open the parameter as if it were an explicit device name */ } /* !nat: */ } /* !vde: */ } /* !tap: */ if (errbuf[0]) return SCPE_OPENERR; #ifdef USE_BPF if (bpf_filter && (*eth_api == ETH_API_PCAP)) { struct bpf_program bpf; int status; |
︙ | ︙ | |||
1988 1989 1990 1991 1992 1993 1994 | pcap_freecode(&bpf); } } #endif /* USE_BPF */ return SCPE_OK; } | | | | > | | | | > > > > > | | > > | | 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 | pcap_freecode(&bpf); } } #endif /* USE_BPF */ return SCPE_OK; } t_stat eth_open(ETH_DEV* dev, const char* name, DEVICE* dptr, uint32 dbit) { t_stat r; int bufsz = (BUFSIZ < ETH_MAX_PACKET) ? ETH_MAX_PACKET : BUFSIZ; char errbuf[PCAP_ERRBUF_SIZE]; char temp[1024], desc[1024] = ""; const char* savname = name; char namebuf[4*CBUFSIZE]; int num; if (bufsz < ETH_MAX_JUMBO_FRAME) bufsz = ETH_MAX_JUMBO_FRAME; /* Enable handling of jumbo frames */ /* initialize device */ eth_zero(dev); /* translate name of type "ethX" to real device name */ if ((strlen(name) == 4) && (tolower(name[0]) == 'e') && (tolower(name[1]) == 't') && (tolower(name[2]) == 'h') && isdigit(name[3]) ) { num = atoi(&name[3]); savname = eth_getname(num, temp, desc); if (savname == NULL) /* didn't translate */ return SCPE_OPENERR; } else { /* are they trying to use device description? */ savname = eth_getname_bydesc(name, temp, desc); if (savname == NULL) { /* didn't translate */ /* probably is not ethX and has no description */ savname = eth_getname_byname(name, temp, desc); if (savname == NULL) {/* didn't translate */ savname = name; desc[0] = '\0'; /* no description */ } } } namebuf[sizeof(namebuf)-1] = '\0'; strncpy (namebuf, savname, sizeof(namebuf)-1); savname = namebuf; r = _eth_open_port(namebuf, &dev->eth_api, &dev->handle, &dev->fd_handle, errbuf, NULL, (void *)dev, dptr, dbit); if (errbuf[0]) { sim_printf ("Eth: open error - %s\r\n", errbuf); return SCPE_OPENERR | SCPE_NOMESSAGE; } if (r != SCPE_OK) return r; if (!strcmp (desc, "No description available")) strcpy (desc, ""); sim_printf ("Eth: opened OS device %s%s%s\r\n", savname, desc[0] ? " - " : "", desc); /* get the NIC's hardware MAC address */ eth_get_nic_hw_addr(dev, savname); /* save name of device */ dev->name = (char *)malloc(strlen(savname)+1); strcpy(dev->name, savname); |
︙ | ︙ | |||
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 | close(pcap_fd); break; #endif #ifdef HAVE_VDE_NETWORK case ETH_API_VDE: vde_close((VDECONN*)pcap); break; #endif case ETH_API_UDP: sim_close_sock(pcap_fd); break; | > > > > > < < < < < | 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 | close(pcap_fd); break; #endif #ifdef HAVE_VDE_NETWORK case ETH_API_VDE: vde_close((VDECONN*)pcap); break; #endif #ifdef HAVE_SLIRP_NETWORK case ETH_API_NAT: sim_slirp_close((SLIRP*)pcap); break; #endif case ETH_API_UDP: sim_close_sock(pcap_fd); break; } return SCPE_OK; } t_stat eth_close(ETH_DEV* dev) { pcap_t *pcap; |
︙ | ︙ | |||
2132 2133 2134 2135 2136 2137 2138 | pthread_mutex_destroy (&dev->lock); pthread_cond_signal (&dev->writer_cond); pthread_join (dev->writer_thread, NULL); pthread_mutex_destroy (&dev->self_lock); pthread_mutex_destroy (&dev->writer_lock); pthread_cond_destroy (&dev->writer_cond); if (1) { | | | 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 | pthread_mutex_destroy (&dev->lock); pthread_cond_signal (&dev->writer_cond); pthread_join (dev->writer_thread, NULL); pthread_mutex_destroy (&dev->self_lock); pthread_mutex_destroy (&dev->writer_lock); pthread_cond_destroy (&dev->writer_cond); if (1) { ETH_WRITE_REQUEST *buffer; while (NULL != (buffer = dev->write_buffers)) { dev->write_buffers = buffer->next; free(buffer); } while (NULL != (buffer = dev->write_requests)) { dev->write_requests = buffer->next; free(buffer); |
︙ | ︙ | |||
2162 2163 2164 2165 2166 2167 2168 | t_stat eth_attach_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { fprintf (st, "%s attach help\n\n", dptr->name); fprintf (st, " sim> SHOW ETHERNET\n"); fprintf (st, " libpcap version 1.0.0\n"); fprintf (st, " ETH devices:\n"); | | > | > > > > > > > > > > > | 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 | t_stat eth_attach_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { fprintf (st, "%s attach help\n\n", dptr->name); fprintf (st, " sim> SHOW ETHERNET\n"); fprintf (st, " libpcap version 1.0.0\n"); fprintf (st, " ETH devices:\n"); fprintf (st, " eth0 en0 (No description available)\n"); #if defined(HAVE_TAP_NETWORK) fprintf (st, " eth1 tap:tapN (Integrated Tun/Tap support)\n"); #endif #if defined(HAVE_SLIRP_NETWORK) fprintf (st, " eth2 vde:device (Integrated VDE support)\n"); #endif #if defined(HAVE_SLIRP_NETWORK) fprintf (st, " eth3 nat:{optional-nat-parameters} (Integrated NAT (SLiRP) support)\n"); #endif fprintf (st, " eth4 udp:sourceport:remotehost:remoteport (Integrated UDP bridge support)\n"); fprintf (st, " sim> ATTACH %s eth0\n\n", dptr->name); fprintf (st, "or equivalently:\n\n"); fprintf (st, " sim> ATTACH %s en0\n\n", dptr->name); #if defined(HAVE_SLIRP_NETWORK) sim_slirp_attach_help (st, dptr, uptr, flag, cptr); #endif return SCPE_OK; } static int _eth_rand_byte() { static int rand_initialized = 0; |
︙ | ︙ | |||
2274 2275 2276 2277 2278 2279 2280 | send.msg[25] = 0; eth_filter(dev, 1, (ETH_MAC *)mac, 0, 0); /* send the packet */ status = _eth_write (dev, &send, NULL); if (status != SCPE_OK) { | | | 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 | send.msg[25] = 0; eth_filter(dev, 1, (ETH_MAC *)mac, 0, 0); /* send the packet */ status = _eth_write (dev, &send, NULL); if (status != SCPE_OK) { const char *msg; msg = (dev->eth_api == ETH_API_PCAP) ? "Eth: Error Transmitting packet: %s\r\n" "You may need to run as root, or install a libpcap version\r\n" "which is at least 0.9 from your OS vendor or www.tcpdump.org\r\n" : "Eth: Error Transmitting packet: %s\r\n" "You may need to run as root.\r\n"; sim_printf(msg, strerror(errno)); |
︙ | ︙ | |||
2395 2396 2397 2398 2399 2400 2401 | #endif char errbuf[PCAP_ERRBUF_SIZE]; t_stat r; _eth_close_port(dev->eth_api, (pcap_t *)dev->handle, dev->fd_handle); sim_os_sleep (ETH_ERROR_REOPEN_PAUSE); | | | 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 | #endif char errbuf[PCAP_ERRBUF_SIZE]; t_stat r; _eth_close_port(dev->eth_api, (pcap_t *)dev->handle, dev->fd_handle); sim_os_sleep (ETH_ERROR_REOPEN_PAUSE); r = _eth_open_port(dev->name, &dev->eth_api, &dev->handle, &dev->fd_handle, errbuf, dev->bpf_filter, (void *)dev, dev->dptr, dev->dbit); dev->error_needs_reset = FALSE; if (r == SCPE_OK) sim_printf ("%s ReOpened: %s \n", msg, dev->name); else sim_printf ("%s ReOpen Attempt Failed: %s - %s\n", msg, dev->name, errbuf); ++dev->error_reopen_count; } |
︙ | ︙ | |||
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 | status = 0; else if ((status == -1) && ((errno == EAGAIN) || (errno == EWOULDBLOCK))) status = 0; else status = 1; break; #endif case ETH_API_UDP: status = (((int32)packet->len == sim_write_sock (dev->fd_handle, (char *)packet->msg, (int32)packet->len)) ? 0 : -1); break; } ++dev->packets_sent; /* basic bookkeeping */ /* On error, correct loopback bookkeeping */ | > > > > > > > > > | 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 | status = 0; else if ((status == -1) && ((errno == EAGAIN) || (errno == EWOULDBLOCK))) status = 0; else status = 1; break; #endif #ifdef HAVE_SLIRP_NETWORK case ETH_API_NAT: status = sim_slirp_send((SLIRP*)dev->handle, (char *)packet->msg, (size_t)packet->len, 0); if ((status == (int)packet->len) || (status == 0)) status = 0; else status = 1; break; #endif case ETH_API_UDP: status = (((int32)packet->len == sim_write_sock (dev->fd_handle, (char *)packet->msg, (int32)packet->len)) ? 0 : -1); break; } ++dev->packets_sent; /* basic bookkeeping */ /* On error, correct loopback bookkeeping */ |
︙ | ︙ | |||
2503 2504 2505 2506 2507 2508 2509 | return ((status == 0) ? SCPE_OK : SCPE_IOERR); } t_stat eth_write(ETH_DEV* dev, ETH_PACK* packet, ETH_PCALLBACK routine) { #ifdef USE_READER_THREAD | | | | | 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 | return ((status == 0) ? SCPE_OK : SCPE_IOERR); } t_stat eth_write(ETH_DEV* dev, ETH_PACK* packet, ETH_PCALLBACK routine) { #ifdef USE_READER_THREAD ETH_WRITE_REQUEST *request; int write_queue_size = 1; /* make sure device exists */ if ((!dev) || (dev->eth_api == ETH_API_NONE)) return SCPE_UNATT; /* Get a buffer */ pthread_mutex_lock (&dev->writer_lock); if (NULL != (request = dev->write_buffers)) dev->write_buffers = request->next; pthread_mutex_unlock (&dev->writer_lock); if (NULL == request) request = (ETH_WRITE_REQUEST *)malloc(sizeof(*request)); /* Copy buffer contents */ request->packet.len = packet->len; request->packet.used = packet->used; request->packet.status = packet->status; request->packet.crc_len = packet->crc_len; memcpy(request->packet.msg, packet->msg, packet->len); /* Insert buffer at the end of the write list (to make sure that */ /* packets make it to the wire in the order they were presented here) */ pthread_mutex_lock (&dev->writer_lock); request->next = NULL; if (dev->write_requests) { ETH_WRITE_REQUEST *last_request = dev->write_requests; ++write_queue_size; while (last_request->next) { last_request = last_request->next; ++write_queue_size; } last_request->next = request; |
︙ | ︙ | |||
2740 2741 2742 2743 2744 2745 2746 | sum += (sum >> 16); /* Return the bitwise complement of the resulting mishmash */ return (uint16)(~sum); } static void | | | | 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 | sum += (sum >> 16); /* Return the bitwise complement of the resulting mishmash */ return (uint16)(~sum); } static void _eth_fix_ip_jumbo_offload(ETH_DEV* dev, u_char* msg, int len) { const unsigned short* proto = (const unsigned short*) &msg[12]; struct IPHeader *IP; struct TCPHeader *TCP = NULL; struct UDPHeader *UDP; struct ICMPHeader *ICMP; uint16 orig_checksum; uint16 payload_len; uint16 mtu_payload; |
︙ | ︙ | |||
2931 2932 2933 2934 2935 2936 2937 | break; } } static void _eth_fix_ip_xsum_offload(ETH_DEV* dev, const u_char* msg, int len) { | | | 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 | break; } } static void _eth_fix_ip_xsum_offload(ETH_DEV* dev, const u_char* msg, int len) { const unsigned short* proto = (const unsigned short*) &msg[12]; struct IPHeader *IP; struct TCPHeader *TCP; struct UDPHeader *UDP; struct ICMPHeader *ICMP; uint16 orig_checksum; /* Only need to process locally originated packets */ |
︙ | ︙ | |||
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 | if ((dev->hash_filter) && (data[0] & 0x01) && (!dev->promiscuous) && (!dev->all_multicast)) to_me = _eth_hash_lookup(dev->hash, data); break; #endif /* USE_BPF */ case ETH_API_TAP: case ETH_API_VDE: case ETH_API_UDP: bpf_used = 0; to_me = 0; eth_packet_trace (dev, data, header->len, "received"); for (i = 0; i < dev->addr_count; i++) { if (memcmp(data, dev->filter_address[i], 6) == 0) to_me = 1; if (memcmp(&data[6], dev->filter_address[i], 6) == 0) from_me = 1; | > | 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 | if ((dev->hash_filter) && (data[0] & 0x01) && (!dev->promiscuous) && (!dev->all_multicast)) to_me = _eth_hash_lookup(dev->hash, data); break; #endif /* USE_BPF */ case ETH_API_TAP: case ETH_API_VDE: case ETH_API_UDP: case ETH_API_NAT: bpf_used = 0; to_me = 0; eth_packet_trace (dev, data, header->len, "received"); for (i = 0; i < dev->addr_count; i++) { if (memcmp(data, dev->filter_address[i], 6) == 0) to_me = 1; if (memcmp(&data[6], dev->filter_address[i], 6) == 0) from_me = 1; |
︙ | ︙ | |||
3126 3127 3128 3129 3130 3131 3132 | } else if (!bpf_used) from_me = 0; #ifdef USE_READER_THREAD pthread_mutex_unlock (&dev->self_lock); #endif | | | > > | > > | 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 | } else if (!bpf_used) from_me = 0; #ifdef USE_READER_THREAD pthread_mutex_unlock (&dev->self_lock); #endif } if (bpf_used ? to_me : (to_me && !from_me)) { if (header->len > ETH_MIN_JUMBO_FRAME) { if (header->len <= header->caplen) {/* Whole Frame captured? */ u_char *datacopy = (u_char *)malloc(header->len); memcpy(datacopy, data, header->len); _eth_fix_ip_jumbo_offload(dev, datacopy, header->len); free(datacopy); } else ++dev->jumbo_truncated; return; } if (_eth_process_loopback(dev, data, header->len)) return; #if defined (USE_READER_THREAD) |
︙ | ︙ | |||
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 | for (i=0; i<used; ++i) { /* Cull any non-ethernet interface types */ #if defined(HAVE_PCAP_NETWORK) conn = pcap_open_live(list[i].name, ETH_MAX_PACKET, ETH_PROMISC, PCAP_READ_TIMEOUT, errbuf); if (NULL != conn) datalink = pcap_datalink(conn), pcap_close(conn); #endif if ((NULL == conn) || (datalink != DLT_EN10MB)) { for (j=i; j<used-1; ++j) list[j] = list[j+1]; --used; --i; } | > | 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 | for (i=0; i<used; ++i) { /* Cull any non-ethernet interface types */ #if defined(HAVE_PCAP_NETWORK) conn = pcap_open_live(list[i].name, ETH_MAX_PACKET, ETH_PROMISC, PCAP_READ_TIMEOUT, errbuf); if (NULL != conn) datalink = pcap_datalink(conn), pcap_close(conn); list[i].eth_api = ETH_API_PCAP; #endif if ((NULL == conn) || (datalink != DLT_EN10MB)) { for (j=i; j<used-1; ++j) list[j] = list[j+1]; --used; --i; } |
︙ | ︙ | |||
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 | if (used < max) { #if defined(__OpenBSD__) sprintf(list[used].name, "%s", "tap:tunN"); #else sprintf(list[used].name, "%s", "tap:tapN"); #endif sprintf(list[used].desc, "%s", "Integrated Tun/Tap support"); ++used; } #endif #ifdef HAVE_VDE_NETWORK if (used < max) { sprintf(list[used].name, "%s", "vde:device"); sprintf(list[used].desc, "%s", "Integrated VDE support"); ++used; } #endif if (used < max) { sprintf(list[used].name, "%s", "udp:sourceport:remotehost:remoteport"); sprintf(list[used].desc, "%s", "Integrated UDP bridge support"); ++used; } | > > > > > > > > > > > < < < < < < < < | 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 | if (used < max) { #if defined(__OpenBSD__) sprintf(list[used].name, "%s", "tap:tunN"); #else sprintf(list[used].name, "%s", "tap:tapN"); #endif sprintf(list[used].desc, "%s", "Integrated Tun/Tap support"); list[used].eth_api = ETH_API_TAP; ++used; } #endif #ifdef HAVE_VDE_NETWORK if (used < max) { sprintf(list[used].name, "%s", "vde:device"); sprintf(list[used].desc, "%s", "Integrated VDE support"); list[used].eth_api = ETH_API_VDE; ++used; } #endif #ifdef HAVE_SLIRP_NETWORK if (used < max) { sprintf(list[used].name, "%s", "nat:{optional-nat-parameters}"); sprintf(list[used].desc, "%s", "Integrated NAT (SLiRP) support"); list[used].eth_api = ETH_API_NAT; ++used; } #endif if (used < max) { sprintf(list[used].name, "%s", "udp:sourceport:remotehost:remoteport"); sprintf(list[used].desc, "%s", "Integrated UDP bridge support"); list[used].eth_api = ETH_API_UDP; ++used; } return used; } int eth_devices(int max, ETH_LIST* list) { int i = 0; char errbuf[PCAP_ERRBUF_SIZE]; |
︙ | ︙ | |||
3727 3728 3729 3730 3731 3732 3733 3734 3735 | fprintf(st, " Read Queue: Count: %d\n", dev->read_queue.count); fprintf(st, " Read Queue: High: %d\n", dev->read_queue.high); fprintf(st, " Read Queue: Loss: %d\n", dev->read_queue.loss); fprintf(st, " Peak Write Queue Size: %d\n", dev->write_queue_peak); #endif if (dev->bpf_filter) fprintf(st, " BPF Filter: %s\n", dev->bpf_filter); } #endif /* USE_NETWORK */ | > > > > | 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 | fprintf(st, " Read Queue: Count: %d\n", dev->read_queue.count); fprintf(st, " Read Queue: High: %d\n", dev->read_queue.high); fprintf(st, " Read Queue: Loss: %d\n", dev->read_queue.loss); fprintf(st, " Peak Write Queue Size: %d\n", dev->write_queue_peak); #endif if (dev->bpf_filter) fprintf(st, " BPF Filter: %s\n", dev->bpf_filter); #if defined(HAVE_SLIRP_NETWORK) if (dev->eth_api == ETH_API_NAT) sim_slirp_show ((SLIRP *)dev->handle, st); #endif } #endif /* USE_NETWORK */ |
Changes to src/sim_ether.h.
︙ | ︙ | |||
64 65 66 67 68 69 70 71 72 73 74 75 76 77 | */ #ifndef SIM_ETHER_H #define SIM_ETHER_H #include "sim_defs.h" #include "sim_sock.h" /* make common BSD code a bit easier to read in this file */ /* OS/X seems to define and compile using one of these BSD types */ #if defined(__NetBSD__) || defined (__OpenBSD__) || defined (__FreeBSD__) #define xBSD 1 #endif #if !defined(__FreeBSD__) && !defined(_WIN32) && !defined(VMS) && !defined(__CYGWIN__) && !defined(__APPLE__) | > > > > | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | */ #ifndef SIM_ETHER_H #define SIM_ETHER_H #include "sim_defs.h" #include "sim_sock.h" #ifdef __cplusplus extern "C" { #endif /* make common BSD code a bit easier to read in this file */ /* OS/X seems to define and compile using one of these BSD types */ #if defined(__NetBSD__) || defined (__OpenBSD__) || defined (__FreeBSD__) #define xBSD 1 #endif #if !defined(__FreeBSD__) && !defined(_WIN32) && !defined(VMS) && !defined(__CYGWIN__) && !defined(__APPLE__) |
︙ | ︙ | |||
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 | int high; struct eth_item* item; }; struct eth_list { char name[ETH_DEV_NAME_MAX]; char desc[ETH_DEV_DESC_MAX]; }; typedef int ETH_BOOL; typedef unsigned char ETH_MAC[6]; typedef unsigned char ETH_MULTIHASH[8]; typedef struct eth_packet ETH_PACK; typedef void (*ETH_PCALLBACK)(int status); typedef struct eth_list ETH_LIST; typedef struct eth_queue ETH_QUE; typedef struct eth_item ETH_ITEM; struct eth_device { char* name; /* name of ethernet device */ void* handle; /* handle of implementation-specific device */ SOCKET fd_handle; /* fd to kernel device (where needed) */ char* bpf_filter; /* bpf filter currently in effect */ int eth_api; /* Designator for which API is being used to move packets */ | > > > > > > | 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | int high; struct eth_item* item; }; struct eth_list { char name[ETH_DEV_NAME_MAX]; char desc[ETH_DEV_DESC_MAX]; int eth_api; }; typedef int ETH_BOOL; typedef unsigned char ETH_MAC[6]; typedef unsigned char ETH_MULTIHASH[8]; typedef struct eth_packet ETH_PACK; typedef void (*ETH_PCALLBACK)(int status); typedef struct eth_list ETH_LIST; typedef struct eth_queue ETH_QUE; typedef struct eth_item ETH_ITEM; struct eth_write_request { struct eth_write_request *next; ETH_PACK packet; }; typedef struct eth_write_request ETH_WRITE_REQUEST; struct eth_device { char* name; /* name of ethernet device */ void* handle; /* handle of implementation-specific device */ SOCKET fd_handle; /* fd to kernel device (where needed) */ char* bpf_filter; /* bpf filter currently in effect */ int eth_api; /* Designator for which API is being used to move packets */ |
︙ | ︙ | |||
299 300 301 302 303 304 305 | ETH_QUE read_queue; pthread_mutex_t lock; pthread_t reader_thread; /* Reader Thread Id */ pthread_t writer_thread; /* Writer Thread Id */ pthread_mutex_t writer_lock; pthread_mutex_t self_lock; pthread_cond_t writer_cond; | < < < | | | | 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | ETH_QUE read_queue; pthread_mutex_t lock; pthread_t reader_thread; /* Reader Thread Id */ pthread_t writer_thread; /* Writer Thread Id */ pthread_mutex_t writer_lock; pthread_mutex_t self_lock; pthread_cond_t writer_cond; ETH_WRITE_REQUEST *write_requests; int write_queue_peak; ETH_WRITE_REQUEST *write_buffers; t_stat write_status; #endif }; typedef struct eth_device ETH_DEV; /* prototype declarations*/ t_stat eth_open (ETH_DEV* dev, const char* name, /* open ethernet interface */ DEVICE* dptr, uint32 dbit); t_stat eth_close (ETH_DEV* dev); /* close ethernet interface */ t_stat eth_attach_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); t_stat eth_write (ETH_DEV* dev, ETH_PACK* packet, /* write sychronous packet; */ ETH_PCALLBACK routine); /* callback when done */ int eth_read (ETH_DEV* dev, ETH_PACK* packet, /* read single packet; */ ETH_PCALLBACK routine); /* callback when done*/ |
︙ | ︙ | |||
342 343 344 345 346 347 348 | t_stat eth_clr_async (ETH_DEV* dev); /* set read behavior to be not async */ t_stat eth_set_throttle (ETH_DEV* dev, uint32 time, uint32 burst, uint32 delay); /* set transmit throttle parameters */ uint32 eth_crc32(uint32 crc, const void* vbuf, size_t len); /* Compute Ethernet Autodin II CRC for buffer */ void eth_packet_trace (ETH_DEV* dev, const uint8 *msg, int len, const char* txt); /* trace ethernet packet header+crc */ void eth_packet_trace_ex (ETH_DEV* dev, const uint8 *msg, int len, const char* txt, int detail, uint32 reason); /* trace ethernet packet */ t_stat eth_show (FILE* st, UNIT* uptr, /* show ethernet devices */ | | | | > | > > > > > | 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | t_stat eth_clr_async (ETH_DEV* dev); /* set read behavior to be not async */ t_stat eth_set_throttle (ETH_DEV* dev, uint32 time, uint32 burst, uint32 delay); /* set transmit throttle parameters */ uint32 eth_crc32(uint32 crc, const void* vbuf, size_t len); /* Compute Ethernet Autodin II CRC for buffer */ void eth_packet_trace (ETH_DEV* dev, const uint8 *msg, int len, const char* txt); /* trace ethernet packet header+crc */ void eth_packet_trace_ex (ETH_DEV* dev, const uint8 *msg, int len, const char* txt, int detail, uint32 reason); /* trace ethernet packet */ t_stat eth_show (FILE* st, UNIT* uptr, /* show ethernet devices */ int32 val, CONST void* desc); t_stat eth_show_devices (FILE* st, DEVICE *dptr, /* show ethernet devices */ UNIT* uptr, int32 val, CONST char* desc); void eth_show_dev (FILE*st, ETH_DEV* dev); /* show ethernet device state */ void eth_mac_fmt (ETH_MAC* const add, char* buffer); /* format ethernet mac address */ t_stat eth_mac_scan (ETH_MAC* mac, const char* strmac); /* scan string for mac, put in mac */ t_stat eth_mac_scan_ex (ETH_MAC* mac, /* scan string for mac, put in mac */ const char* strmac, UNIT *uptr);/* for specified unit */ t_stat ethq_init (ETH_QUE* que, int max); /* initialize FIFO queue */ void ethq_clear (ETH_QUE* que); /* clear FIFO queue */ void ethq_remove (ETH_QUE* que); /* remove item from FIFO queue */ void ethq_insert (ETH_QUE* que, int32 type, /* insert item into FIFO queue */ ETH_PACK* packet, int32 status); void ethq_insert_data(ETH_QUE* que, int32 type, /* insert item into FIFO queue */ const uint8 *data, int used, size_t len, size_t crc_len, const uint8 *crc_data, int32 status); t_stat ethq_destroy(ETH_QUE* que); /* release FIFO queue */ const char *eth_capabilities(void); #ifdef __cplusplus } #endif #endif /* _SIM_ETHER_H */ |
Changes to src/sim_fio.c.
︙ | ︙ | |||
121 122 123 124 125 126 127 | c = fread (bptr, size, count, fptr); /* read buffer */ if (sim_end || (size == sizeof (char)) || (c == 0)) /* le, byte, or err? */ return c; /* done */ sim_buf_swap_data (bptr, size, count); return c; } | | | | | | | 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 | c = fread (bptr, size, count, fptr); /* read buffer */ if (sim_end || (size == sizeof (char)) || (c == 0)) /* le, byte, or err? */ return c; /* done */ sim_buf_swap_data (bptr, size, count); return c; } void sim_buf_copy_swapped (void *dbuf, const void *sbuf, size_t size, size_t count) { size_t j; int32 k; const unsigned char *sptr = (const unsigned char *)sbuf; unsigned char *dptr = (unsigned char *)dbuf; if (sim_end || (size == sizeof (char))) { memcpy (dptr, sptr, size * count); return; } for (j = 0; j < count; j++) { /* loop on items */ for (k = (int32)(size - 1); k >= 0; k--) *(dptr + k) = *sptr++; dptr = dptr + size; } } size_t sim_fwrite (const void *bptr, size_t size, size_t count, FILE *fptr) { size_t c, nelem, nbuf, lcnt, total; int32 i; const unsigned char *sptr; unsigned char *sim_flip; if ((size == 0) || (count == 0)) /* check arguments */ return 0; if (sim_end || (size == sizeof (char))) /* le or byte? */ return fwrite (bptr, size, count, fptr); /* done */ sim_flip = (unsigned char *)malloc(FLIP_SIZE); if (!sim_flip) return 0; nelem = FLIP_SIZE / size; /* elements in buffer */ nbuf = count / nelem; /* number buffers */ lcnt = count % nelem; /* count in last buf */ if (lcnt) nbuf = nbuf + 1; else lcnt = nelem; total = 0; sptr = (const unsigned char *) bptr; /* init input ptr */ for (i = (int32)nbuf; i > 0; i--) { /* loop on buffers */ c = (i == 1)? lcnt: nelem; sim_buf_copy_swapped (sim_flip, sptr, size, c); sptr = sptr + size * count; c = fwrite (sim_flip, size, c, fptr); if (c == 0) { free(sim_flip); |
︙ | ︙ | |||
194 195 196 197 198 199 200 | pos = sim_ftell (fp); sim_fseek (fp, 0, SEEK_END); sz = sim_ftell (fp); sim_fseeko (fp, pos, SEEK_SET); return sz; } | | | | 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | pos = sim_ftell (fp); sim_fseek (fp, 0, SEEK_END); sz = sim_ftell (fp); sim_fseeko (fp, pos, SEEK_SET); return sz; } t_offset sim_fsize_name_ex (const char *fname) { FILE *fp; t_offset sz; if ((fp = sim_fopen (fname, "rb")) == NULL) return 0; sz = sim_fsize_ex (fp); fclose (fp); return sz; } uint32 sim_fsize_name (const char *fname) { return (uint32)(sim_fsize_name_ex (fname)); } uint32 sim_fsize (FILE *fp) { return (uint32)(sim_fsize_ex (fp)); |
︙ | ︙ | |||
330 331 332 333 334 335 336 | return (t_offset)(ftello64 (st)); } #endif /* end Linux with LFS */ /* Apple OS/X */ | | | 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 | return (t_offset)(ftello64 (st)); } #endif /* end Linux with LFS */ /* Apple OS/X */ #if defined (__APPLE__) || defined (__FreeBSD__) || defined(__NetBSD__) || defined (__OpenBSD__) || defined (__CYGWIN__) #define S_SIM_IO_FSEEK_EXT_ 1 int sim_fseeko (FILE *st, t_offset xpos, int origin) { return fseeko (st, (off_t)xpos, origin); } t_offset sim_ftell (FILE *st) |
︙ | ︙ |
Changes to src/sim_fio.h.
︙ | ︙ | |||
28 29 30 31 32 33 34 35 36 37 38 39 40 | 15-May-06 RMS Added sim_fsize_name 16-Aug-05 RMS Fixed C++ declaration and cast problems 02-Jan-04 RMS Split out from SCP */ #ifndef SIM_FIO_H_ #define SIM_FIO_H_ 0 #define FLIP_SIZE (1 << 16) /* flip buf size */ #define fxread(a,b,c,d) sim_fread (a, b, c, d) #define fxwrite(a,b,c,d) sim_fwrite (a, b, c, d) int32 sim_finit (void); | > > > > | | | | | | > > > > | 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | 15-May-06 RMS Added sim_fsize_name 16-Aug-05 RMS Fixed C++ declaration and cast problems 02-Jan-04 RMS Split out from SCP */ #ifndef SIM_FIO_H_ #define SIM_FIO_H_ 0 #ifdef __cplusplus extern "C" { #endif #define FLIP_SIZE (1 << 16) /* flip buf size */ #define fxread(a,b,c,d) sim_fread (a, b, c, d) #define fxwrite(a,b,c,d) sim_fwrite (a, b, c, d) int32 sim_finit (void); #if (defined (__linux) || defined (__linux__) || defined (__hpux) || defined (_AIX) || \ (defined (VMS) && (defined (__ALPHA) || defined (__ia64)) && (__DECC_VER >= 60590001)) || \ ((defined(__sun) || defined(__sun__)) && defined(_LARGEFILE_SOURCE)) || \ defined (_WIN32) || defined (__APPLE__) || defined (__CYGWIN__) || \ defined (__FreeBSD__) || defined(__NetBSD__) || defined (__OpenBSD__)) && !defined (DONT_DO_LARGEFILE) typedef t_int64 t_offset; #else typedef int32 t_offset; #if !defined (DONT_DO_LARGEFILE) #define DONT_DO_LARGEFILE 1 #endif #endif FILE *sim_fopen (const char *file, const char *mode); int sim_fseek (FILE *st, t_addr offset, int whence); int sim_fseeko (FILE *st, t_offset offset, int whence); int sim_set_fsize (FILE *fptr, t_addr size); int sim_set_fifo_nonblock (FILE *fptr); size_t sim_fread (void *bptr, size_t size, size_t count, FILE *fptr); size_t sim_fwrite (const void *bptr, size_t size, size_t count, FILE *fptr); uint32 sim_fsize (FILE *fptr); uint32 sim_fsize_name (const char *fname); t_offset sim_ftell (FILE *st); t_offset sim_fsize_ex (FILE *fptr); t_offset sim_fsize_name_ex (const char *fname); void sim_buf_swap_data (void *bptr, size_t size, size_t count); void sim_buf_copy_swapped (void *dptr, const void *bptr, size_t size, size_t count); typedef struct SHMEM SHMEM; t_stat sim_shmem_open (const char *name, size_t size, SHMEM **shmem, void **addr); void sim_shmem_close (SHMEM *shmem); extern t_bool sim_taddr_64; /* t_addr is > 32b and Large File Support available */ extern t_bool sim_toffset_64; /* Large File (>2GB) file I/O support */ extern t_bool sim_end; /* TRUE = little endian, FALSE = big endian */ #ifdef __cplusplus } #endif #endif |
Changes to src/sim_frontpanel.h.
︙ | ︙ | |||
53 54 55 56 57 58 59 | extern "C" { #endif #include <stdlib.h> #if !defined(__VAX) /* Unsupported platform */ | | | 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 | extern "C" { #endif #include <stdlib.h> #if !defined(__VAX) /* Unsupported platform */ #define SIM_FRONTPANEL_VERSION 2 /** sim_panel_start_simulator A starts a simulator with a particular configuration sim_path the path to the simulator binary |
︙ | ︙ | |||
227 228 229 230 231 232 233 234 235 236 237 238 239 240 | sim_panel_exec_boot (PANEL *panel, const char *device); int sim_panel_exec_run (PANEL *panel); int sim_panel_exec_step (PANEL *panel); /** When a front panel application needs to change or access memory or a register one of the following routines should be called: | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | sim_panel_exec_boot (PANEL *panel, const char *device); int sim_panel_exec_run (PANEL *panel); int sim_panel_exec_step (PANEL *panel); /** When a front panel application wants to describe conditions that should stop instruction execution an execution or an output breakpoint should be used. To established or clear a breakpoint, one of the following routines should be called: sim_panel_break_set - Establish a simulation breakpoint sim_panel_break_clear - Cancel/Delete a previously defined breakpoint sim_panel_break_output_set - Establish a simulator output breakpoint sim_panel_break_output_clear - Cancel/Delete a previously defined output breakpoint Note: Any breakpoint switches/flags must be located at the beginning of the condition string */ int sim_panel_break_set (PANEL *panel, const char *condition); int sim_panel_break_clear (PANEL *panel, const char *condition); int sim_panel_break_output_set (PANEL *panel, const char *condition); int sim_panel_break_output_clear (PANEL *panel, const char *condition); /** When a front panel application needs to change or access memory or a register one of the following routines should be called: |
︙ | ︙ |
Changes to src/sim_rev.h.
︙ | ︙ |
Changes to src/sim_serial.c.
︙ | ︙ | |||
111 112 113 114 115 116 117 | int sim_serial_devices (int max, SERIAL_LIST* list) --------------------------------------------------- enumerates the available host serial ports | | | 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 | int sim_serial_devices (int max, SERIAL_LIST* list) --------------------------------------------------- enumerates the available host serial ports t_stat sim_show_serial (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, const void* desc) --------------------------------- displays the available host serial ports */ |
︙ | ︙ | |||
218 219 220 221 222 223 224 | sim_printf ("Serial: %s fails with error %d\n", routine, error); return; } /* Used when sorting a list of serial port names */ static int _serial_name_compare (const void *pa, const void *pb) { | | | | 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 | sim_printf ("Serial: %s fails with error %d\n", routine, error); return; } /* Used when sorting a list of serial port names */ static int _serial_name_compare (const void *pa, const void *pb) { const SERIAL_LIST *a = (const SERIAL_LIST *)pa; const SERIAL_LIST *b = (const SERIAL_LIST *)pb; return strcmp(a->name, b->name); } static int sim_serial_devices (int max, SERIAL_LIST *list) { int i, j, ports = sim_serial_os_devices(max, list); |
︙ | ︙ | |||
287 288 289 290 291 292 293 | strcpy(name, list[i].name); return name; } /* not found */ return NULL; } | < < < < < < < < < < < < < < < < < < < < < < < | | | | 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | strcpy(name, list[i].name); return name; } /* not found */ return NULL; } static char* sim_serial_getname_byname (char* name, char* temp) { SERIAL_LIST list[SER_MAX_DEVICE]; int count = sim_serial_devices(SER_MAX_DEVICE, list); size_t n; int i, found; found = 0; n = strlen(name); for (i=0; i<count && !found; i++) { if ((n == strlen(list[i].name)) && (sim_strncasecmp(name, list[i].name, n) == 0)) { found = 1; strcpy(temp, list[i].name); /* only case might be different */ } } return (found ? temp : NULL); } char* sim_serial_getdesc_byname (char* name, char* temp) { SERIAL_LIST list[SER_MAX_DEVICE]; int count = sim_serial_devices(SER_MAX_DEVICE, list); size_t n; int i, found; found = 0; n = strlen(name); for (i=0; i<count && !found; i++) { if ((n == strlen(list[i].name)) && (sim_strncasecmp(name, list[i].name, n) == 0)) { found = 1; strcpy(temp, list[i].desc); } } return (found ? temp : NULL); } t_stat sim_show_serial (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char* desc) { SERIAL_LIST list[SER_MAX_DEVICE]; int number = sim_serial_devices(SER_MAX_DEVICE, list); fprintf(st, "Serial devices:\n"); if (number == -1) fprintf(st, " serial support not available in simulator\n"); |
︙ | ︙ | |||
387 388 389 390 391 392 393 | } SERHANDLE sim_open_serial (char *name, TMLN *lp, t_stat *stat) { char temp1[1024], devname [1024]; char *savname = name; SERHANDLE port = INVALID_HANDLE; | | | 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | } SERHANDLE sim_open_serial (char *name, TMLN *lp, t_stat *stat) { char temp1[1024], devname [1024]; char *savname = name; SERHANDLE port = INVALID_HANDLE; CONST char *config; t_stat status; config = get_glyph_nc (name, devname, ';'); /* separate port name from optional config params */ if ((config == NULL) || (*config == '\0')) config = "9600-8N1"; |
︙ | ︙ | |||
411 412 413 414 415 416 417 | && (isdigit(devname[4]) || (devname[4] == '\0')) ) { int num = atoi(&devname[3]); savname = sim_serial_getname(num, temp1); if (savname == NULL) { /* didn't translate */ if (stat) *stat = SCPE_OPENERR; | | | 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 | && (isdigit(devname[4]) || (devname[4] == '\0')) ) { int num = atoi(&devname[3]); savname = sim_serial_getname(num, temp1); if (savname == NULL) { /* didn't translate */ if (stat) *stat = SCPE_OPENERR; return INVALID_HANDLE; } } else { /* are they trying to use device description? */ savname = sim_serial_getname_bydesc(devname, temp1); if (savname == NULL) { /* didn't translate */ /* probably is not serX and has no description */ |
︙ | ︙ | |||
464 465 466 467 468 469 470 | void sim_close_serial (SERHANDLE port) { sim_close_os_serial (port); _serial_remove_from_open_list (port); } | | | | | 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 | void sim_close_serial (SERHANDLE port) { sim_close_os_serial (port); _serial_remove_from_open_list (port); } t_stat sim_config_serial (SERHANDLE port, CONST char *sconfig) { CONST char *pptr; CONST char *sptr, *tptr; SERCONFIG config = { 0 }; t_bool arg_error = FALSE; t_stat r; struct open_serial_device *dev; if ((sconfig == NULL) || (*sconfig == '\0')) sconfig = "9600-8N1"; /* default settings */ |
︙ | ︙ | |||
518 519 520 521 522 523 524 525 526 527 528 529 530 531 | The serial port names are extracted from the appropriate place in the windows registry (HKLM\HARDWARE\DEVICEMAP\SERIALCOMM\). The resulting list is sorted alphabetically by device name (COMn). The device description is set to the OS internal name for the COM device. */ static int sim_serial_os_devices (int max, SERIAL_LIST* list) { int ports = 0; HKEY hSERIALCOMM; memset(list, 0, max*sizeof(*list)); | > > > > > > > > | 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 | The serial port names are extracted from the appropriate place in the windows registry (HKLM\HARDWARE\DEVICEMAP\SERIALCOMM\). The resulting list is sorted alphabetically by device name (COMn). The device description is set to the OS internal name for the COM device. */ struct SERPORT { HANDLE hPort; DWORD dwEvtMask; OVERLAPPED oReadSync; OVERLAPPED oWriteReady; OVERLAPPED oWriteSync; }; static int sim_serial_os_devices (int max, SERIAL_LIST* list) { int ports = 0; HKEY hSERIALCOMM; memset(list, 0, max*sizeof(*list)); |
︙ | ︙ | |||
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 | of the DCB fields are not set correctly, so we cannot use this directly in a call to "SetCommState". Instead, we must copy the fields of interest to a DCB retrieved from a call to "GetCommState". */ static SERHANDLE sim_open_os_serial (char *name) { SERHANDLE port; DCB dcb; COMMCONFIG commdefault; DWORD error; DWORD commsize = sizeof (commdefault); COMMTIMEOUTS cto; if (!GetDefaultCommConfig (name, &commdefault, &commsize)) { /* get default comm parameters */ error = GetLastError (); /* function failed; get error */ if (error != ERROR_INVALID_PARAMETER) /* not a communications port name? */ sim_error_serial ("GetDefaultCommConfig", (int) error); /* no, so report unexpected error */ return INVALID_HANDLE; /* indicate bad port name */ } | > | | | > > > | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | of the DCB fields are not set correctly, so we cannot use this directly in a call to "SetCommState". Instead, we must copy the fields of interest to a DCB retrieved from a call to "GetCommState". */ static SERHANDLE sim_open_os_serial (char *name) { HANDLE hPort; SERHANDLE port; DCB dcb; COMMCONFIG commdefault; DWORD error; DWORD commsize = sizeof (commdefault); COMMTIMEOUTS cto; if (!GetDefaultCommConfig (name, &commdefault, &commsize)) { /* get default comm parameters */ error = GetLastError (); /* function failed; get error */ if (error != ERROR_INVALID_PARAMETER) /* not a communications port name? */ sim_error_serial ("GetDefaultCommConfig", (int) error); /* no, so report unexpected error */ return INVALID_HANDLE; /* indicate bad port name */ } hPort = CreateFile (name, GENERIC_READ | GENERIC_WRITE, /* open the port */ 0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0); if (hPort == INVALID_HANDLE_VALUE) { /* open failed? */ error = GetLastError (); /* get error code */ if ((error != ERROR_FILE_NOT_FOUND) && /* bad filename? */ (error != ERROR_ACCESS_DENIED)) /* already open? */ sim_error_serial ("CreateFile", (int) error); /* no, so report unexpected error */ return INVALID_HANDLE; /* indicate bad port name */ } port = (SERHANDLE)calloc (1, sizeof(*port)); /* instantiate the SERHANDLE */ port->hPort = hPort; if (!GetCommState (port->hPort, &dcb)) { /* get the current comm parameters */ error = GetLastError (); /* function failed; get error */ if (error != ERROR_INVALID_PARAMETER) /* not a serial port name? */ sim_error_serial ("GetCommState", (int) error); /* no, so report unexpected error */ sim_close_os_serial (port); /* close port */ return INVALID_HANDLE; /* and indicate bad port name */ } dcb.BaudRate = commdefault.dcb.BaudRate; /* copy default parameters of interest */ dcb.Parity = commdefault.dcb.Parity; dcb.ByteSize = commdefault.dcb.ByteSize; dcb.StopBits = commdefault.dcb.StopBits; dcb.fOutX = commdefault.dcb.fOutX; dcb.fInX = commdefault.dcb.fInX; dcb.fDtrControl = DTR_CONTROL_DISABLE; /* disable DTR initially until poll connects */ if (!SetCommState (port->hPort, &dcb)) { /* configure the port with default parameters */ sim_error_serial ("SetCommState", /* function failed; report unexpected error */ (int) GetLastError ()); sim_close_os_serial (port); /* close port */ return INVALID_HANDLE; /* and indicate failure to caller */ } cto.ReadIntervalTimeout = MAXDWORD; /* set port to return immediately on read */ cto.ReadTotalTimeoutMultiplier = 0; /* i.e., to enable polling */ cto.ReadTotalTimeoutConstant = 0; cto.WriteTotalTimeoutMultiplier = 0; cto.WriteTotalTimeoutConstant = 0; if (!SetCommTimeouts (port->hPort, &cto)) { /* configure port timeouts */ sim_error_serial ("SetCommTimeouts", /* function failed; report unexpected error */ (int) GetLastError ()); sim_close_os_serial (port); /* close port */ return INVALID_HANDLE; /* and indicate failure to caller */ } /* Create an event object for use by WaitCommEvent. */ port->oWriteReady.hEvent = CreateEvent(NULL, /* default security attributes */ TRUE, /* manual-reset event */ TRUE, /* signaled */ NULL); /* no name */ if (port->oWriteReady.hEvent == NULL) { sim_error_serial ("CreateEvent", /* function failed; report unexpected error */ (int) GetLastError ()); sim_close_os_serial (port); /* close port */ return INVALID_HANDLE; /* and indicate failure to caller */ } port->oReadSync.hEvent = CreateEvent(NULL, /* default security attributes */ TRUE, /* manual-reset event */ FALSE, /* not signaled */ NULL); /* no name */ if (port->oReadSync.hEvent == NULL) { sim_error_serial ("CreateEvent", /* function failed; report unexpected error */ (int) GetLastError ()); sim_close_os_serial (port); /* close port */ return INVALID_HANDLE; /* and indicate failure to caller */ } port->oWriteSync.hEvent = CreateEvent(NULL, /* default security attributes */ TRUE, /* manual-reset event */ FALSE, /* not signaled */ NULL); /* no name */ if (port->oWriteSync.hEvent == NULL) { sim_error_serial ("CreateEvent", /* function failed; report unexpected error */ (int) GetLastError ()); sim_close_os_serial (port); /* close port */ return INVALID_HANDLE; /* and indicate failure to caller */ } if (!SetCommMask (port->hPort, EV_TXEMPTY)) { sim_error_serial ("SetCommMask", /* function failed; report unexpected error */ (int) GetLastError ()); sim_close_os_serial (port); /* close port */ return INVALID_HANDLE; /* and indicate failure to caller */ } return port; /* return port handle on success */ } |
︙ | ︙ | |||
684 685 686 687 688 689 690 | static const int32 parity_count = sizeof (parity_map) / sizeof (parity_map [0]); DCB dcb; DWORD error; int32 i; | | | 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 | static const int32 parity_count = sizeof (parity_map) / sizeof (parity_map [0]); DCB dcb; DWORD error; int32 i; if (!GetCommState (port->hPort, &dcb)) { /* get the current comm parameters */ sim_error_serial ("GetCommState", /* function failed; report unexpected error */ (int) GetLastError ()); return SCPE_IOERR; /* return failure status */ } dcb.BaudRate = config.baudrate; /* assign baud rate */ |
︙ | ︙ | |||
715 716 717 718 719 720 721 | else if (config.stopbits == 2) dcb.StopBits = TWOSTOPBITS; else if (config.stopbits == 0) /* 0 implies 1.5 stop bits */ dcb.StopBits = ONE5STOPBITS; else return SCPE_ARG; /* not a valid number of stop bits */ | | | 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 | else if (config.stopbits == 2) dcb.StopBits = TWOSTOPBITS; else if (config.stopbits == 0) /* 0 implies 1.5 stop bits */ dcb.StopBits = ONE5STOPBITS; else return SCPE_ARG; /* not a valid number of stop bits */ if (!SetCommState (port->hPort, &dcb)) { /* set the configuration */ error = GetLastError (); /* check for error */ if (error == ERROR_INVALID_PARAMETER) /* invalid configuration? */ return SCPE_ARG; /* report as argument error */ sim_error_serial ("SetCommState", (int) error); /* function failed; report unexpected error */ return SCPE_IOERR; /* return failure status */ |
︙ | ︙ | |||
748 749 750 751 752 753 754 | t_stat sim_control_serial (SERHANDLE port, int32 bits_to_set, int32 bits_to_clear, int32 *incoming_bits) { if ((bits_to_set & ~(TMXR_MDM_OUTGOING)) || /* Assure only settable bits */ (bits_to_clear & ~(TMXR_MDM_OUTGOING)) || (bits_to_set & bits_to_clear)) /* and can't set and clear the same bits */ return SCPE_ARG; if (bits_to_set&TMXR_MDM_DTR) | | | | | | | 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | t_stat sim_control_serial (SERHANDLE port, int32 bits_to_set, int32 bits_to_clear, int32 *incoming_bits) { if ((bits_to_set & ~(TMXR_MDM_OUTGOING)) || /* Assure only settable bits */ (bits_to_clear & ~(TMXR_MDM_OUTGOING)) || (bits_to_set & bits_to_clear)) /* and can't set and clear the same bits */ return SCPE_ARG; if (bits_to_set&TMXR_MDM_DTR) if (!EscapeCommFunction (port->hPort, SETDTR)) { sim_error_serial ("EscapeCommFunction", (int) GetLastError ()); return SCPE_IOERR; } if (bits_to_clear&TMXR_MDM_DTR) if (!EscapeCommFunction (port->hPort, CLRDTR)) { sim_error_serial ("EscapeCommFunction", (int) GetLastError ()); return SCPE_IOERR; } if (bits_to_set&TMXR_MDM_RTS) if (!EscapeCommFunction (port->hPort, SETRTS)) { sim_error_serial ("EscapeCommFunction", (int) GetLastError ()); return SCPE_IOERR; } if (bits_to_clear&TMXR_MDM_RTS) if (!EscapeCommFunction (port->hPort, CLRRTS)) { sim_error_serial ("EscapeCommFunction", (int) GetLastError ()); return SCPE_IOERR; } if (incoming_bits) { DWORD ModemStat; if (GetCommModemStatus (port->hPort, &ModemStat)) { sim_error_serial ("GetCommModemStatus", (int) GetLastError ()); return SCPE_IOERR; } *incoming_bits = ((ModemStat&MS_CTS_ON) ? TMXR_MDM_CTS : 0) | ((ModemStat&MS_DSR_ON) ? TMXR_MDM_DSR : 0) | ((ModemStat&MS_RING_ON) ? TMXR_MDM_RNG : 0) | ((ModemStat&MS_RLSD_ON) ? TMXR_MDM_DCD : 0); |
︙ | ︙ | |||
809 810 811 812 813 814 815 | int32 sim_read_serial (SERHANDLE port, char *buffer, int32 count, char *brk) { DWORD read; DWORD commerrors; COMSTAT cs; char *bptr; | | | | | 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 | int32 sim_read_serial (SERHANDLE port, char *buffer, int32 count, char *brk) { DWORD read; DWORD commerrors; COMSTAT cs; char *bptr; if (!ClearCommError (port->hPort, &commerrors, &cs)) { /* get the comm error flags */ sim_error_serial ("ClearCommError", /* function failed; report unexpected error */ (int) GetLastError ()); return -1; /* return failure to caller */ } if (!ReadFile (port->hPort, (LPVOID) buffer, /* read any available characters */ (DWORD) count, &read, &port->oReadSync)) { sim_error_serial ("ReadFile", /* function failed; report unexpected error */ (int) GetLastError ()); return -1; /* return failure to caller */ } if (commerrors & CE_BREAK) { /* was a BREAK detected? */ bptr = (char *) memchr (buffer, 0, read); /* search for the first NUL in the buffer */ |
︙ | ︙ | |||
844 845 846 847 848 849 850 | "Count" characters are written from "buffer" to the serial port. The actual number of characters written to the port is returned. If an error occurred on writing, -1 is returned. */ int32 sim_write_serial (SERHANDLE port, char *buffer, int32 count) { | | | | | > | | < > > > > | > > > > > > > > > | | > > > > | 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 | "Count" characters are written from "buffer" to the serial port. The actual number of characters written to the port is returned. If an error occurred on writing, -1 is returned. */ int32 sim_write_serial (SERHANDLE port, char *buffer, int32 count) { if (WaitForSingleObject (port->oWriteReady.hEvent, 0) == WAIT_TIMEOUT) return 0; if ((!WriteFile (port->hPort, (LPVOID) buffer, /* write the buffer to the serial port */ (DWORD) count, NULL, &port->oWriteSync)) && (GetLastError () != ERROR_IO_PENDING)) { sim_error_serial ("WriteFile", /* function failed; report unexpected error */ (int) GetLastError ()); return -1; /* return failure to caller */ } if ((!WaitCommEvent (port->hPort, &port->dwEvtMask, &port->oWriteReady)) && (GetLastError () != ERROR_IO_PENDING)) { sim_error_serial ("WaitCommEvent", /* function failed; report unexpected error */ (int) GetLastError ()); return -1; /* return failure to caller */ } return count; /* return number of characters written/queued */ } /* Close a serial port. The serial port is closed. Errors are ignored. */ static void sim_close_os_serial (SERHANDLE port) { if (port->oWriteReady.hEvent) CloseHandle (port->oWriteReady.hEvent); /* close the event handle */ if (port->oReadSync.hEvent) CloseHandle (port->oReadSync.hEvent); /* close the event handle */ if (port->oWriteSync.hEvent) CloseHandle (port->oWriteSync.hEvent); /* close the event handle */ if (port->hPort) CloseHandle (port->hPort); /* close the port */ free (port); } #elif defined (__unix__) || defined(__APPLE__) || defined(__hpux) struct SERPORT { int port; }; #if defined(__linux) || defined(__linux__) #include <dirent.h> #include <libgen.h> #include <unistd.h> #include <sys/stat.h> #endif /* __linux__ */ |
︙ | ︙ | |||
970 971 972 973 974 975 976 977 978 979 980 981 982 983 | port = open (list[ports].name, O_RDWR | O_NOCTTY | O_NONBLOCK); /* open the port */ if (port != -1) { /* open OK? */ if (isatty (port)) /* is device a TTY? */ ++ports; close (port); } } #endif return ports; } /* Open a serial port. The serial port designated by "name" is opened, and the handle to the port is | > > > > > > > > > > > > > > > > > > | 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 | port = open (list[ports].name, O_RDWR | O_NOCTTY | O_NONBLOCK); /* open the port */ if (port != -1) { /* open OK? */ if (isatty (port)) /* is device a TTY? */ ++ports; close (port); } } for (i=0; (ports < max) && (i < 64); ++i) { sprintf (list[ports].name, "/dev/tty%02d", i); port = open (list[ports].name, O_RDWR | O_NOCTTY | O_NONBLOCK); /* open the port */ if (port != -1) { /* open OK? */ if (isatty (port)) /* is device a TTY? */ ++ports; close (port); } } for (i=0; (ports < max) && (i < 8); ++i) { sprintf (list[ports].name, "/dev/ttyU%d", i); port = open (list[ports].name, O_RDWR | O_NOCTTY | O_NONBLOCK); /* open the port */ if (port != -1) { /* open OK? */ if (isatty (port)) /* is device a TTY? */ ++ports; close (port); } } #endif return ports; } /* Open a serial port. The serial port designated by "name" is opened, and the handle to the port is |
︙ | ︙ | |||
1029 1030 1031 1032 1033 1034 1035 | ECHOK | /* echo KILL */ ECHONL | /* echo NL */ NOFLSH | /* disable flush after interrupt */ TOSTOP | /* send SIGTTOU for background output */ IEXTEN; /* enable extended functions */ static const tcflag_t l_set = 0; | | < | | 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 | ECHOK | /* echo KILL */ ECHONL | /* echo NL */ NOFLSH | /* disable flush after interrupt */ TOSTOP | /* send SIGTTOU for background output */ IEXTEN; /* enable extended functions */ static const tcflag_t l_set = 0; int port; SERHANDLE serport; struct termios tio; port = open (name, O_RDWR | O_NOCTTY | O_NONBLOCK); /* open the port */ if (port == -1) { /* open failed? */ if (errno != ENOENT && errno != EACCES) /* file not found or can't open? */ sim_error_serial ("open", errno); /* no, so report unexpected error */ |
︙ | ︙ | |||
1093 1094 1095 1096 1097 1098 1099 | if (tcsetattr (port, TCSANOW, &tio)) { /* set the terminal attributes */ sim_error_serial ("tcsetattr", errno); /* function failed; report unexpected error */ close (port); /* close the port */ return INVALID_HANDLE; /* and return failure to caller */ } | > > | | 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 | if (tcsetattr (port, TCSANOW, &tio)) { /* set the terminal attributes */ sim_error_serial ("tcsetattr", errno); /* function failed; report unexpected error */ close (port); /* close the port */ return INVALID_HANDLE; /* and return failure to caller */ } serport = (SERHANDLE)calloc (1, sizeof(*serport)); serport->port = port; return serport; /* return port fd for success */ } /* Configure a serial port. Port parameters are configured as specified in the "config" structure. If "config" contains an invalid configuration value, or if the host system |
︙ | ︙ | |||
1132 1133 1134 1135 1136 1137 1138 | { 115200, B115200 } }; static const int32 baud_count = sizeof (baud_map) / sizeof (baud_map [0]); static const tcflag_t charsize_map [4] = { CS5, CS6, CS7, CS8 }; | | | 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 | { 115200, B115200 } }; static const int32 baud_count = sizeof (baud_map) / sizeof (baud_map [0]); static const tcflag_t charsize_map [4] = { CS5, CS6, CS7, CS8 }; if (tcgetattr (port->port, &tio)) { /* get the current configuration */ sim_error_serial ("tcgetattr", errno); /* function failed; report unexpected error */ return SCPE_IOERR; /* return failure status */ } for (i = 0; i < baud_count; i++) /* assign baud rate */ if (config.baudrate == baud_map [i].rate) { /* match mapping value? */ cfsetispeed(&tio, baud_map [i].rate_code); /* set input rate */ |
︙ | ︙ | |||
1177 1178 1179 1180 1181 1182 1183 | if (config.stopbits == 1) /* one stop bit? */ tio.c_cflag = tio.c_cflag & ~CSTOPB; /* clear two-bits flag */ else if (config.stopbits == 2) /* two stop bits? */ tio.c_cflag = tio.c_cflag | CSTOPB; /* set two-bits flag */ else /* some other number? */ return SCPE_ARG; /* not a valid number of stop bits */ | | | 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 | if (config.stopbits == 1) /* one stop bit? */ tio.c_cflag = tio.c_cflag & ~CSTOPB; /* clear two-bits flag */ else if (config.stopbits == 2) /* two stop bits? */ tio.c_cflag = tio.c_cflag | CSTOPB; /* set two-bits flag */ else /* some other number? */ return SCPE_ARG; /* not a valid number of stop bits */ if (tcsetattr (port->port, TCSAFLUSH, &tio)) { /* set the new configuration */ sim_error_serial ("tcsetattr", errno); /* function failed; report unexpected error */ return SCPE_IERR; /* return failure status */ } return SCPE_OK; /* configuration set successfully */ } |
︙ | ︙ | |||
1209 1210 1211 1212 1213 1214 1215 | if ((bits_to_set & ~(TMXR_MDM_OUTGOING)) || /* Assure only settable bits */ (bits_to_clear & ~(TMXR_MDM_OUTGOING)) || (bits_to_set & bits_to_clear)) /* and can't set and clear the same bits */ return SCPE_ARG; if (bits_to_set) { bits = ((bits_to_set&TMXR_MDM_DTR) ? TIOCM_DTR : 0) | ((bits_to_set&TMXR_MDM_RTS) ? TIOCM_RTS : 0); | | | | | 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 | if ((bits_to_set & ~(TMXR_MDM_OUTGOING)) || /* Assure only settable bits */ (bits_to_clear & ~(TMXR_MDM_OUTGOING)) || (bits_to_set & bits_to_clear)) /* and can't set and clear the same bits */ return SCPE_ARG; if (bits_to_set) { bits = ((bits_to_set&TMXR_MDM_DTR) ? TIOCM_DTR : 0) | ((bits_to_set&TMXR_MDM_RTS) ? TIOCM_RTS : 0); if (ioctl (port->port, TIOCMBIS, &bits)) { /* set the desired bits */ sim_error_serial ("ioctl", errno); /* report unexpected error */ return SCPE_IOERR; /* return failure status */ } } if (bits_to_clear) { bits = ((bits_to_clear&TMXR_MDM_DTR) ? TIOCM_DTR : 0) | ((bits_to_clear&TMXR_MDM_RTS) ? TIOCM_RTS : 0); if (ioctl (port->port, TIOCMBIC, &bits)) { /* clear the desired bits */ sim_error_serial ("ioctl", errno); /* report unexpected error */ return SCPE_IOERR; /* return failure status */ } } if (incoming_bits) { if (ioctl (port->port, TIOCMGET, &bits)) { /* get the modem bits */ sim_error_serial ("ioctl", errno); /* report unexpected error */ return SCPE_IOERR; /* return failure status */ } *incoming_bits = ((bits&TIOCM_CTS) ? TMXR_MDM_CTS : 0) | ((bits&TIOCM_DSR) ? TMXR_MDM_DSR : 0) | ((bits&TIOCM_RNG) ? TMXR_MDM_RNG : 0) | ((bits&TIOCM_CAR) ? TMXR_MDM_DCD : 0); |
︙ | ︙ | |||
1265 1266 1267 1268 1269 1270 1271 | int32 sim_read_serial (SERHANDLE port, char *buffer, int32 count, char *brk) { int read_count; char *bptr, *cptr; int32 remaining; | | | 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 | int32 sim_read_serial (SERHANDLE port, char *buffer, int32 count, char *brk) { int read_count; char *bptr, *cptr; int32 remaining; read_count = read (port->port, (void *) buffer, (size_t) count);/* read from the serial port */ if (read_count == -1) /* read error? */ if (errno == EAGAIN) /* no characters available? */ return 0; /* return 0 to indicate */ else /* some other problem */ sim_error_serial ("read", errno); /* report unexpected error */ |
︙ | ︙ | |||
1315 1316 1317 1318 1319 1320 1321 | on writing, -1 is returned. */ int32 sim_write_serial (SERHANDLE port, char *buffer, int32 count) { int written; | | | 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 | on writing, -1 is returned. */ int32 sim_write_serial (SERHANDLE port, char *buffer, int32 count) { int written; written = write (port->port, (void *) buffer, (size_t) count);/* write the buffer to the serial port */ if (written == -1) { if (errno == EWOULDBLOCK) written = 0; /* not an error, but nothing written */ #if defined(EAGAIN) else if (errno == EAGAIN) written = 0; /* not an error, but nothing written */ |
︙ | ︙ | |||
1339 1340 1341 1342 1343 1344 1345 | /* Close a serial port. The serial port is closed. Errors are ignored. */ static void sim_close_os_serial (SERHANDLE port) { | | | | 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 | /* Close a serial port. The serial port is closed. Errors are ignored. */ static void sim_close_os_serial (SERHANDLE port) { close (port->port); /* close the port */ free (port); } #elif defined (VMS) /* VMS implementation */ |
︙ | ︙ | |||
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 | typedef struct { unsigned short buffer_size; unsigned short item_code; void *buffer_address; void *return_length_address; } ITEM; /* Enumerate the available serial ports. The serial port names generated by attempting to open /dev/ttyS0 thru /dev/ttyS53 and /dev/ttyUSB0 thru /dev/ttyUSB0. Ones we can open and are ttys (as determined by isatty()) are added to the list. The list is sorted alphabetically by device name. | > > > > > | 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 | typedef struct { unsigned short buffer_size; unsigned short item_code; void *buffer_address; void *return_length_address; } ITEM; struct SERPORT { uint32 port; IOSB write_iosb; }; /* Enumerate the available serial ports. The serial port names generated by attempting to open /dev/ttyS0 thru /dev/ttyS53 and /dev/ttyUSB0 thru /dev/ttyUSB0. Ones we can open and are ttys (as determined by isatty()) are added to the list. The list is sorted alphabetically by device name. |
︙ | ︙ | |||
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 | IOSB iosb; $DESCRIPTOR (devnam, name); uint32 devclass; ITEM items[] = { {sizeof (devclass), DVI$_DEVCLASS, &devclass, NULL}, { 0, 0, NULL, NULL}}; SENSE_BUF start_mode = { 0 }; SENSE_BUF run_mode = { 0 }; devnam.dsc$w_length = strlen (devnam.dsc$a_pointer); status = sys$assign (&devnam, &chan, 0, 0); if (status != SS$_NORMAL) return INVALID_HANDLE; status = sys$getdviw (0, chan, NULL, items, &iosb, NULL, 0, NULL); if ((status != SS$_NORMAL) || | > | 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 | IOSB iosb; $DESCRIPTOR (devnam, name); uint32 devclass; ITEM items[] = { {sizeof (devclass), DVI$_DEVCLASS, &devclass, NULL}, { 0, 0, NULL, NULL}}; SENSE_BUF start_mode = { 0 }; SENSE_BUF run_mode = { 0 }; SERHANDLE port; devnam.dsc$w_length = strlen (devnam.dsc$a_pointer); status = sys$assign (&devnam, &chan, 0, 0); if (status != SS$_NORMAL) return INVALID_HANDLE; status = sys$getdviw (0, chan, NULL, items, &iosb, NULL, 0, NULL); if ((status != SS$_NORMAL) || |
︙ | ︙ | |||
1520 1521 1522 1523 1524 1525 1526 | run_mode.stat2 = start_mode.stat2 | TT2$M_PASTHRU; status = sys$qiow (0, chan, IO$_SETMODE, &iosb, 0, 0, &run_mode, sizeof (run_mode), 0, 0, 0, 0); if ((status != SS$_NORMAL) || (iosb.status != SS$_NORMAL)) { sys$dassgn (chan); return INVALID_HANDLE; } | > > > | | 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 | run_mode.stat2 = start_mode.stat2 | TT2$M_PASTHRU; status = sys$qiow (0, chan, IO$_SETMODE, &iosb, 0, 0, &run_mode, sizeof (run_mode), 0, 0, 0, 0); if ((status != SS$_NORMAL) || (iosb.status != SS$_NORMAL)) { sys$dassgn (chan); return INVALID_HANDLE; } port = (SERHANDLE)calloc (1, sizeof(*port)); port->port = chan; port->write_iosb.status = 1; return port; /* return channel for success */ } /* Configure a serial port. Port parameters are configured as specified in the "config" structure. If "config" contains an invalid configuration value, or if the host system |
︙ | ︙ | |||
1557 1558 1559 1560 1561 1562 1563 | { 150, TT$C_BAUD_150 }, { 300, TT$C_BAUD_300 }, { 600, TT$C_BAUD_600 }, { 1200, TT$C_BAUD_1200 }, { 1800, TT$C_BAUD_1800 }, { 2000, TT$C_BAUD_2000 }, { 2400, TT$C_BAUD_2400 }, { 3600, TT$C_BAUD_3600 }, { 4800, TT$C_BAUD_4800 }, { 7200, TT$C_BAUD_7200 }, { 9600, TT$C_BAUD_9600 }, { 19200, TT$C_BAUD_19200 }, { 38400, TT$C_BAUD_38400 }, { 57600, TT$C_BAUD_57600 }, { 76800, TT$C_BAUD_76800 }, { 115200, TT$C_BAUD_115200} }; static const int32 baud_count = sizeof (baud_map) / sizeof (baud_map [0]); | | | 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 | { 150, TT$C_BAUD_150 }, { 300, TT$C_BAUD_300 }, { 600, TT$C_BAUD_600 }, { 1200, TT$C_BAUD_1200 }, { 1800, TT$C_BAUD_1800 }, { 2000, TT$C_BAUD_2000 }, { 2400, TT$C_BAUD_2400 }, { 3600, TT$C_BAUD_3600 }, { 4800, TT$C_BAUD_4800 }, { 7200, TT$C_BAUD_7200 }, { 9600, TT$C_BAUD_9600 }, { 19200, TT$C_BAUD_19200 }, { 38400, TT$C_BAUD_38400 }, { 57600, TT$C_BAUD_57600 }, { 76800, TT$C_BAUD_76800 }, { 115200, TT$C_BAUD_115200} }; static const int32 baud_count = sizeof (baud_map) / sizeof (baud_map [0]); status = sys$qiow (0, port->port, IO$_SENSEMODE, &iosb, 0, 0, &sense, sizeof(sense), 0, NULL, 0, 0); if (status == SS$_NORMAL) status = iosb.status; if (status != SS$_NORMAL) { sim_error_serial ("config-SENSEMODE", status); /* report unexpected error */ return SCPE_IOERR; } |
︙ | ︙ | |||
1611 1612 1613 1614 1615 1616 1617 | stopbits = TT$M_TWOSTOP; /* speeds 150baud or less */ break; } default: return SCPE_ARG; /* not a valid number of stop bits */ } | | | 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 | stopbits = TT$M_TWOSTOP; /* speeds 150baud or less */ break; } default: return SCPE_ARG; /* not a valid number of stop bits */ } status = sys$qiow (0, port->port, IO$_SETMODE, &iosb, 0, 0, &sense, sizeof (sense), speed, 0, parity | charsize | stopbits, 0); if (status == SS$_NORMAL) status = iosb.status; if (status != SS$_NORMAL) { sim_error_serial ("config-SETMODE", status); /* report unexpected error */ return SCPE_IOERR; } |
︙ | ︙ | |||
1652 1653 1654 1655 1656 1657 1658 | if (bits_to_set) bits[0] |= (((bits_to_set&TMXR_MDM_DTR) ? TT$M_DS_DTR : 0) | ((bits_to_set&TMXR_MDM_RTS) ? TT$M_DS_RTS : 0)) << 16; if (bits_to_clear) bits[0] |= (((bits_to_clear&TMXR_MDM_DTR) ? TT$M_DS_DTR : 0) | ((bits_to_clear&TMXR_MDM_RTS) ? TT$M_DS_RTS : 0)) << 24; if (bits_to_set || bits_to_clear) { | | | | 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 | if (bits_to_set) bits[0] |= (((bits_to_set&TMXR_MDM_DTR) ? TT$M_DS_DTR : 0) | ((bits_to_set&TMXR_MDM_RTS) ? TT$M_DS_RTS : 0)) << 16; if (bits_to_clear) bits[0] |= (((bits_to_clear&TMXR_MDM_DTR) ? TT$M_DS_DTR : 0) | ((bits_to_clear&TMXR_MDM_RTS) ? TT$M_DS_RTS : 0)) << 24; if (bits_to_set || bits_to_clear) { status = sys$qiow (0, port->port, IO$_SETMODE|IO$M_SET_MODEM|IO$M_MAINT, &iosb, 0, 0, bits, 0, 0, 0, 0, 0); if (status == SS$_NORMAL) status = iosb.status; if (status != SS$_NORMAL) { sim_error_serial ("control-SETMODE", status); /* report unexpected error */ return SCPE_IOERR; } } if (incoming_bits) { uint32 modem; status = sys$qiow (0, port->port, IO$_SENSEMODE|IO$M_RD_MODEM, &iosb, 0, 0, bits, 0, 0, 0, 0, 0); if (status == SS$_NORMAL) status = iosb.status; if (status != SS$_NORMAL) { sim_error_serial ("control-SENSEMODE", status); /* report unexpected error */ return SCPE_IOERR; } |
︙ | ︙ | |||
1714 1715 1716 1717 1718 1719 1720 | int read_count = 0; uint32 status; static uint32 term[2] = {0, 0}; unsigned char buf[4]; IOSB iosb; SENSE_BUF sense; | | | | 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 | int read_count = 0; uint32 status; static uint32 term[2] = {0, 0}; unsigned char buf[4]; IOSB iosb; SENSE_BUF sense; status = sys$qiow (0, port->port, IO$_SENSEMODE | IO$M_TYPEAHDCNT, &iosb, 0, 0, &sense, 8, 0, term, 0, 0); if (status == SS$_NORMAL) status = iosb.status; if (status != SS$_NORMAL) { sim_error_serial ("read", status); /* report unexpected error */ return -1; } if (sense.sense_count == 0) /* no characters available? */ return 0; /* return 0 to indicate */ status = sys$qiow (0, port->port, IO$_READLBLK | IO$M_NOECHO | IO$M_NOFILTR | IO$M_TIMED | IO$M_TRMNOECHO, &iosb, 0, 0, buffer, (count < sense.sense_count) ? count : sense.sense_count, 0, term, 0, 0); if (status == SS$_NORMAL) status = iosb.status; if (status != SS$_NORMAL) { sim_error_serial ("read", status); /* report unexpected error */ return -1; } |
︙ | ︙ | |||
1746 1747 1748 1749 1750 1751 1752 | number of characters written to the port is returned. If an error occurred on writing, -1 is returned. */ int32 sim_write_serial (SERHANDLE port, char *buffer, int32 count) { uint32 status; | < < < < < < < < < | < < | < < < | | | | | < | 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 | number of characters written to the port is returned. If an error occurred on writing, -1 is returned. */ int32 sim_write_serial (SERHANDLE port, char *buffer, int32 count) { uint32 status; if (port->write_iosb.status == 0) /* Prior write not done yet? */ return 0; status = sys$qio (0, port->port, IO$_WRITELBLK | IO$M_NOFORMAT, &port->write_iosb, 0, 0, buffer, count, 0, 0, 0, 0); if (status != SS$_NORMAL) { sim_error_serial ("write", status); /* report unexpected error */ return -1; } return (int32)count; /* return number of characters written */ } /* Close a serial port. The serial port is closed. Errors are ignored. */ static void sim_close_os_serial (SERHANDLE port) { sys$dassgn (port->port); /* close the port */ free (port); } #else /* Non-implemented stubs */ /* Enumerate the available serial ports. */ |
︙ | ︙ | |||
1840 1841 1842 1843 1844 1845 1846 | } /* Close a serial port */ static void sim_close_os_serial (SERHANDLE port) { | < | 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 | } /* Close a serial port */ static void sim_close_os_serial (SERHANDLE port) { } #endif /* end else !implemented */ |
Changes to src/sim_serial.h.
︙ | ︙ | |||
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | 07-Oct-08 JDB [serial] Created file */ #ifndef SIM_SERIAL_H_ #define SIM_SERIAL_H_ 0 #if defined (_WIN32) /* Windows definitions */ /* We need the basic Win32 definitions, but including "windows.h" also includes "winsock.h" as well. However, "sim_sock.h" explicitly includes "winsock2.h," and this file cannot coexist with "winsock.h". So we set a guard definition that prevents "winsock.h" from being included. */ #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #include <windows.h> #if !defined(INVALID_HANDLE) | > > > > > > > > > | | | | < < < < < < < < < | | > > > > | 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | 07-Oct-08 JDB [serial] Created file */ #ifndef SIM_SERIAL_H_ #define SIM_SERIAL_H_ 0 #ifdef __cplusplus extern "C" { #endif #ifndef SIMH_SERHANDLE_DEFINED #define SIMH_SERHANDLE_DEFINED 0 typedef struct SERPORT *SERHANDLE; #endif /* SERHANDLE_DEFINED */ #if defined (_WIN32) /* Windows definitions */ /* We need the basic Win32 definitions, but including "windows.h" also includes "winsock.h" as well. However, "sim_sock.h" explicitly includes "winsock2.h," and this file cannot coexist with "winsock.h". So we set a guard definition that prevents "winsock.h" from being included. */ #ifndef WIN32_LEAN_AND_MEAN #define WIN32_LEAN_AND_MEAN #endif #include <windows.h> #if !defined(INVALID_HANDLE) #define INVALID_HANDLE (SERHANDLE)INVALID_HANDLE_VALUE #endif /* !defined(INVALID_HANDLE) */ #elif defined (__unix__) || defined (__APPLE__) || defined (__hpux) /* UNIX definitions */ #include <fcntl.h> #ifdef __hpux #include <sys/modem.h> #endif #include <termios.h> #include <unistd.h> #include <sys/ioctl.h> #if !defined(INVALID_HANDLE) #define INVALID_HANDLE ((SERHANDLE)(void *)-1) #endif /* !defined(INVALID_HANDLE) */ #elif defined (VMS) /* VMS definitions */ #if !defined(INVALID_HANDLE) #define INVALID_HANDLE ((SERHANDLE)(void *)-1) #endif /* !defined(INVALID_HANDLE) */ #else /* Non-implemented definitions */ #if !defined(INVALID_HANDLE) #define INVALID_HANDLE ((SERHANDLE)(void *)-1) #endif /* !defined(INVALID_HANDLE) */ #endif /* OS variants */ /* Common definitions */ /* Global routines */ #include "sim_tmxr.h" /* need TMLN definition and modem definitions */ extern SERHANDLE sim_open_serial (char *name, TMLN *lp, t_stat *status); extern t_stat sim_config_serial (SERHANDLE port, CONST char *config); extern t_stat sim_control_serial (SERHANDLE port, int32 bits_to_set, int32 bits_to_clear, int32 *incoming_bits); extern int32 sim_read_serial (SERHANDLE port, char *buffer, int32 count, char *brk); extern int32 sim_write_serial (SERHANDLE port, char *buffer, int32 count); extern void sim_close_serial (SERHANDLE port); extern t_stat sim_show_serial (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char* desc); #ifdef __cplusplus } #endif #endif |
Changes to src/sim_sock.c.
︙ | ︙ | |||
380 381 382 383 384 385 386 | static int WSAAPI s_getnameinfo (const struct sockaddr *sa, socklen_t salen, char *host, size_t hostlen, char *serv, size_t servlen, int flags) { struct hostent *he; struct servent *se = NULL; | | | 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | static int WSAAPI s_getnameinfo (const struct sockaddr *sa, socklen_t salen, char *host, size_t hostlen, char *serv, size_t servlen, int flags) { struct hostent *he; struct servent *se = NULL; const struct sockaddr_in *sin = (const struct sockaddr_in *)sa; if (sin->sin_family != PF_INET) return EAI_FAMILY; if ((NULL == host) && (NULL == serv)) return EAI_NONAME; if ((serv) && (servlen > 0)) { if (flags & NI_NUMERICSERV) |
︙ | ︙ | |||
412 413 414 415 416 417 418 | strcpy(serv, buf); } } if ((host) && (hostlen > 0)) { if (flags & NI_NUMERICHOST) he = NULL; else | | | 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 | strcpy(serv, buf); } } if ((host) && (hostlen > 0)) { if (flags & NI_NUMERICHOST) he = NULL; else he = gethostbyaddr((const char *)&sin->sin_addr, 4, AF_INET); if (he) { if (hostlen < strlen(he->h_name)+1) return EAI_OVERFLOW; strcpy(host, he->h_name); } else { if (flags & NI_NAMEREQD) |
︙ | ︙ | |||
441 442 443 444 445 446 447 | /* Dynamic DLL load variables */ #ifdef _WIN32 static HINSTANCE hLib = 0; /* handle to DLL */ #else static void *hLib = NULL; /* handle to Library */ #endif static int lib_loaded = 0; /* 0=not loaded, 1=loaded, 2=library load failed, 3=Func load failed */ | | | | < < | < < | 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | /* Dynamic DLL load variables */ #ifdef _WIN32 static HINSTANCE hLib = 0; /* handle to DLL */ #else static void *hLib = NULL; /* handle to Library */ #endif static int lib_loaded = 0; /* 0=not loaded, 1=loaded, 2=library load failed, 3=Func load failed */ static const char* lib_name = "Ws2_32.dll"; /* load function pointer from DLL */ typedef int (*_func)(); static void load_function(const char* function, _func* func_ptr) { #ifdef _WIN32 *func_ptr = (_func)GetProcAddress(hLib, function); #else *func_ptr = (_func)dlsym(hLib, function); #endif if (*func_ptr == 0) { sim_printf ("Sockets: Failed to find function '%s' in %s\r\n", function, lib_name); lib_loaded = 3; } } /* load Ws2_32.dll as required */ int load_ws2(void) { switch(lib_loaded) { case 0: /* not loaded */ /* attempt to load DLL */ #ifdef _WIN32 hLib = LoadLibraryA(lib_name); #else hLib = dlopen(lib_name, RTLD_NOW); #endif if (hLib == 0) { /* failed to load DLL */ sim_printf ("Sockets: Failed to load %s\r\n", lib_name); lib_loaded = 2; break; } else { /* library loaded OK */ lib_loaded = 1; } |
︙ | ︙ | |||
536 537 538 539 540 541 542 | out of range, a result can't fit into a result buffer, a service name doesn't exist, or a validation name doesn't match the parsed host) */ int sim_parse_addr (const char *cptr, char *host, size_t host_len, const char *default_host, char *port, size_t port_len, const char *default_port, const char *validate_addr) { | | | > > > > | | | 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 | out of range, a result can't fit into a result buffer, a service name doesn't exist, or a validation name doesn't match the parsed host) */ int sim_parse_addr (const char *cptr, char *host, size_t host_len, const char *default_host, char *port, size_t port_len, const char *default_port, const char *validate_addr) { char gbuf[CBUFSIZE], default_pbuf[CBUFSIZE]; const char *hostp; char *portp; char *endc; unsigned long portval; if ((host != NULL) && (host_len != 0)) memset (host, 0, host_len); if ((port != NULL) && (port_len != 0)) memset (port, 0, port_len); if ((cptr == NULL) || (*cptr == 0)) { if (((default_host == NULL) || (*default_host == 0)) || ((default_port == NULL) || (*default_port == 0))) return -1; if ((host == NULL) || (port == NULL)) return -1; /* no place */ if ((strlen(default_host) >= host_len) || (strlen(default_port) >= port_len)) return -1; /* no room */ strcpy (host, default_host); strcpy (port, default_port); return 0; } memset (default_pbuf, 0, sizeof(default_pbuf)); if (default_port) strncpy (default_pbuf, default_port, sizeof(default_pbuf)-1); gbuf[sizeof(gbuf)-1] = '\0'; strncpy (gbuf, cptr, sizeof(gbuf)-1); hostp = gbuf; /* default addr */ portp = NULL; if ((portp = strrchr (gbuf, ':')) && /* x:y? split */ (NULL == strchr (portp, ']'))) { *portp++ = 0; if (*portp == '\0') portp = default_pbuf; } else { /* No colon in input */ portp = gbuf; /* Input is the port specifier */ hostp = (const char *)default_host; /* host is defaulted if provided */ } if (portp != NULL) { portval = strtoul(portp, &endc, 10); if ((*endc == '\0') && ((portval == 0) || (portval > 65535))) return -1; /* numeric value too big */ if (*endc != '\0') { struct servent *se = getservbyname(portp, "tcp"); |
︙ | ︙ | |||
594 595 596 597 598 599 600 601 | } if (hostp != NULL) { if (']' == hostp[strlen(hostp)-1]) { if ('[' != hostp[0]) return -1; /* invalid domain literal */ /* host may be the const default_host so move to temp buffer before modifying */ strncpy(gbuf, hostp+1, sizeof(gbuf)-1); /* remove brackets from domain literal host */ hostp = gbuf; | > < | 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | } if (hostp != NULL) { if (']' == hostp[strlen(hostp)-1]) { if ('[' != hostp[0]) return -1; /* invalid domain literal */ /* host may be the const default_host so move to temp buffer before modifying */ strncpy(gbuf, hostp+1, sizeof(gbuf)-1); /* remove brackets from domain literal host */ gbuf[strlen(gbuf)-1] = '\0'; hostp = gbuf; } } if (host) { /* host wanted? */ if (hostp != NULL) { if (strlen(hostp) >= host_len) return -1; /* no room */ else |
︙ | ︙ | |||
1101 1102 1103 1104 1105 1106 1107 | } int sim_check_conn (SOCKET sock, int rd) { fd_set rw_set, er_set; fd_set *rw_p = &rw_set; fd_set *er_p = &er_set; | | | | > | | 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 | } int sim_check_conn (SOCKET sock, int rd) { fd_set rw_set, er_set; fd_set *rw_p = &rw_set; fd_set *er_p = &er_set; struct timeval zero; struct sockaddr_storage peername; #if defined (macintosh) || defined (__linux) || defined (__linux__) || \ defined (__APPLE__) || defined (__OpenBSD__) || \ defined(__NetBSD__) || defined(__FreeBSD__) || \ (defined(__hpux) && defined(_XOPEN_SOURCE_EXTENDED)) || \ defined (__HAIKU__) socklen_t peernamesize = (socklen_t)sizeof(peername); #elif defined (_WIN32) || defined (__EMX__) || \ (defined (__ALPHA) && defined (__unix__)) || \ defined (__hpux) int peernamesize = (int)sizeof(peername); #else size_t peernamesize = sizeof(peername); #endif memset (&zero, 0, sizeof(zero)); FD_ZERO (rw_p); FD_ZERO (er_p); FD_SET (sock, rw_p); FD_SET (sock, er_p); if (rd) select ((int) sock + 1, rw_p, NULL, er_p, &zero); else select ((int) sock + 1, NULL, rw_p, er_p, &zero); if (FD_ISSET (sock, er_p)) return -1; if (FD_ISSET (sock, rw_p)) { if (0 == getpeername (sock, (struct sockaddr *)&peername, &peernamesize)) return 1; else return -1; |
︙ | ︙ |
Changes to src/sim_sock.h.
︙ | ︙ | |||
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | 30-Apr-02 RMS Changed VMS stropts include to ioctl 06-Feb-02 RMS Added VMS support from Robert Alan Byer 16-Sep-01 RMS Added Macintosh support from Peter Schorn */ #ifndef SIM_SOCK_H_ #define SIM_SOCK_H_ 0 #if defined (_WIN32) /* Windows */ #include <winsock2.h> #elif !defined (__OS2__) || defined (__EMX__) /* VMS, Mac, Unix, OS/2 EMX */ #define WSAGetLastError() errno /* Windows macros */ #define WSASetLastError(err) errno = err #define closesocket close #define SOCKET int #if defined(__hpux) #define WSAEWOULDBLOCK EAGAIN #else | > > > > > > > > > > > > > > > > | 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | 30-Apr-02 RMS Changed VMS stropts include to ioctl 06-Feb-02 RMS Added VMS support from Robert Alan Byer 16-Sep-01 RMS Added Macintosh support from Peter Schorn */ #ifndef SIM_SOCK_H_ #define SIM_SOCK_H_ 0 #ifdef __cplusplus extern "C" { #endif #if defined (_WIN32) /* Windows */ #include <winsock2.h> #elif !defined (__OS2__) || defined (__EMX__) /* VMS, Mac, Unix, OS/2 EMX */ #include <sys/types.h> /* for fcntl, getpid */ #include <sys/socket.h> /* for sockets */ #include <string.h> #include <errno.h> #include <fcntl.h> #include <unistd.h> #include <netinet/in.h> /* for sockaddr_in */ #include <netinet/tcp.h> /* for TCP_NODELAY */ #include <arpa/inet.h> /* for inet_addr and inet_ntoa */ #include <netdb.h> #include <sys/time.h> /* for EMX */ #define WSAGetLastError() errno /* Windows macros */ #define WSASetLastError(err) errno = err #define closesocket close #define SOCKET int #if defined(__hpux) #define WSAEWOULDBLOCK EAGAIN #else |
︙ | ︙ | |||
71 72 73 74 75 76 77 | #if defined(EAFNOSUPPORT) #define WSAEAFNOSUPPORT EAFNOSUPPORT #endif #define WSAEACCES EACCES #define WSAEINTR EINTR #define INVALID_SOCKET ((SOCKET)-1) #define SOCKET_ERROR -1 | < < < < < < < < < < < < < < < < < < < | 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | #if defined(EAFNOSUPPORT) #define WSAEAFNOSUPPORT EAFNOSUPPORT #endif #define WSAEACCES EACCES #define WSAEINTR EINTR #define INVALID_SOCKET ((SOCKET)-1) #define SOCKET_ERROR -1 #endif #if defined (VMS) /* VMS unique */ #include <ioctl.h> /* for ioctl */ #if !defined (AI_NUMERICHOST) #define AI_NUMERICHOST 0 #endif #if defined (__VAX) #define sockaddr_storage sockaddr #endif #endif #if !defined(CBUFSIZE) #define CBUFSIZE 1024 #define sim_printf printf #endif |
︙ | ︙ | |||
128 129 130 131 132 133 134 135 136 | int sim_write_sock (SOCKET sock, const char *msg, int nbytes); void sim_close_sock (SOCKET sock); const char *sim_get_err_sock (const char *emsg); SOCKET sim_err_sock (SOCKET sock, const char *emsg); int sim_getnames_sock (SOCKET sock, char **socknamebuf, char **peernamebuf); void sim_init_sock (void); void sim_cleanup_sock (void); #endif | > > > > | 125 126 127 128 129 130 131 132 133 134 135 136 137 | int sim_write_sock (SOCKET sock, const char *msg, int nbytes); void sim_close_sock (SOCKET sock); const char *sim_get_err_sock (const char *emsg); SOCKET sim_err_sock (SOCKET sock, const char *emsg); int sim_getnames_sock (SOCKET sock, char **socknamebuf, char **peernamebuf); void sim_init_sock (void); void sim_cleanup_sock (void); #ifdef __cplusplus } #endif #endif |
Changes to src/sim_tape.c.
︙ | ︙ | |||
120 121 122 123 124 125 126 | 6250 /* 5 = MT_DENS_6250 -- 6250 bpi GCR */ }; #define BPI_COUNT (sizeof (bpi) / sizeof (bpi [0])) /* count of density table entries */ static t_stat sim_tape_ioerr (UNIT *uptr); static t_stat sim_tape_wrdata (UNIT *uptr, uint32 dat); | | | | 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | 6250 /* 5 = MT_DENS_6250 -- 6250 bpi GCR */ }; #define BPI_COUNT (sizeof (bpi) / sizeof (bpi [0])) /* count of density table entries */ static t_stat sim_tape_ioerr (UNIT *uptr); static t_stat sim_tape_wrdata (UNIT *uptr, uint32 dat); static uint32 sim_tape_tpc_map (UNIT *uptr, t_addr *map, uint32 mapsize); static t_stat sim_tape_simh_check (UNIT *uptr); static t_stat sim_tape_e11_check (UNIT *uptr); static t_addr sim_tape_tpc_fnd (UNIT *uptr, t_addr *map); static void sim_tape_data_trace (UNIT *uptr, const uint8 *data, size_t len, const char* txt, int detail, uint32 reason); struct tape_context { DEVICE *dptr; /* Device for unit (access to debug flags) */ uint32 dbit; /* debugging bit for trace */ uint32 auto_format; /* Format determined dynamically */ #if defined SIM_ASYNCH_IO int asynch_io; /* Asynchronous Interrupt scheduling enabled */ int asynch_io_latency; /* instructions to delay pending interrupt */ pthread_mutex_t lock; pthread_t io_thread; /* I/O Thread Id */ pthread_mutex_t io_lock; |
︙ | ︙ | |||
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 | }; #define tape_ctx up8 /* Field in Unit structure which points to the tape_context */ #if defined SIM_ASYNCH_IO #define AIO_CALLSETUP \ struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; \ \ if ((!callback) || !ctx->asynch_io) #define AIO_CALL(op, _buf, _bc, _fc, _max, _vbc, _gaplen, _bpi, _obj, _callback)\ if (ctx->asynch_io) { \ struct tape_context *ctx = \ (struct tape_context *)uptr->tape_ctx; \ \ pthread_mutex_lock (&ctx->io_lock); \ \ sim_debug (ctx->dbit, ctx->dptr, \ | > > | | 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | }; #define tape_ctx up8 /* Field in Unit structure which points to the tape_context */ #if defined SIM_ASYNCH_IO #define AIO_CALLSETUP \ struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; \ \ if (ctx == NULL) \ return sim_messagef (SCPE_IERR, "Bad Attach\n"); \ if ((!callback) || !ctx->asynch_io) #define AIO_CALL(op, _buf, _bc, _fc, _max, _vbc, _gaplen, _bpi, _obj, _callback)\ if (ctx->asynch_io) { \ struct tape_context *ctx = \ (struct tape_context *)uptr->tape_ctx; \ \ pthread_mutex_lock (&ctx->io_lock); \ \ sim_debug (ctx->dbit, ctx->dptr, \ "sim_tape AIO_CALL(op=%d, unit=%d)\n", op, (int)(uptr-ctx->dptr->units));\ \ if (ctx->callback) \ abort(); /* horrible mistake, stop */ \ ctx->io_top = op; \ ctx->buf = _buf; \ ctx->bc = _bc; \ ctx->fc = _fc; \ |
︙ | ︙ | |||
212 213 214 215 216 217 218 | #define TOP_RWND 16 /* sim_tape_rewind_a */ #define TOP_POSN 17 /* sim_tape_position_a */ static void * _tape_io(void *arg) { UNIT* volatile uptr = (UNIT*)arg; | < < < | < | | 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | #define TOP_RWND 16 /* sim_tape_rewind_a */ #define TOP_POSN 17 /* sim_tape_position_a */ static void * _tape_io(void *arg) { UNIT* volatile uptr = (UNIT*)arg; struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which in general won't be readily yielding the processor when this thread needs to run */ sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); sim_debug (ctx->dbit, ctx->dptr, "_tape_io(unit=%d) starting\n", (int)(uptr-ctx->dptr->units)); pthread_mutex_lock (&ctx->io_lock); pthread_cond_signal (&ctx->startup_cond); /* Signal we're ready to go */ while (1) { pthread_cond_wait (&ctx->io_cond, &ctx->io_lock); if (ctx->io_top == TOP_DONE) break; |
︙ | ︙ | |||
292 293 294 295 296 297 298 | pthread_mutex_lock (&ctx->io_lock); ctx->io_top = TOP_DONE; pthread_cond_signal (&ctx->io_done); sim_activate (uptr, ctx->asynch_io_latency); } pthread_mutex_unlock (&ctx->io_lock); | | | | | | > > | < | 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | pthread_mutex_lock (&ctx->io_lock); ctx->io_top = TOP_DONE; pthread_cond_signal (&ctx->io_done); sim_activate (uptr, ctx->asynch_io_latency); } pthread_mutex_unlock (&ctx->io_lock); sim_debug (ctx->dbit, ctx->dptr, "_tape_io(unit=%d) exiting\n", (int)(uptr-ctx->dptr->units)); return NULL; } /* This routine is called in the context of the main simulator thread before processing events for any unit. It is only called when an asynchronous thread has called sim_activate() to activate a unit. The job of this routine is to put the unit in proper condition to digest what may have occurred in the asynchronous thread. Since tape processing only handles a single I/O at a time to a particular tape device, we have the opportunity to possibly detect improper attempts to issue multiple concurrent I/O requests. */ static void _tape_completion_dispatch (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; TAPE_PCALLBACK callback = ctx->callback; sim_debug (ctx->dbit, ctx->dptr, "_tape_completion_dispatch(unit=%d, top=%d, callback=%p)\n", (int)(uptr-ctx->dptr->units), ctx->io_top, ctx->callback); if (ctx->io_top != TOP_DONE) abort(); /* horribly wrong, stop */ if (ctx->callback && ctx->io_top == TOP_DONE) { ctx->callback = NULL; callback (uptr, ctx->io_status); } } static t_bool _tape_is_active (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; if (ctx) { sim_debug (ctx->dbit, ctx->dptr, "_tape_is_active(unit=%d, top=%d)\n", (int)(uptr-ctx->dptr->units), ctx->io_top); return (ctx->io_top != TOP_DONE); } return FALSE; } static void _tape_cancel (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; if (ctx) { sim_debug (ctx->dbit, ctx->dptr, "_tape_cancel(unit=%d, top=%d)\n", (int)(uptr-ctx->dptr->units), ctx->io_top); if (ctx->asynch_io) { pthread_mutex_lock (&ctx->io_lock); while (ctx->io_top != TOP_DONE) pthread_cond_wait (&ctx->io_done, &ctx->io_lock); pthread_mutex_unlock (&ctx->io_lock); } } } #else #define AIO_CALLSETUP \ if (uptr->tape_ctx == NULL) \ return sim_messagef (SCPE_IERR, "Bad Attach\n"); #define AIO_CALL(op, _buf, _fc, _bc, _max, _vbc, _gaplen, _bpi, _obj, _callback) \ if (_callback) \ (_callback) (uptr, r); #endif /* Enable asynchronous operation */ t_stat sim_tape_set_async (UNIT *uptr, int latency) { #if !defined(SIM_ASYNCH_IO) sim_printf ("Tape: can't operate asynchronously\r\n"); return SCPE_NOFNC; #else struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; pthread_attr_t attr; ctx->asynch_io = sim_asynch_enabled; ctx->asynch_io_latency = latency; |
︙ | ︙ | |||
385 386 387 388 389 390 391 | pthread_attr_destroy(&attr); pthread_cond_wait (&ctx->startup_cond, &ctx->io_lock); /* Wait for thread to stabilize */ pthread_mutex_unlock (&ctx->io_lock); pthread_cond_destroy (&ctx->startup_cond); } uptr->a_check_completion = _tape_completion_dispatch; uptr->a_is_active = _tape_is_active; | | | 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | pthread_attr_destroy(&attr); pthread_cond_wait (&ctx->startup_cond, &ctx->io_lock); /* Wait for thread to stabilize */ pthread_mutex_unlock (&ctx->io_lock); pthread_cond_destroy (&ctx->startup_cond); } uptr->a_check_completion = _tape_completion_dispatch; uptr->a_is_active = _tape_is_active; uptr->cancel = _tape_cancel; return SCPE_OK; #endif } /* Disable asynchronous operation */ t_stat sim_tape_clr_async (UNIT *uptr) |
︙ | ︙ | |||
434 435 436 437 438 439 440 | sim_tape_set_async (uptr, ctx->asynch_io_latency); #endif fflush (uptr->fileref); } /* Attach tape unit */ | | > > > > | | | 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | sim_tape_set_async (uptr, ctx->asynch_io_latency); #endif fflush (uptr->fileref); } /* Attach tape unit */ t_stat sim_tape_attach (UNIT *uptr, CONST char *cptr) { DEVICE *dptr; if ((dptr = find_dev_from_unit (uptr)) == NULL) return SCPE_NOATT; return sim_tape_attach_ex (uptr, cptr, (dptr->flags & DEV_DEBUG) ? 0xFFFFFFFF : 0, 0); } t_stat sim_tape_attach_ex (UNIT *uptr, const char *cptr, uint32 dbit, int completion_delay) { struct tape_context *ctx; uint32 objc; DEVICE *dptr; char gbuf[CBUFSIZE]; t_stat r; t_bool auto_format = FALSE; |
︙ | ︙ | |||
461 462 463 464 465 466 467 | if (sim_tape_set_fmt (uptr, 0, gbuf, NULL) != SCPE_OK) return sim_messagef (SCPE_ARG, "Invalid Tape Format: %s\n", gbuf); sim_switches = sim_switches & ~(SWMASK ('F')); /* Record Format specifier already processed */ auto_format = TRUE; } if (MT_GET_FMT (uptr) == MTUF_F_TPC) sim_switches |= SWMASK ('R'); /* Force ReadOnly attach for TPC tapes */ | | | | | 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 | if (sim_tape_set_fmt (uptr, 0, gbuf, NULL) != SCPE_OK) return sim_messagef (SCPE_ARG, "Invalid Tape Format: %s\n", gbuf); sim_switches = sim_switches & ~(SWMASK ('F')); /* Record Format specifier already processed */ auto_format = TRUE; } if (MT_GET_FMT (uptr) == MTUF_F_TPC) sim_switches |= SWMASK ('R'); /* Force ReadOnly attach for TPC tapes */ r = attach_unit (uptr, (CONST char *)cptr); /* attach unit */ if (r != SCPE_OK) /* error? */ return sim_messagef (r, "Can't open tape image: %s\n", cptr); switch (MT_GET_FMT (uptr)) { /* case on format */ case MTUF_F_STD: /* SIMH */ if (SCPE_OK != sim_tape_simh_check (uptr)) { sim_tape_detach (uptr); return SCPE_FMT; /* yes, complain */ } break; case MTUF_F_E11: /* E11 */ if (SCPE_OK != sim_tape_e11_check (uptr)) { sim_tape_detach (uptr); return SCPE_FMT; /* yes, complain */ } break; case MTUF_F_TPC: /* TPC */ objc = sim_tape_tpc_map (uptr, NULL, 0); /* get # objects */ if (objc == 0) { /* tape empty? */ sim_tape_detach (uptr); return SCPE_FMT; /* yes, complain */ } uptr->filebuf = calloc (objc + 1, sizeof (t_addr)); if (uptr->filebuf == NULL) { /* map allocated? */ sim_tape_detach (uptr); return SCPE_MEM; /* no, complain */ } uptr->hwmark = objc + 1; /* save map size */ sim_tape_tpc_map (uptr, (t_addr *) uptr->filebuf, objc);/* fill map */ break; default: break; } uptr->tape_ctx = ctx = (struct tape_context *)calloc(1, sizeof(struct tape_context)); |
︙ | ︙ | |||
521 522 523 524 525 526 527 | /* Detach tape unit */ t_stat sim_tape_detach (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 f = MT_GET_FMT (uptr); t_stat r; | | | > | | 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | /* Detach tape unit */ t_stat sim_tape_detach (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 f = MT_GET_FMT (uptr); t_stat r; t_bool auto_format = FALSE; if ((ctx == NULL) || (uptr == NULL) || !(uptr->flags & UNIT_ATT)) return SCPE_IERR; if (uptr->io_flush) uptr->io_flush (uptr); /* flush buffered data */ if (ctx) auto_format = ctx->auto_format; sim_tape_clr_async (uptr); r = detach_unit (uptr); /* detach unit */ if (r != SCPE_OK) return r; switch (f) { /* case on format */ |
︙ | ︙ | |||
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | return SCPE_OK; } static void sim_tape_data_trace(UNIT *uptr, const uint8 *data, size_t len, const char* txt, int detail, uint32 reason) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; if (sim_deb && (ctx->dptr->dctrl & reason)) sim_data_trace(ctx->dptr, uptr, (detail ? data : NULL), "", len, txt, reason); } /* Read record length forward (internal routine) Inputs: uptr = pointer to tape unit bc = pointer to returned record length Outputs: status = operation status exit condition tape position | > > | | | > | 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 | return SCPE_OK; } static void sim_tape_data_trace(UNIT *uptr, const uint8 *data, size_t len, const char* txt, int detail, uint32 reason) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; if (ctx == NULL) return; if (sim_deb && (ctx->dptr->dctrl & reason)) sim_data_trace(ctx->dptr, uptr, (detail ? data : NULL), "", len, txt, reason); } /* Read record length forward (internal routine) Inputs: uptr = pointer to tape unit bc = pointer to returned record length Outputs: status = operation status exit condition tape position ------------------ ----------------------------------------------------- unit unattached unchanged read error unchanged, PNU set end of file/medium updated if a gap precedes, else unchanged and PNU set tape mark updated tape runaway updated data record updated, sim_fread will read record forward This routine is called to set up a record read or spacing in the forward direction. On return, status is MTSE_OK and the tape is positioned at the first data byte if a record was encountered, or status is an MTSE error code giving the reason that the operation did not succeed and the tape position is as indicated above. The ANSI standards for magnetic tape recording (X3.32, X3.39, and X3.54) and the equivalent ECMA standard (ECMA-62) specify a maximum erase gap length of 25 feet (7.6 meters). While gaps of any length may be written, gaps longer than this are non-standard and may indicate that an unrecorded or erased tape is being read. If the tape density has been set via a previous "sim_tape_set_dens" call, then the length is monitored when skipping over erase gaps. If the length reaches 25 feet, motion is terminated, and MTSE_RUNAWAY status is returned. Runaway status is also returned if an end-of-medium marker or the physical end of file is encountered while spacing over a gap; however, MTSE_EOM is returned if the tape is positioned at the EOM on entry. If the density has not been set, then a gap of any length is skipped, and MTSE_RUNAWAY status is never returned. In effect, erase gaps present in the tape image file will be transparent to the caller. Erase gaps are currently supported only in SIMH (MTUF_F_STD) tape format. Because gaps may be partially overwritten with data records, gap metadata |
︙ | ︙ | |||
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 | ----------- -------------- 1 7200 32 783 128 237 256 203 512 186 1024 171 */ static t_stat sim_tape_rdlntf (UNIT *uptr, t_mtrlnt *bc) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint8 c; t_bool all_eof; uint32 f = MT_GET_FMT (uptr); t_mtrlnt sbc; t_tpclnt tpcbc; t_mtrlnt buffer [256]; /* local tape buffer */ uint32 bufcntr, bufcap; /* buffer counter and capacity */ int32 runaway_counter, sizeof_gap; /* bytes remaining before runaway and bytes per gap */ t_stat r = MTSE_OK; MT_CLR_PNU (uptr); /* clear the position-not-updated flag */ if ((uptr->flags & UNIT_ATT) == 0) /* if the unit is not attached */ return MTSE_UNATT; /* then quit with an error */ sim_fseek (uptr->fileref, uptr->pos, SEEK_SET); /* set the initial tape position */ switch (f) { /* the read method depends on the tape format */ case MTUF_F_STD: case MTUF_F_E11: runaway_counter = 25 * 12 * bpi [MT_DENS (uptr->dynflags)]; /* set the largest legal gap size in bytes */ if (runaway_counter == 0) { /* if tape density has not been not set */ sizeof_gap = 0; /* then disable runaway detection */ runaway_counter = INT_MAX; /* to allow gaps of any size */ } else /* otherwise */ sizeof_gap = sizeof (t_mtrlnt); /* set the size of the gap */ bufcntr = 0; /* force an initial read */ bufcap = 0; /* but of just one metadata marker */ | > > > > > > > > > | | > | > | > > | | | | | > > > > > > > > > > | | | 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 | ----------- -------------- 1 7200 32 783 128 237 256 203 512 186 1024 171 4. Because an erase gap may precede the logical end-of-medium, represented either by the physical end-of-file or by an EOM marker, the "position not updated" flag is set only if the tape is positioned at the EOM when the routine is entered. If at least one gap marker precedes the EOM, then the PNU flag is not set. This ensures that a backspace-and-retry sequence will work correctly in both cases. */ static t_stat sim_tape_rdlntf (UNIT *uptr, t_mtrlnt *bc) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint8 c; t_bool all_eof; uint32 f = MT_GET_FMT (uptr); t_mtrlnt sbc; t_tpclnt tpcbc; t_mtrlnt buffer [256]; /* local tape buffer */ uint32 bufcntr, bufcap; /* buffer counter and capacity */ int32 runaway_counter, sizeof_gap; /* bytes remaining before runaway and bytes per gap */ t_stat r = MTSE_OK; MT_CLR_PNU (uptr); /* clear the position-not-updated flag */ if ((uptr->flags & UNIT_ATT) == 0) /* if the unit is not attached */ return MTSE_UNATT; /* then quit with an error */ if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_fseek (uptr->fileref, uptr->pos, SEEK_SET); /* set the initial tape position */ switch (f) { /* the read method depends on the tape format */ case MTUF_F_STD: case MTUF_F_E11: runaway_counter = 25 * 12 * bpi [MT_DENS (uptr->dynflags)]; /* set the largest legal gap size in bytes */ if (runaway_counter == 0) { /* if tape density has not been not set */ sizeof_gap = 0; /* then disable runaway detection */ runaway_counter = INT_MAX; /* to allow gaps of any size */ } else /* otherwise */ sizeof_gap = sizeof (t_mtrlnt); /* set the size of the gap */ bufcntr = 0; /* force an initial read */ bufcap = 0; /* but of just one metadata marker */ do { /* loop until a record, gap, or error is seen */ if (bufcntr == bufcap) { /* if the buffer is empty then refill it */ if (feof (uptr->fileref)) { /* if we hit the EOF while reading a gap */ if (sizeof_gap > 0) /* then if detection is enabled */ r = MTSE_RUNAWAY; /* then report a tape runaway */ else /* otherwise report the physical EOF */ r = MTSE_EOM; /* as the end-of-medium */ break; } else if (bufcap == 0) /* otherwise if this is the initial read */ bufcap = 1; /* then start with just one marker */ else /* otherwise reset the capacity */ bufcap = sizeof (buffer) /* to the full size of the buffer */ / sizeof (buffer [0]); bufcap = sim_fread (buffer, /* fill the buffer */ sizeof (t_mtrlnt), /* with tape metadata */ bufcap, uptr->fileref); if (ferror (uptr->fileref)) { /* if a file I/O error occurred */ if (bufcntr == 0) /* then if this is the initial read */ MT_SET_PNU (uptr); /* then set position not updated */ r = sim_tape_ioerr (uptr); /* report the error and quit */ break; } else if (bufcap == 0 /* otherwise if positioned at the physical EOF */ || buffer [0] == MTR_EOM) /* or at the logical EOM */ if (bufcntr == 0) { /* then if this is the initial read */ MT_SET_PNU (uptr); /* then set position not updated */ r = MTSE_EOM; /* and report the end-of-medium and quit */ break; } else { /* otherwise some gap has already been skipped */ if (sizeof_gap > 0) /* so if detection is enabled */ r = MTSE_RUNAWAY; /* then report a tape runaway */ else /* otherwise report the physical EOF */ r = MTSE_EOM; /* as the end-of-medium */ break; } else /* otherwise reset the index */ bufcntr = 0; /* to the start of the buffer */ } *bc = buffer [bufcntr++]; /* store the metadata marker value */ if (*bc == MTR_EOM) { /* if an end-of-medium marker is seen */ if (sizeof_gap > 0) /* then if detection is enabled */ r = MTSE_RUNAWAY; /* then report a tape runaway */ else /* otherwise report the physical EOF */ r = MTSE_EOM; /* as the end-of-medium */ break; } uptr->pos = uptr->pos + sizeof (t_mtrlnt); /* space over the marker */ if (*bc == MTR_TMK) { /* if the value is a tape mark */ r = MTSE_TMK; /* then quit with tape mark status */ |
︙ | ︙ | |||
880 881 882 883 884 885 886 887 888 889 890 891 892 893 | int32 runaway_counter, sizeof_gap; /* bytes remaining before runaway and bytes per gap */ t_stat r = MTSE_OK; MT_CLR_PNU (uptr); /* clear the position-not-updated flag */ if ((uptr->flags & UNIT_ATT) == 0) /* if the unit is not attached */ return MTSE_UNATT; /* then quit with an error */ if (sim_tape_bot (uptr)) /* if the unit is positioned at the BOT */ return MTSE_BOT; /* then reading backward is not possible */ switch (f) { /* the read method depends on the tape format */ case MTUF_F_STD: | > > | 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 | int32 runaway_counter, sizeof_gap; /* bytes remaining before runaway and bytes per gap */ t_stat r = MTSE_OK; MT_CLR_PNU (uptr); /* clear the position-not-updated flag */ if ((uptr->flags & UNIT_ATT) == 0) /* if the unit is not attached */ return MTSE_UNATT; /* then quit with an error */ if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ if (sim_tape_bot (uptr)) /* if the unit is positioned at the BOT */ return MTSE_BOT; /* then reading backward is not possible */ switch (f) { /* the read method depends on the tape format */ case MTUF_F_STD: |
︙ | ︙ | |||
1043 1044 1045 1046 1047 1048 1049 | { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 f = MT_GET_FMT (uptr); t_mtrlnt i, tbc, rbc; t_addr opos; t_stat st; | > > | | 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 | { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 f = MT_GET_FMT (uptr); t_mtrlnt i, tbc, rbc; t_addr opos; t_stat st; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_rdrecf(unit=%d, buf=%p, max=%d)\n", (int)(uptr-ctx->dptr->units), buf, max); opos = uptr->pos; /* old position */ if (MTSE_OK != (st = sim_tape_rdlntf (uptr, &tbc))) /* read rec lnt */ return st; *bc = rbc = MTR_L (tbc); /* strip error flag */ if (rbc > max) { /* rec out of range? */ MT_SET_PNU (uptr); |
︙ | ︙ | |||
1107 1108 1109 1110 1111 1112 1113 | t_stat sim_tape_rdrecr (UNIT *uptr, uint8 *buf, t_mtrlnt *bc, t_mtrlnt max) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 f = MT_GET_FMT (uptr); t_mtrlnt i, rbc, tbc; t_stat st; | > > | | 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 | t_stat sim_tape_rdrecr (UNIT *uptr, uint8 *buf, t_mtrlnt *bc, t_mtrlnt max) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 f = MT_GET_FMT (uptr); t_mtrlnt i, rbc, tbc; t_stat st; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_rdrecr(unit=%d, buf=%p, max=%d)\n", (int)(uptr-ctx->dptr->units), buf, max); if (MTSE_OK != (st = sim_tape_rdlntr (uptr, &tbc))) /* read rec lnt */ return st; *bc = rbc = MTR_L (tbc); /* strip error flag */ if (rbc > max) /* rec out of range? */ return MTSE_INVRL; i = (t_mtrlnt)sim_fread (buf, sizeof (uint8), rbc, uptr->fileref);/* read record */ |
︙ | ︙ | |||
1157 1158 1159 1160 1161 1162 1163 | t_stat sim_tape_wrrecf (UNIT *uptr, uint8 *buf, t_mtrlnt bc) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 f = MT_GET_FMT (uptr); t_mtrlnt sbc; | > > | | 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 | t_stat sim_tape_wrrecf (UNIT *uptr, uint8 *buf, t_mtrlnt bc) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 f = MT_GET_FMT (uptr); t_mtrlnt sbc; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_wrrecf(unit=%d, buf=%p, bc=%d)\n", (int)(uptr-ctx->dptr->units), buf, bc); sim_tape_data_trace(uptr, buf, bc, "Record Write", ctx->dptr->dctrl & MTSE_DBG_DAT, MTSE_DBG_STR); MT_CLR_PNU (uptr); sbc = MTR_L (bc); if ((uptr->flags & UNIT_ATT) == 0) /* not attached? */ return MTSE_UNATT; if (sim_tape_wrp (uptr)) /* write prot? */ |
︙ | ︙ | |||
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 | static t_stat sim_tape_wrdata (UNIT *uptr, uint32 dat) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; MT_CLR_PNU (uptr); if ((uptr->flags & UNIT_ATT) == 0) /* not attached? */ return MTSE_UNATT; if (sim_tape_wrp (uptr)) /* write prot? */ return MTSE_WRP; sim_fseek (uptr->fileref, uptr->pos, SEEK_SET); /* set pos */ sim_fwrite (&dat, sizeof (t_mtrlnt), 1, uptr->fileref); if (ferror (uptr->fileref)) { /* error? */ MT_SET_PNU (uptr); return sim_tape_ioerr (uptr); } sim_debug (MTSE_DBG_STR, ctx->dptr, "wr_lnt: lnt: %d, pos: %" T_ADDR_FMT "u\n", dat, uptr->pos); uptr->pos = uptr->pos + sizeof (t_mtrlnt); /* move tape */ return MTSE_OK; } /* Write tape mark */ t_stat sim_tape_wrtmk (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; | > > > > | | 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 | static t_stat sim_tape_wrdata (UNIT *uptr, uint32 dat) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; MT_CLR_PNU (uptr); if ((uptr->flags & UNIT_ATT) == 0) /* not attached? */ return MTSE_UNATT; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ if (sim_tape_wrp (uptr)) /* write prot? */ return MTSE_WRP; sim_fseek (uptr->fileref, uptr->pos, SEEK_SET); /* set pos */ sim_fwrite (&dat, sizeof (t_mtrlnt), 1, uptr->fileref); if (ferror (uptr->fileref)) { /* error? */ MT_SET_PNU (uptr); return sim_tape_ioerr (uptr); } sim_debug (MTSE_DBG_STR, ctx->dptr, "wr_lnt: lnt: %d, pos: %" T_ADDR_FMT "u\n", dat, uptr->pos); uptr->pos = uptr->pos + sizeof (t_mtrlnt); /* move tape */ return MTSE_OK; } /* Write tape mark */ t_stat sim_tape_wrtmk (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_wrtmk(unit=%d)\n", (int)(uptr-ctx->dptr->units)); if (MT_GET_FMT (uptr) == MTUF_F_P7B) { /* P7B? */ uint8 buf = P7B_EOF; /* eof mark */ return sim_tape_wrrecf (uptr, &buf, 1); /* write char */ } return sim_tape_wrdata (uptr, MTR_TMK); } |
︙ | ︙ | |||
1260 1261 1262 1263 1264 1265 1266 | /* Write end of medium */ t_stat sim_tape_wreom (UNIT *uptr) { t_stat result; struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; | > > | | 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 | /* Write end of medium */ t_stat sim_tape_wreom (UNIT *uptr) { t_stat result; struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_wreom(unit=%d)\n", (int)(uptr-ctx->dptr->units)); if (MT_GET_FMT (uptr) == MTUF_F_P7B) /* cant do P7B */ return MTSE_FMT; result = sim_tape_wrdata (uptr, MTR_EOM); /* write the EOM marker */ uptr->pos = uptr->pos - sizeof (t_mtrlnt); /* restore original tape position */ MT_SET_PNU (uptr); /* indicate that position was not updated */ |
︙ | ︙ | |||
1288 1289 1290 1291 1292 1293 1294 | /* Write end of medium-rewind */ t_stat sim_tape_wreomrw (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat r; | > > | | 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 | /* Write end of medium-rewind */ t_stat sim_tape_wreomrw (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat r; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_wreomrw(unit=%d)\n", (int)(uptr-ctx->dptr->units)); if (MT_GET_FMT (uptr) == MTUF_F_P7B) /* cant do P7B */ return MTSE_FMT; r = sim_tape_wrdata (uptr, MTR_EOM); if (r == MTSE_OK) r = sim_tape_rewind (uptr); return r; } |
︙ | ︙ | |||
1420 1421 1422 1423 1424 1425 1426 | uint32 file_size, marker_count, tape_density; int32 gap_needed; uint32 gap_alloc = 0; /* gap currently allocated from the tape */ const uint32 format = MT_GET_FMT (uptr); /* tape format */ const uint32 meta_size = sizeof (t_mtrlnt); /* bytes per metadatum */ const uint32 min_rec_size = 2 + sizeof (t_mtrlnt) * 2; /* smallest data record size */ | > > | | 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 | uint32 file_size, marker_count, tape_density; int32 gap_needed; uint32 gap_alloc = 0; /* gap currently allocated from the tape */ const uint32 format = MT_GET_FMT (uptr); /* tape format */ const uint32 meta_size = sizeof (t_mtrlnt); /* bytes per metadatum */ const uint32 min_rec_size = 2 + sizeof (t_mtrlnt) * 2; /* smallest data record size */ if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_wrgap(unit=%d, gaplen=%u)\n", (int)(uptr-ctx->dptr->units), gaplen); MT_CLR_PNU (uptr); if ((uptr->flags & UNIT_ATT) == 0) /* if the unit is not attached */ return MTSE_UNATT; /* then we cannot proceed */ else if (sim_tape_wrp (uptr)) /* otherwise if the unit is write protected */ |
︙ | ︙ | |||
1587 1588 1589 1590 1591 1592 1593 | */ t_stat sim_tape_sprecf (UNIT *uptr, t_mtrlnt *bc) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; | > > | | 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 | */ t_stat sim_tape_sprecf (UNIT *uptr, t_mtrlnt *bc) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_sprecf(unit=%d)\n", (int)(uptr-ctx->dptr->units)); st = sim_tape_rdlntf (uptr, bc); /* get record length */ *bc = MTR_L (*bc); return st; } t_stat sim_tape_sprecf_a (UNIT *uptr, t_mtrlnt *bc, TAPE_PCALLBACK callback) |
︙ | ︙ | |||
1628 1629 1630 1631 1632 1633 1634 | t_stat sim_tape_sprecsf (UNIT *uptr, uint32 count, uint32 *skipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; t_mtrlnt tbc; | > > | | 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 | t_stat sim_tape_sprecsf (UNIT *uptr, uint32 count, uint32 *skipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; t_mtrlnt tbc; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_sprecsf(unit=%d, count=%d)\n", (int)(uptr-ctx->dptr->units), count); *skipped = 0; while (*skipped < count) { /* loopo */ st = sim_tape_sprecf (uptr, &tbc); /* spc rec */ if (st != MTSE_OK) return st; *skipped = *skipped + 1; /* # recs skipped */ |
︙ | ︙ | |||
1673 1674 1675 1676 1677 1678 1679 | */ t_stat sim_tape_sprecr (UNIT *uptr, t_mtrlnt *bc) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; | > > | | 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 | */ t_stat sim_tape_sprecr (UNIT *uptr, t_mtrlnt *bc) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_sprecr(unit=%d)\n", (int)(uptr-ctx->dptr->units)); if (MT_TST_PNU (uptr)) { MT_CLR_PNU (uptr); *bc = 0; return MTSE_OK; } st = sim_tape_rdlntr (uptr, bc); /* get record length */ |
︙ | ︙ | |||
1720 1721 1722 1723 1724 1725 1726 | t_stat sim_tape_sprecsr (UNIT *uptr, uint32 count, uint32 *skipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; t_mtrlnt tbc; | > > | | 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 | t_stat sim_tape_sprecsr (UNIT *uptr, uint32 count, uint32 *skipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; t_mtrlnt tbc; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_sprecsr(unit=%d, count=%d)\n", (int)(uptr-ctx->dptr->units), count); *skipped = 0; while (*skipped < count) { /* loopo */ st = sim_tape_sprecr (uptr, &tbc); /* spc rec rev */ if (st != MTSE_OK) return st; *skipped = *skipped + 1; /* # recs skipped */ |
︙ | ︙ | |||
1769 1770 1771 1772 1773 1774 1775 | t_stat sim_tape_spfilebyrecf (UNIT *uptr, uint32 count, uint32 *skipped, uint32 *recsskipped, t_bool check_leot) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; t_bool last_tapemark = FALSE; uint32 filerecsskipped; | > > | | 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 | t_stat sim_tape_spfilebyrecf (UNIT *uptr, uint32 count, uint32 *skipped, uint32 *recsskipped, t_bool check_leot) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; t_bool last_tapemark = FALSE; uint32 filerecsskipped; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_spfilebyrecf(unit=%d, count=%d, check_leot=%d)\n", (int)(uptr-ctx->dptr->units), count, check_leot); if (check_leot) { t_mtrlnt rbc; st = sim_tape_rdlntr (uptr, &rbc); last_tapemark = (MTSE_TMK == st); if ((st == MTSE_OK) || (st == MTSE_TMK)) |
︙ | ︙ | |||
1837 1838 1839 1840 1841 1842 1843 | */ t_stat sim_tape_spfilef (UNIT *uptr, uint32 count, uint32 *skipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 totalrecsskipped; | > > | | 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 | */ t_stat sim_tape_spfilef (UNIT *uptr, uint32 count, uint32 *skipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 totalrecsskipped; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_spfilef(unit=%d, count=%d)\n", (int)(uptr-ctx->dptr->units), count); return sim_tape_spfilebyrecf (uptr, count, skipped, &totalrecsskipped, FALSE); } t_stat sim_tape_spfilef_a (UNIT *uptr, uint32 count, uint32 *skipped, TAPE_PCALLBACK callback) { t_stat r = MTSE_OK; |
︙ | ︙ | |||
1878 1879 1880 1881 1882 1883 1884 | t_stat sim_tape_spfilebyrecr (UNIT *uptr, uint32 count, uint32 *skipped, uint32 *recsskipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; uint32 filerecsskipped; | > > | | 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 | t_stat sim_tape_spfilebyrecr (UNIT *uptr, uint32 count, uint32 *skipped, uint32 *recsskipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat st; uint32 filerecsskipped; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_spfilebyrecr(unit=%d, count=%d)\n", (int)(uptr-ctx->dptr->units), count); *skipped = 0; *recsskipped = 0; while (*skipped < count) { /* loopo */ while (1) { st = sim_tape_sprecsr (uptr, 0x1ffffff, &filerecsskipped);/* spc recs rev */ *recsskipped += filerecsskipped; |
︙ | ︙ | |||
1931 1932 1933 1934 1935 1936 1937 | */ t_stat sim_tape_spfiler (UNIT *uptr, uint32 count, uint32 *skipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 totalrecsskipped; | > > | > > | | 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | */ t_stat sim_tape_spfiler (UNIT *uptr, uint32 count, uint32 *skipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; uint32 totalrecsskipped; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_spfiler(unit=%d, count=%d)\n", (int)(uptr-ctx->dptr->units), count); return sim_tape_spfilebyrecr (uptr, count, skipped, &totalrecsskipped); } t_stat sim_tape_spfiler_a (UNIT *uptr, uint32 count, uint32 *skipped, TAPE_PCALLBACK callback) { t_stat r = MTSE_OK; AIO_CALLSETUP r = sim_tape_spfiler (uptr, count, skipped); AIO_CALL(TOP_SPFR, NULL, skipped, NULL, 0, count, 0, 0, NULL, callback); return r; } /* Rewind tape */ t_stat sim_tape_rewind (UNIT *uptr) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; if (uptr->flags & UNIT_ATT) { if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n");/* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_rewind(unit=%d)\n", (int)(uptr-ctx->dptr->units)); } uptr->pos = 0; MT_CLR_PNU (uptr); return MTSE_OK; } t_stat sim_tape_rewind_a (UNIT *uptr, TAPE_PCALLBACK callback) |
︙ | ︙ | |||
1975 1976 1977 1978 1979 1980 1981 | /* Position Tape */ t_stat sim_tape_position (UNIT *uptr, uint32 flags, uint32 recs, uint32 *recsskipped, uint32 files, uint32 *filesskipped, uint32 *objectsskipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat r = MTSE_OK; | > > | | 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 | /* Position Tape */ t_stat sim_tape_position (UNIT *uptr, uint32 flags, uint32 recs, uint32 *recsskipped, uint32 files, uint32 *filesskipped, uint32 *objectsskipped) { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; t_stat r = MTSE_OK; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_position(unit=%d, flags=0x%X, recs=%d, files=%d)\n", (int)(uptr-ctx->dptr->units), flags, recs, files); *recsskipped = *filesskipped = *objectsskipped = 0; if (flags & MTPOS_M_REW) r = sim_tape_rewind (uptr); if (r != MTSE_OK) return r; if (flags & MTPOS_M_OBJ) { |
︙ | ︙ | |||
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 | { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; MT_CLR_PNU (uptr); if (!(uptr->flags & UNIT_ATT)) /* attached? */ return SCPE_OK; sim_debug (ctx->dbit, ctx->dptr, "sim_tape_reset(unit=%d)\n", (int)(uptr-ctx->dptr->units)); _sim_tape_io_flush(uptr); AIO_VALIDATE; AIO_UPDATE_QUEUE; return SCPE_OK; } | > > | 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 | { struct tape_context *ctx = (struct tape_context *)uptr->tape_ctx; MT_CLR_PNU (uptr); if (!(uptr->flags & UNIT_ATT)) /* attached? */ return SCPE_OK; if (ctx == NULL) /* if not properly attached? */ return sim_messagef (SCPE_IERR, "Bad Attach\n"); /* that's a problem */ sim_debug (ctx->dbit, ctx->dptr, "sim_tape_reset(unit=%d)\n", (int)(uptr-ctx->dptr->units)); _sim_tape_io_flush(uptr); AIO_VALIDATE; AIO_UPDATE_QUEUE; return SCPE_OK; } |
︙ | ︙ | |||
2081 2082 2083 2084 2085 2086 2087 | sim_printf ("%s: Magtape library I/O error: %s\n", sim_uname (uptr), strerror (errno)); clearerr (uptr->fileref); return MTSE_IOERR; } /* Set tape format */ | | | 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 | sim_printf ("%s: Magtape library I/O error: %s\n", sim_uname (uptr), strerror (errno)); clearerr (uptr->fileref); return MTSE_IOERR; } /* Set tape format */ t_stat sim_tape_set_fmt (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { uint32 f; if (uptr->flags & UNIT_ATT) return SCPE_ALATT; if (uptr == NULL) return SCPE_IERR; |
︙ | ︙ | |||
2103 2104 2105 2106 2107 2108 2109 | } } return SCPE_ARG; } /* Show tape format */ | | | | | > | > > > > > > | > > > | > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > | > > > | 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 | } } return SCPE_ARG; } /* Show tape format */ t_stat sim_tape_show_fmt (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { int32 f = MT_GET_FMT (uptr); if (fmts[f].name) fprintf (st, "%s format", fmts[f].name); else fprintf (st, "invalid format"); return SCPE_OK; } /* Map a TPC format tape image */ static uint32 sim_tape_tpc_map (UNIT *uptr, t_addr *map, uint32 mapsize) { t_addr tpos, leot; t_addr tape_size; t_tpclnt bc, last_bc = 0xFFFF; uint32 had_double_tape_mark = 0; size_t i; uint32 objc, sizec; uint32 *countmap = NULL; uint8 *recbuf = NULL; DEVICE *dptr = find_dev_from_unit (uptr); if ((uptr == NULL) || (uptr->fileref == NULL)) return 0; countmap = (uint32 *)calloc (65536, sizeof(*countmap)); recbuf = (uint8 *)malloc (65536); tape_size = (t_addr)sim_fsize (uptr->fileref); sim_debug (MTSE_DBG_STR, dptr, "tpc_map: tape_size: %" T_ADDR_FMT "u\n", tape_size); for (objc = 0, sizec = 0, tpos = 0;; ) { sim_fseek (uptr->fileref, tpos, SEEK_SET); i = sim_fread (&bc, sizeof (t_tpclnt), 1, uptr->fileref); if (i == 0) /* past or at eof? */ break; if (countmap[bc] == 0) sizec++; ++countmap[bc]; if (map && (objc < mapsize)) map[objc] = tpos; if (bc) { sim_debug (MTSE_DBG_STR, dptr, "tpc_map: %d byte count at pos: %" T_ADDR_FMT "u\n", bc, tpos); if (sim_deb && (dptr->dctrl & MTSE_DBG_STR)) { sim_fread (recbuf, 1, bc, uptr->fileref); sim_data_trace(dptr, uptr, ((dptr->dctrl & MTSE_DBG_DAT) ? recbuf : NULL), "", bc, "Data Record", MTSE_DBG_STR); } } else sim_debug (MTSE_DBG_STR, dptr, "tpc_map: tape mark at pos: %" T_ADDR_FMT "u\n", tpos); objc++; tpos = tpos + ((bc + 1) & ~1) + sizeof (t_tpclnt); if ((bc == 0) && (last_bc == 0)) { /* double tape mark? */ had_double_tape_mark = objc; leot = tpos; } last_bc = bc; } sim_debug (MTSE_DBG_STR, dptr, "tpc_map: objc: %u, different record sizes: %u\n", objc, sizec); for (i=0; i<65535; i++) { if (countmap[i]) { if (i == 0) sim_debug (MTSE_DBG_STR, dptr, "tpc_map: summary - %u tape marks\n", countmap[i]); else sim_debug (MTSE_DBG_STR, dptr, "tpc_map: summary - %u %d byte record%s\n", countmap[i], (int)i, (countmap[i] > 1) ? "s" : ""); } } if (((last_bc != 0xffff) && (tpos > tape_size) && (!had_double_tape_mark)) || (!had_double_tape_mark) || ((objc == countmap[0]) && (countmap[0] != 2))) { /* Unreasonable format? */ if (last_bc != 0xffff) sim_debug (MTSE_DBG_STR, dptr, "tpc_map: ERROR unexpected EOT byte count: %d\n", last_bc); if (tpos > tape_size) sim_debug (MTSE_DBG_STR, dptr, "tpc_map: ERROR next record position %" T_ADDR_FMT "u beyond EOT: %" T_ADDR_FMT "u\n", tpos, tape_size); if (objc == countmap[0]) sim_debug (MTSE_DBG_STR, dptr, "tpc_map: ERROR tape cnly contains tape marks\n"); free (countmap); free (recbuf); return 0; } if ((last_bc != 0xffff) && (tpos > tape_size)) { sim_debug (MTSE_DBG_STR, dptr, "tpc_map: WARNING unexpected EOT byte count: %d, double tape mark before %" T_ADDR_FMT "u provides logical EOT\n", last_bc, leot); objc = had_double_tape_mark; tpos = leot; } if (map) map[objc] = tpos; sim_debug (MTSE_DBG_STR, dptr, "tpc_map: OK objc: %d\n", objc); free (countmap); free (recbuf); return objc; } /* Check the basic structure of a SIMH format tape image */ static t_stat sim_tape_simh_check (UNIT *uptr) { |
︙ | ︙ | |||
2182 2183 2184 2185 2186 2187 2188 | } while (lo <= hi); return ((p == 0)? map[p]: map[p - 1]); } /* Set tape capacity */ | | | | 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 | } while (lo <= hi); return ((p == 0)? map[p]: map[p - 1]); } /* Set tape capacity */ t_stat sim_tape_set_capac (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { t_addr cap; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_ARG; if (uptr->flags & UNIT_ATT) return SCPE_ALATT; cap = (t_addr) get_uint (cptr, 10, sim_taddr_64? 2000000: 2000, &r); if (r != SCPE_OK) return SCPE_ARG; uptr->capac = cap * ((t_addr) 1000000); return SCPE_OK; } /* Show tape capacity */ t_stat sim_tape_show_capac (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { if (uptr->capac) { if (uptr->capac >= (t_addr) 1000000) fprintf (st, "capacity=%dMB", (uint32) (uptr->capac / ((t_addr) 1000000))); else { if (uptr->capac >= (t_addr) 1000) fprintf (st, "capacity=%dKB", (uint32) (uptr->capac / ((t_addr) 1000))); |
︙ | ︙ | |||
2236 2237 2238 2239 2240 2241 2242 | values. In either case, SCPE_ARG is returned if the density setting is not valid or allowed. If the setting is OK, the new density is set into the unit structure, and SCPE_OK is returned. */ | | | 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 | values. In either case, SCPE_ARG is returned if the density setting is not valid or allowed. If the setting is OK, the new density is set into the unit structure, and SCPE_OK is returned. */ t_stat sim_tape_set_dens (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { uint32 density, new_bpi; t_stat result = SCPE_OK; if (uptr == NULL) /* if the unit pointer is null */ return SCPE_IERR; /* then the caller has screwed up */ |
︙ | ︙ | |||
2262 2263 2264 2265 2266 2267 2268 | new_bpi = (uint32) get_uint (cptr, 10, UINT_MAX, &result); /* convert the string value */ if (result != SCPE_OK) /* if the conversion failed */ result = SCPE_ARG; /* then report a bad argument */ else for (density = 0; density < BPI_COUNT; density++) /* otherwise validate the density */ if (new_bpi == bpi [density] /* if it matches a value in the list */ | | | | 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 | new_bpi = (uint32) get_uint (cptr, 10, UINT_MAX, &result); /* convert the string value */ if (result != SCPE_OK) /* if the conversion failed */ result = SCPE_ARG; /* then report a bad argument */ else for (density = 0; density < BPI_COUNT; density++) /* otherwise validate the density */ if (new_bpi == bpi [density] /* if it matches a value in the list */ && ((1 << density) & *(const int32 *) desc)) { /* and it's an allowed value */ uptr->dynflags = (uptr->dynflags & ~MTVF_DENS_MASK) /* then store the index of the value */ | density << UNIT_V_DF_TAPE; /* in the unit flags */ return SCPE_OK; /* and return success */ } result = SCPE_ARG; /* if no match, then report a bad argument */ } return result; /* return the result of the operation */ } /* Show the tape density */ t_stat sim_tape_show_dens (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { uint32 tape_density; if (uptr == NULL) /* if the unit pointer is null */ return SCPE_IERR; /* then the caller has screwed up */ else { /* otherwise get the density */ |
︙ | ︙ |
Changes to src/sim_tape.h.
︙ | ︙ | |||
29 30 31 32 33 34 35 36 37 38 39 40 41 42 | 14-Feb-06 RMS Added variable tape capacity 17-Dec-05 RMS Added write support for Paul Pierce 7b format 02-May-05 RMS Added support for Paul Pierce 7b format */ #ifndef SIM_TAPE_H_ #define SIM_TAPE_H_ 0 /* SIMH/E11 tape format */ typedef uint32 t_mtrlnt; /* magtape rec lnt */ #define MTR_TMK 0x00000000 /* tape mark */ #define MTR_EOM 0xFFFFFFFF /* end of medium */ | > > > > | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | 14-Feb-06 RMS Added variable tape capacity 17-Dec-05 RMS Added write support for Paul Pierce 7b format 02-May-05 RMS Added support for Paul Pierce 7b format */ #ifndef SIM_TAPE_H_ #define SIM_TAPE_H_ 0 #ifdef __cplusplus extern "C" { #endif /* SIMH/E11 tape format */ typedef uint32 t_mtrlnt; /* magtape rec lnt */ #define MTR_TMK 0x00000000 /* tape mark */ #define MTR_EOM 0xFFFFFFFF /* end of medium */ |
︙ | ︙ | |||
144 145 146 147 148 149 150 | #define MTSE_DBG_DAT 0x0400000 /* Debug Data */ #define MTSE_DBG_POS 0x0800000 /* Debug Positioning activities */ #define MTSE_DBG_STR 0x1000000 /* Debug Tape Structure */ /* Prototypes */ | | | | 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | #define MTSE_DBG_DAT 0x0400000 /* Debug Data */ #define MTSE_DBG_POS 0x0800000 /* Debug Positioning activities */ #define MTSE_DBG_STR 0x1000000 /* Debug Tape Structure */ /* Prototypes */ t_stat sim_tape_attach_ex (UNIT *uptr, const char *cptr, uint32 dbit, int completion_delay); t_stat sim_tape_attach (UNIT *uptr, CONST char *cptr); t_stat sim_tape_detach (UNIT *uptr); t_stat sim_tape_attach_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); t_stat sim_tape_rdrecf (UNIT *uptr, uint8 *buf, t_mtrlnt *bc, t_mtrlnt max); t_stat sim_tape_rdrecf_a (UNIT *uptr, uint8 *buf, t_mtrlnt *bc, t_mtrlnt max, TAPE_PCALLBACK callback); t_stat sim_tape_rdrecr (UNIT *uptr, uint8 *buf, t_mtrlnt *bc, t_mtrlnt max); t_stat sim_tape_rdrecr_a (UNIT *uptr, uint8 *buf, t_mtrlnt *bc, t_mtrlnt max, TAPE_PCALLBACK callback); t_stat sim_tape_wrrecf (UNIT *uptr, uint8 *buf, t_mtrlnt bc); |
︙ | ︙ | |||
186 187 188 189 190 191 192 | t_stat sim_tape_rewind_a (UNIT *uptr, TAPE_PCALLBACK callback); t_stat sim_tape_position (UNIT *uptr, uint32 flags, uint32 recs, uint32 *recskipped, uint32 files, uint32 *fileskipped, uint32 *objectsskipped); t_stat sim_tape_position_a (UNIT *uptr, uint32 flags, uint32 recs, uint32 *recsskipped, uint32 files, uint32 *filesskipped, uint32 *objectsskipped, TAPE_PCALLBACK callback); t_stat sim_tape_reset (UNIT *uptr); t_bool sim_tape_bot (UNIT *uptr); t_bool sim_tape_wrp (UNIT *uptr); t_bool sim_tape_eot (UNIT *uptr); | | | | | | | > > > > | 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | t_stat sim_tape_rewind_a (UNIT *uptr, TAPE_PCALLBACK callback); t_stat sim_tape_position (UNIT *uptr, uint32 flags, uint32 recs, uint32 *recskipped, uint32 files, uint32 *fileskipped, uint32 *objectsskipped); t_stat sim_tape_position_a (UNIT *uptr, uint32 flags, uint32 recs, uint32 *recsskipped, uint32 files, uint32 *filesskipped, uint32 *objectsskipped, TAPE_PCALLBACK callback); t_stat sim_tape_reset (UNIT *uptr); t_bool sim_tape_bot (UNIT *uptr); t_bool sim_tape_wrp (UNIT *uptr); t_bool sim_tape_eot (UNIT *uptr); t_stat sim_tape_set_fmt (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat sim_tape_show_fmt (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat sim_tape_set_capac (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat sim_tape_show_capac (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat sim_tape_set_dens (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat sim_tape_show_dens (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat sim_tape_set_asynch (UNIT *uptr, int latency); t_stat sim_tape_clr_asynch (UNIT *uptr); #ifdef __cplusplus } #endif #endif |
Changes to src/sim_timer.c.
︙ | ︙ | |||
59 60 61 62 63 64 65 | 02-Jan-04 RMS Split out from SCP This library includes the following routines: sim_timer_init - initialize timing system sim_rtc_init - initialize calibration sim_rtc_calb - calibrate clock | < | 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | 02-Jan-04 RMS Split out from SCP This library includes the following routines: sim_timer_init - initialize timing system sim_rtc_init - initialize calibration sim_rtc_calb - calibrate clock sim_idle - virtual machine idle sim_os_msec - return elapsed time in msec sim_os_sleep - sleep specified number of seconds sim_os_ms_sleep - sleep specified number of milliseconds sim_idle_ms_sleep - sleep specified number of milliseconds or until awakened by an asynchronous event |
︙ | ︙ | |||
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | #define NOT_MUX_USING_CODE /* sim_tmxr library provider or agnostic */ #include "sim_defs.h" #include <ctype.h> #include <math.h> t_bool sim_idle_enab = FALSE; /* global flag */ volatile t_bool sim_idle_wait = FALSE; /* global flag */ static int32 sim_calb_tmr = -1; /* the system calibrated timer */ static uint32 sim_idle_rate_ms = 0; static uint32 sim_os_sleep_min_ms = 0; static uint32 sim_idle_stable = SIM_IDLE_STDFLT; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > | | > | | < > | > | > > > > | | | < | | | | | > | < | | | > > | > > > > > > > > > > > > > > > | > | > > > | > | 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | #define NOT_MUX_USING_CODE /* sim_tmxr library provider or agnostic */ #include "sim_defs.h" #include <ctype.h> #include <math.h> #define SIM_INTERNAL_CLK (SIM_NTIMERS+(1<<30)) #define SIM_INTERNAL_UNIT sim_internal_timer_unit #ifndef MIN #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #endif #ifndef MAX #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #endif uint32 sim_idle_ms_sleep (unsigned int msec); /* MS_MIN_GRANULARITY exists here so that timing behavior for hosts systems */ /* with slow clock ticks can be assessed and tested without actually having */ /* that slow a clock tick on the development platform */ //#define MS_MIN_GRANULARITY 20 /* Uncomment to simulate 20ms host tick size.*/ /* some Solaris and BSD hosts come this way */ #if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) uint32 real_sim_idle_ms_sleep (unsigned int msec); uint32 real_sim_os_msec (void); uint32 real_sim_os_ms_sleep (unsigned int msec); static uint32 real_sim_os_sleep_min_ms = 0; static uint32 real_sim_os_sleep_inc_ms = 0; uint32 sim_idle_ms_sleep (unsigned int msec) { uint32 real_start = real_sim_os_msec (); uint32 start = (real_start / MS_MIN_GRANULARITY) * MS_MIN_GRANULARITY; uint32 tick_left; if (msec == 0) return 0; if (real_start == start) tick_left = 0; else tick_left = MS_MIN_GRANULARITY - (real_start - start); if (msec <= tick_left) real_sim_idle_ms_sleep (tick_left); else real_sim_idle_ms_sleep (((msec + MS_MIN_GRANULARITY - 1) / MS_MIN_GRANULARITY) * MS_MIN_GRANULARITY); return (sim_os_msec () - start); } uint32 sim_os_msec (void) { return (real_sim_os_msec ()/MS_MIN_GRANULARITY)*MS_MIN_GRANULARITY; } uint32 sim_os_ms_sleep (unsigned int msec) { msec = MS_MIN_GRANULARITY*((msec+MS_MIN_GRANULARITY-1)/MS_MIN_GRANULARITY); return real_sim_os_ms_sleep (msec); } #endif /* defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) */ t_bool sim_idle_enab = FALSE; /* global flag */ volatile t_bool sim_idle_wait = FALSE; /* global flag */ static int32 sim_calb_tmr = -1; /* the system calibrated timer */ static int32 sim_calb_tmr_last = -1; /* shadow value when at sim> prompt */ static double sim_inst_per_sec_last = 0; /* shadow value when at sim> prompt */ static uint32 sim_idle_rate_ms = 0; static uint32 sim_os_sleep_min_ms = 0; static uint32 sim_os_sleep_inc_ms = 0; static uint32 sim_os_clock_resoluton_ms = 0; static uint32 sim_os_tick_hz = 0; static uint32 sim_idle_stable = SIM_IDLE_STDFLT; static uint32 sim_idle_calib_pct = 0; static uint32 sim_throt_ms_start = 0; static uint32 sim_throt_ms_stop = 0; static uint32 sim_throt_type = 0; static uint32 sim_throt_val = 0; static uint32 sim_throt_state = SIM_THROT_STATE_INIT; static double sim_throt_cps; static double sim_throt_inst_start; static uint32 sim_throt_sleep_time = 0; static int32 sim_throt_wait = 0; static UNIT *sim_clock_unit[SIM_NTIMERS+1] = {NULL}; UNIT * volatile sim_clock_cosched_queue[SIM_NTIMERS+1] = {NULL}; static int32 sim_cosched_interval[SIM_NTIMERS+1]; static t_bool sim_catchup_ticks = TRUE; #if defined (SIM_ASYNCH_CLOCKS) && !defined (SIM_ASYNCH_IO) #undef SIM_ASYNCH_CLOCKS #endif t_bool sim_asynch_timer = FALSE; #if defined (SIM_ASYNCH_CLOCKS) UNIT * volatile sim_wallclock_queue = QUEUE_LIST_END; UNIT * volatile sim_wallclock_entry = NULL; #endif #define sleep1Samples 100 static uint32 _compute_minimum_sleep (void) { uint32 i, tot, tim; sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); #if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) real_sim_idle_ms_sleep (1); /* Start sampling on a tick boundary */ for (i = 0, tot = 0; i < sleep1Samples; i++) tot += real_sim_idle_ms_sleep (1); tim = tot / sleep1Samples; /* Truncated average */ real_sim_os_sleep_min_ms = tim; real_sim_idle_ms_sleep (1); /* Start sampling on a tick boundary */ for (i = 0, tot = 0; i < sleep1Samples; i++) tot += real_sim_idle_ms_sleep (real_sim_os_sleep_min_ms + 1); tim = tot / sleep1Samples; /* Truncated average */ real_sim_os_sleep_inc_ms = tim - real_sim_os_sleep_min_ms; #endif /* defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) */ sim_idle_ms_sleep (1); /* Start sampling on a tick boundary */ for (i = 0, tot = 0; i < sleep1Samples; i++) tot += sim_idle_ms_sleep (1); tim = tot / sleep1Samples; /* Truncated average */ sim_os_sleep_min_ms = tim; sim_idle_ms_sleep (1); /* Start sampling on a tick boundary */ for (i = 0, tot = 0; i < sleep1Samples; i++) tot += sim_idle_ms_sleep (sim_os_sleep_min_ms + 1); tim = tot / sleep1Samples; /* Truncated average */ sim_os_sleep_inc_ms = tim - sim_os_sleep_min_ms; sim_os_set_thread_priority (PRIORITY_NORMAL); return sim_os_sleep_min_ms; } #if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) #define sim_idle_ms_sleep real_sim_idle_ms_sleep #define sim_os_msec real_sim_os_msec #define sim_os_ms_sleep real_sim_os_ms_sleep #endif /* defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) */ #if defined(SIM_ASYNCH_IO) uint32 sim_idle_ms_sleep (unsigned int msec) { uint32 start_time = sim_os_msec(); struct timespec done_time; t_bool timedout = FALSE; |
︙ | ︙ | |||
152 153 154 155 156 157 158 | sim_idle_wait = FALSE; pthread_mutex_unlock (&sim_asynch_lock); if (!timedout) { AIO_UPDATE_QUEUE; } return sim_os_msec() - start_time; } | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > | 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | sim_idle_wait = FALSE; pthread_mutex_unlock (&sim_asynch_lock); if (!timedout) { AIO_UPDATE_QUEUE; } return sim_os_msec() - start_time; } #else uint32 sim_idle_ms_sleep (unsigned int msec) { return sim_os_ms_sleep (msec); } #endif /* Mark the need for the sim_os_set_thread_priority routine, */ /* allowing the feature and/or platform dependent code to provide it */ #define NEED_THREAD_PRIORITY /* If we've got pthreads support then use pthreads mechanisms */ #if defined(USE_READER_THREAD) #undef NEED_THREAD_PRIORITY #if defined(_WIN32) /* On Windows there are several potentially disjoint threading APIs */ /* in use (base win32 pthreads, libSDL provided threading, and direct */ /* calls to beginthreadex), so go directly to the Win32 threading APIs */ /* to manage thread priority */ t_stat sim_os_set_thread_priority (int below_normal_above) { const static int val[3] = {THREAD_PRIORITY_BELOW_NORMAL, THREAD_PRIORITY_NORMAL, THREAD_PRIORITY_ABOVE_NORMAL}; if ((below_normal_above < -1) || (below_normal_above > 1)) return SCPE_ARG; SetThreadPriority (GetCurrentThread(), val[1 + below_normal_above]); return SCPE_OK; } #else /* Native pthreads priority implementation */ t_stat sim_os_set_thread_priority (int below_normal_above) { int sched_policy, min_prio, max_prio; struct sched_param sched_priority; if ((below_normal_above < -1) || (below_normal_above > 1)) return SCPE_ARG; pthread_getschedparam (pthread_self(), &sched_policy, &sched_priority); min_prio = sched_get_priority_min(sched_policy); max_prio = sched_get_priority_max(sched_policy); switch (below_normal_above) { case PRIORITY_BELOW_NORMAL: sched_priority.sched_priority = min_prio; break; case PRIORITY_NORMAL: sched_priority.sched_priority = (max_prio + min_prio) / 2; break; case PRIORITY_ABOVE_NORMAL: sched_priority.sched_priority = max_prio; break; } pthread_setschedparam (pthread_self(), sched_policy, &sched_priority); return SCPE_OK; } #endif #endif /* defined(USE_READER_THREAD) */ /* OS-dependent timer and clock routines */ /* VMS */ #if defined (VMS) |
︙ | ︙ | |||
212 213 214 215 216 217 218 | { sleep (sec); return; } uint32 sim_os_ms_sleep_init (void) { | < < < < < | | 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | { sleep (sec); return; } uint32 sim_os_ms_sleep_init (void) { return _compute_minimum_sleep (); } uint32 sim_os_ms_sleep (unsigned int msec) { uint32 stime = sim_os_msec (); uint32 qtime[2]; int32 nsfactor = -10000; |
︙ | ︙ | |||
254 255 256 257 258 259 260 | } #endif /* CLOCK_REALTIME */ #elif defined (_WIN32) /* Win32 routines */ | < < < | < | < | | < < < < | 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | } #endif /* CLOCK_REALTIME */ #elif defined (_WIN32) /* Win32 routines */ const t_bool rtc_avail = TRUE; uint32 sim_os_msec (void) { return timeGetTime (); } void sim_os_sleep (unsigned int sec) { Sleep (sec * 1000); return; } void sim_timer_exit (void) { timeEndPeriod (sim_idle_rate_ms); return; } uint32 sim_os_ms_sleep_init (void) { TIMECAPS timers; if (timeGetDevCaps (&timers, sizeof (timers)) != TIMERR_NOERROR) return 0; if (timers.wPeriodMin == 0) return 0; if (timeBeginPeriod (timers.wPeriodMin) != TIMERR_NOERROR) return 0; atexit (sim_timer_exit); /* return measured actual minimum sleep time */ return _compute_minimum_sleep (); } uint32 sim_os_ms_sleep (unsigned int msec) { uint32 stime = sim_os_msec(); Sleep (msec); |
︙ | ︙ | |||
382 383 384 385 386 387 388 | { sleep (sec); return; } uint32 sim_os_ms_sleep_init (void) { | | < | < | 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 | { sleep (sec); return; } uint32 sim_os_ms_sleep_init (void) { return _compute_minimum_sleep (); } uint32 sim_os_ms_sleep (unsigned int milliseconds) { uint32 stime = sim_os_msec (); struct timespec treq; treq.tv_sec = milliseconds / MILLIS_PER_SEC; treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI; (void) nanosleep (&treq, NULL); return sim_os_msec () - stime; } #if defined(NEED_CLOCK_GETTIME) int clock_gettime(int clk_id, struct timespec *tp) { struct timeval cur; if (clk_id != CLOCK_REALTIME) return -1; gettimeofday (&cur, NULL); tp->tv_sec = cur.tv_sec; tp->tv_nsec = cur.tv_usec*1000; return 0; } #endif #else /* UNIX routines */ #include <time.h> #include <sys/time.h> #include <unistd.h> #define NANOS_PER_MILLI 1000000 #define MILLIS_PER_SEC 1000 const t_bool rtc_avail = TRUE; uint32 sim_os_msec (void) { struct timeval cur; struct timezone foo; |
︙ | ︙ | |||
443 444 445 446 447 448 449 | { sleep (sec); return; } uint32 sim_os_ms_sleep_init (void) { | < | < < < < < < | < < < < < | | 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 | { sleep (sec); return; } uint32 sim_os_ms_sleep_init (void) { return _compute_minimum_sleep (); } #if !defined(_POSIX_SOURCE) #ifdef NEED_CLOCK_GETTIME typedef int clockid_t; int clock_gettime(clockid_t clk_id, struct timespec *tp) { struct timeval cur; struct timezone foo; |
︙ | ︙ | |||
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | treq.tv_sec = milliseconds / MILLIS_PER_SEC; treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI; (void) nanosleep (&treq, NULL); return sim_os_msec () - stime; } #endif /* diff = min - sub */ void sim_timespec_diff (struct timespec *diff, struct timespec *min, struct timespec *sub) { /* move the minuend value to the difference and operate there. */ *diff = *min; /* Borrow as needed for the nsec value */ while (sub->tv_nsec > diff->tv_nsec) { --diff->tv_sec; diff->tv_nsec += 1000000000; } diff->tv_nsec -= sub->tv_nsec; diff->tv_sec -= sub->tv_sec; /* Normalize the result */ while (diff->tv_nsec > 1000000000) { ++diff->tv_sec; diff->tv_nsec -= 1000000000; } } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 | treq.tv_sec = milliseconds / MILLIS_PER_SEC; treq.tv_nsec = (milliseconds % MILLIS_PER_SEC) * NANOS_PER_MILLI; (void) nanosleep (&treq, NULL); return sim_os_msec () - stime; } #if defined(NEED_THREAD_PRIORITY) #undef NEED_THREAD_PRIORITY #include <sys/time.h> #include <sys/resource.h> t_stat sim_os_set_thread_priority (int below_normal_above) { if ((below_normal_above < -1) || (below_normal_above > 1)) return SCPE_ARG; errno = 0; switch (below_normal_above) { case PRIORITY_BELOW_NORMAL: if ((getpriority (PRIO_PROCESS, 0) <= 0) && /* at or above normal pri? */ (errno == 0)) setpriority (PRIO_PROCESS, 0, 10); break; case PRIORITY_NORMAL: if (getpriority (PRIO_PROCESS, 0) != 0) /* at or above normal pri? */ setpriority (PRIO_PROCESS, 0, 0); break; case PRIORITY_ABOVE_NORMAL: if ((getpriority (PRIO_PROCESS, 0) <= 0) && /* at or above normal pri? */ (errno == 0)) setpriority (PRIO_PROCESS, 0, -10); break; } return SCPE_OK; } #endif /* defined(NEED_THREAD_PRIORITY) */ #endif /* If one hasn't been provided yet, then just stub it */ #if defined(NEED_THREAD_PRIORITY) t_stat sim_os_set_thread_priority (int below_normal_above) { return SCPE_OK; } #endif #if defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) /* Make sure to use the substitute routines */ #undef sim_idle_ms_sleep #undef sim_os_msec #undef sim_os_ms_sleep #endif /* defined(MS_MIN_GRANULARITY) && (MS_MIN_GRANULARITY != 1) */ /* diff = min - sub */ void sim_timespec_diff (struct timespec *diff, struct timespec *min, struct timespec *sub) { /* move the minuend value to the difference and operate there. */ *diff = *min; /* Borrow as needed for the nsec value */ while (sub->tv_nsec > diff->tv_nsec) { --diff->tv_sec; diff->tv_nsec += 1000000000; } diff->tv_nsec -= sub->tv_nsec; diff->tv_sec -= sub->tv_sec; /* Normalize the result */ while (diff->tv_nsec > 1000000000) { ++diff->tv_sec; diff->tv_nsec -= 1000000000; } } /* Forward declarations */ static double _timespec_to_double (struct timespec *time); static void _double_to_timespec (struct timespec *time, double dtime); static t_bool _rtcn_tick_catchup_check (int32 tmr, int32 time); static void _rtcn_configure_calibrated_clock (int32 newtmr); static void _sim_coschedule_cancel(UNIT *uptr); static void _sim_wallclock_cancel (UNIT *uptr); static t_bool _sim_wallclock_is_active (UNIT *uptr); t_stat sim_timer_show_idle_mode (FILE* st, UNIT* uptr, int32 val, CONST void * desc); #if defined(SIM_ASYNCH_CLOCKS) static int sim_timespec_compare (struct timespec *a, struct timespec *b) { while (a->tv_nsec > 1000000000) { a->tv_nsec -= 1000000000; ++a->tv_sec; } while (b->tv_nsec > 1000000000) { |
︙ | ︙ | |||
531 532 533 534 535 536 537 | if (a->tv_nsec < b->tv_nsec) return -1; if (a->tv_nsec > b->tv_nsec) return 1; else return 0; } | | | | | | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | < > > > | | > > > > > > > > > > > | | > > > > > > > > > > > | > | | > > > > | | > > > > | > > > > > > > > > > > > > > > > > | < > > > | > < < > > | | < < < | | > > > > > > | | > < > > > > > > > | > | | > > > > > > > > > > > > > | < | | | | | | | | | | | < < < | | < < < < < < < | 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 | if (a->tv_nsec < b->tv_nsec) return -1; if (a->tv_nsec > b->tv_nsec) return 1; else return 0; } #endif /* defined(SIM_ASYNCH_CLOCKS) */ /* OS independent clock calibration package */ static int32 rtc_ticks[SIM_NTIMERS+1] = { 0 }; /* ticks */ static uint32 rtc_hz[SIM_NTIMERS+1] = { 0 }; /* tick rate */ static uint32 rtc_rtime[SIM_NTIMERS+1] = { 0 }; /* real time */ static uint32 rtc_vtime[SIM_NTIMERS+1] = { 0 }; /* virtual time */ static double rtc_gtime[SIM_NTIMERS+1] = { 0 }; /* instruction time */ static uint32 rtc_nxintv[SIM_NTIMERS+1] = { 0 }; /* next interval */ static int32 rtc_based[SIM_NTIMERS+1] = { 0 }; /* base delay */ static int32 rtc_currd[SIM_NTIMERS+1] = { 0 }; /* current delay */ static int32 rtc_initd[SIM_NTIMERS+1] = { 0 }; /* initial delay */ static uint32 rtc_elapsed[SIM_NTIMERS+1] = { 0 }; /* sec since init */ static uint32 rtc_calibrations[SIM_NTIMERS+1] = { 0 }; /* calibration count */ static double rtc_clock_skew_max[SIM_NTIMERS+1] = { 0 }; /* asynchronous max skew */ static double rtc_clock_start_gtime[SIM_NTIMERS+1] = { 0 };/* reference instruction time for clock */ static double rtc_clock_tick_size[SIM_NTIMERS+1] = { 0 }; /* 1/hz */ static uint32 rtc_calib_initializations[SIM_NTIMERS+1] = { 0 };/* Initialization Count */ static double rtc_calib_tick_time[SIM_NTIMERS+1] = { 0 }; /* ticks time */ static double rtc_calib_tick_time_tot[SIM_NTIMERS+1] = { 0 };/* ticks time - total*/ static uint32 rtc_calib_ticks_acked[SIM_NTIMERS+1] = { 0 };/* ticks Acked */ static uint32 rtc_calib_ticks_acked_tot[SIM_NTIMERS+1] = { 0 };/* ticks Acked - total */ static uint32 rtc_clock_ticks[SIM_NTIMERS+1] = { 0 };/* ticks delivered since catchup base */ static uint32 rtc_clock_ticks_tot[SIM_NTIMERS+1] = { 0 };/* ticks delivered since catchup base - total */ static double rtc_clock_init_base_time[SIM_NTIMERS+1] = { 0 };/* reference time for clock initialization */ static double rtc_clock_tick_start_time[SIM_NTIMERS+1] = { 0 };/* reference time when ticking started */ static double rtc_clock_catchup_base_time[SIM_NTIMERS+1] = { 0 };/* reference time for catchup ticks */ static uint32 rtc_clock_catchup_ticks[SIM_NTIMERS+1] = { 0 };/* Record of catchups */ static uint32 rtc_clock_catchup_ticks_tot[SIM_NTIMERS+1] = { 0 };/* Record of catchups - total */ static t_bool rtc_clock_catchup_pending[SIM_NTIMERS+1] = { 0 };/* clock tick catchup pending */ static t_bool rtc_clock_catchup_eligible[SIM_NTIMERS+1] = { 0 };/* clock tick catchup eligible */ static uint32 rtc_clock_time_idled[SIM_NTIMERS+1] = { 0 };/* total time idled */ static uint32 rtc_clock_time_idled_last[SIM_NTIMERS+1] = { 0 };/* total time idled */ static uint32 rtc_clock_calib_skip_idle[SIM_NTIMERS+1] = { 0 };/* Calibrations skipped due to idling */ static uint32 rtc_clock_calib_gap2big[SIM_NTIMERS+1] = { 0 };/* Calibrations skipped Gap Too Big */ static uint32 rtc_clock_calib_backwards[SIM_NTIMERS+1] = { 0 };/* Calibrations skipped Clock Running Backwards */ UNIT sim_timer_units[SIM_NTIMERS+1]; /* one for each timer and one for an */ /* internal clock if no clocks are registered */ UNIT sim_internal_timer_unit; /* Internal calibration timer */ UNIT sim_throttle_unit; /* one for throttle */ t_stat sim_throt_svc (UNIT *uptr); t_stat sim_timer_tick_svc (UNIT *uptr); #define DBG_IDL TIMER_DBG_IDLE /* idling */ #define DBG_QUE TIMER_DBG_QUEUE /* queue activities */ #define DBG_MUX TIMER_DBG_MUX /* tmxr queue activities */ #define DBG_TRC 0x008 /* tracing */ #define DBG_CAL 0x010 /* calibration activities */ #define DBG_TIM 0x020 /* timer thread activities */ #define DBG_THR 0x040 /* throttle activities */ #define DBG_ACK 0x080 /* interrupt acknowledgement activities */ DEBTAB sim_timer_debug[] = { {"TRACE", DBG_TRC, "Trace routine calls"}, {"IDLE", DBG_IDL, "Idling activities"}, {"QUEUE", DBG_QUE, "Event queuing activities"}, {"IACK", DBG_ACK, "interrupt acknowledgement activities"}, {"CALIB", DBG_CAL, "Calibration activities"}, {"TIME", DBG_TIM, "Activation and scheduling activities"}, {"THROT", DBG_THR, "Throttling activities"}, {"MUX", DBG_MUX, "Tmxr scheduling activities"}, {0} }; /* Forward device declarations */ extern DEVICE sim_timer_dev; extern DEVICE sim_throttle_dev; void sim_rtcn_init_all (void) { int32 tmr; for (tmr = 0; tmr <= SIM_NTIMERS; tmr++) if (rtc_initd[tmr] != 0) sim_rtcn_init (rtc_initd[tmr], tmr); return; } int32 sim_rtcn_init (int32 time, int32 tmr) { return sim_rtcn_init_unit (NULL, time, tmr); } int32 sim_rtcn_init_unit (UNIT *uptr, int32 time, int32 tmr) { if (time == 0) time = 1; if (tmr == SIM_INTERNAL_CLK) tmr = SIM_NTIMERS; else { if ((tmr < 0) || (tmr >= SIM_NTIMERS)) return time; } /* * If we'd previously succeeded in calibrating a tick value, then use that * delay as a better default to setup when we're re-initialized. * Re-initializing happens on any boot or after any breakpoint/continue. */ if (rtc_currd[tmr]) time = rtc_currd[tmr]; if (!uptr) uptr = sim_clock_unit[tmr]; sim_debug (DBG_CAL, &sim_timer_dev, "_sim_rtcn_init_unit(unit=%s, time=%d, tmr=%d)\n", sim_uname(uptr), time, tmr); if (uptr) { if (!sim_clock_unit[tmr]) sim_register_clock_unit_tmr (uptr, tmr); } rtc_clock_start_gtime[tmr] = sim_gtime(); rtc_rtime[tmr] = sim_os_msec (); rtc_vtime[tmr] = rtc_rtime[tmr]; rtc_nxintv[tmr] = 1000; rtc_ticks[tmr] = 0; rtc_hz[tmr] = 0; rtc_based[tmr] = time; rtc_currd[tmr] = time; rtc_initd[tmr] = time; rtc_elapsed[tmr] = 0; rtc_calibrations[tmr] = 0; rtc_clock_ticks_tot[tmr] += rtc_clock_ticks[tmr]; rtc_clock_ticks[tmr] = 0; rtc_calib_tick_time_tot[tmr] += rtc_calib_tick_time[tmr]; rtc_calib_tick_time[tmr] = 0; rtc_clock_catchup_pending[tmr] = FALSE; rtc_clock_catchup_eligible[tmr] = FALSE; rtc_clock_catchup_ticks_tot[tmr] += rtc_clock_catchup_ticks[tmr]; rtc_clock_catchup_ticks[tmr] = 0; rtc_calib_ticks_acked_tot[tmr] += rtc_calib_ticks_acked[tmr]; rtc_calib_ticks_acked[tmr] = 0; ++rtc_calib_initializations[tmr]; rtc_clock_init_base_time[tmr] = sim_timenow_double (); _rtcn_configure_calibrated_clock (tmr); return time; } int32 sim_rtcn_calb (int32 ticksper, int32 tmr) { uint32 new_rtime, delta_rtime, last_idle_pct; int32 delta_vtime; double new_gtime; int32 new_currd; int32 itmr; if (tmr == SIM_INTERNAL_CLK) tmr = SIM_NTIMERS; else { if ((tmr < 0) || (tmr >= SIM_NTIMERS)) return 10000; } if (rtc_hz[tmr] != ticksper) { /* changing tick rate? */ if (rtc_hz[tmr] == 0) rtc_clock_tick_start_time[tmr] = sim_timenow_double (); rtc_hz[tmr] = ticksper; _rtcn_configure_calibrated_clock (tmr); if (ticksper != 0) { rtc_clock_tick_size[tmr] = 1.0/ticksper; rtc_currd[tmr] = (int32)(sim_timer_inst_per_sec()/ticksper); } } if (ticksper == 0) { /* running? */ return 10000; } if (sim_clock_unit[tmr] == NULL) { /* Not using TIMER units? */ rtc_clock_ticks[tmr] += 1; rtc_calib_tick_time[tmr] += rtc_clock_tick_size[tmr]; } if (rtc_clock_catchup_pending[tmr]) { /* catchup tick? */ ++rtc_clock_catchup_ticks[tmr]; /* accumulating which were catchups */ rtc_clock_catchup_pending[tmr] = FALSE; } rtc_ticks[tmr] = rtc_ticks[tmr] + 1; /* count ticks */ if (rtc_ticks[tmr] < ticksper) /* 1 sec yet? */ return rtc_currd[tmr]; rtc_ticks[tmr] = 0; /* reset ticks */ rtc_elapsed[tmr] = rtc_elapsed[tmr] + 1; /* count sec */ if (sim_throt_type != SIM_THROT_NONE) { rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ rtc_currd[tmr] = (int32)(sim_throt_cps / ticksper); /* use throttle calibration */ ++rtc_calibrations[tmr]; /* count calibrations */ sim_debug (DBG_CAL, &sim_timer_dev, "using throttle calibrated value - result: %d\n", rtc_currd[tmr]); return rtc_currd[tmr]; } if (!rtc_avail) /* no timer? */ return rtc_currd[tmr]; if (sim_calb_tmr != tmr) { rtc_currd[tmr] = (int32)(sim_timer_inst_per_sec()/ticksper); sim_debug (DBG_CAL, &sim_timer_dev, "calibrated calibrated tmr=%d against system tmr=%d, tickper=%d (result: %d)\n", tmr, sim_calb_tmr, ticksper, rtc_currd[tmr]); return rtc_currd[tmr]; } new_rtime = sim_os_msec (); /* wall time */ ++rtc_calibrations[tmr]; /* count calibrations */ sim_debug (DBG_TRC, &sim_timer_dev, "sim_rtcn_calb(ticksper=%d, tmr=%d)\n", ticksper, tmr); if (new_rtime < rtc_rtime[tmr]) { /* time running backwards? */ /* This happens when the value returned by sim_os_msec wraps (as an uint32) */ /* Wrapping will happen initially sometime before a simulator has been running */ /* for 49 days approximately every 49 days thereafter. */ ++rtc_clock_calib_backwards[tmr]; /* Count statistic */ sim_debug (DBG_CAL, &sim_timer_dev, "time running backwards - OldTime: %u, NewTime: %u, result: %d\n", rtc_rtime[tmr], new_rtime, rtc_currd[tmr]); rtc_rtime[tmr] = new_rtime; /* reset wall time */ return rtc_currd[tmr]; /* can't calibrate */ } delta_rtime = new_rtime - rtc_rtime[tmr]; /* elapsed wtime */ rtc_rtime[tmr] = new_rtime; /* adv wall time */ rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */ if (delta_rtime > 30000) { /* gap too big? */ /* This simulator process has somehow been suspended for a significant */ /* amount of time. This will certainly happen if the host system has */ /* slept or hibernated. It also might happen when a simulator */ /* developer stops the simulator at a breakpoint (a process, not simh */ /* breakpoint). To accomodate this, we set the calibration state to */ /* ignore what happened and proceed from here. */ ++rtc_clock_calib_gap2big[tmr]; /* Count statistic */ rtc_vtime[tmr] = rtc_rtime[tmr]; /* sync virtual and real time */ rtc_nxintv[tmr] = 1000; /* reset next interval */ rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ sim_debug (DBG_CAL, &sim_timer_dev, "gap too big: delta = %d - result: %d\n", delta_rtime, rtc_currd[tmr]); return rtc_currd[tmr]; /* can't calibr */ } if (delta_rtime == 0) /* avoid divide by zero */ last_idle_pct = 0; /* force calibration */ else last_idle_pct = MIN(100, (uint32)(100.0 * (((double)(rtc_clock_time_idled[tmr] - rtc_clock_time_idled_last[tmr])) / ((double)delta_rtime)))); rtc_clock_time_idled_last[tmr] = rtc_clock_time_idled[tmr]; if (last_idle_pct > (100 - sim_idle_calib_pct)) { rtc_rtime[tmr] = new_rtime; /* save wall time */ rtc_vtime[tmr] = rtc_vtime[tmr] + 1000; /* adv sim time */ rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ ++rtc_clock_calib_skip_idle[tmr]; sim_debug (DBG_CAL, &sim_timer_dev, "skipping calibration due to idling (%d%%) - result: %d\n", last_idle_pct, rtc_currd[tmr]); return rtc_currd[tmr]; /* avoid calibrating idle checks */ } new_gtime = sim_gtime(); if (sim_asynch_timer) { /* An asynchronous clock, merely needs to divide the number of */ /* instructions actually executed by the clock rate. */ new_currd = (int32)((new_gtime - rtc_gtime[tmr])/ticksper); /* avoid excessive swings in the calibrated result */ if (new_currd > 10*rtc_currd[tmr]) /* don't swing big too fast */ new_currd = 10*rtc_currd[tmr]; else if (new_currd < rtc_currd[tmr]/10) /* don't swing small too fast */ new_currd = rtc_currd[tmr]/10; rtc_currd[tmr] = new_currd; rtc_gtime[tmr] = new_gtime; /* save instruction time */ sim_debug (DBG_CAL, &sim_timer_dev, "asynch calibration result: %d\n", rtc_currd[tmr]); return rtc_currd[tmr]; /* calibrated result */ } rtc_gtime[tmr] = new_gtime; /* save instruction time */ /* This self regulating algorithm depends directly on the assumption */ /* that this routine is called back after processing the number of */ /* instructions which was returned the last time it was called. */ if (delta_rtime == 0) /* gap too small? */ rtc_based[tmr] = rtc_based[tmr] * ticksper; /* slew wide */ |
︙ | ︙ | |||
683 684 685 686 687 688 689 | rtc_nxintv[tmr] = 1000 + delta_vtime; /* next wtime */ rtc_currd[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) / 1000.0); /* next delay */ if (rtc_based[tmr] <= 0) /* never negative or zero! */ rtc_based[tmr] = 1; if (rtc_currd[tmr] <= 0) /* never negative or zero! */ rtc_currd[tmr] = 1; | | > > > > | | > | | | > > > > > > > > > > > > > > > > > | | > > | < | > > > > > > > > > > > > > > > > > > > > > > > > > > | | > > > | | > | | > | > > > > > > > > > > | | | | | | | | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < > < < < < < < < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > | | | | > > | | > | | | | | | > | > > > > | > | | | < > | | | < < < | < | | | > > > > > | | < > > > > > > > > > > > > > > > > > > > > > > > | > > > | > | | | | > | > > > | | < < < | | | | > > > > > > > > > > > > > > > > > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > < < < | < | | > > > > > > > > > > | | | | > < < | | > > > > > > > > | | | > > | | < < < < < < < < | | | | | | | | | < > > | | | | > | < | > | | > > > > > > > | | | > > | > > | > > | | < < | > | < < | | | | | | > | | > > | > | | > > > | > | > > > > | | | | > | < > > > | | | > > > > > > > > | | | | > > > | > > > > | | > > | > > > > > > > > > > > > > > > > > > > > > > | > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | < < | | < | | | 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 | rtc_nxintv[tmr] = 1000 + delta_vtime; /* next wtime */ rtc_currd[tmr] = (int32) (((double) rtc_based[tmr] * (double) rtc_nxintv[tmr]) / 1000.0); /* next delay */ if (rtc_based[tmr] <= 0) /* never negative or zero! */ rtc_based[tmr] = 1; if (rtc_currd[tmr] <= 0) /* never negative or zero! */ rtc_currd[tmr] = 1; sim_debug (DBG_CAL, &sim_timer_dev, "calibrated tmr=%d, tickper=%d (base=%d, nxintv=%u, result: %d)\n", tmr, ticksper, rtc_based[tmr], rtc_nxintv[tmr], rtc_currd[tmr]); /* Adjust calibration for other timers which depend on this timer's calibration */ for (itmr=0; itmr<=SIM_NTIMERS; itmr++) if ((itmr != tmr) && (rtc_hz[itmr] != 0)) rtc_currd[itmr] = (rtc_currd[tmr] * ticksper) / rtc_hz[itmr]; AIO_SET_INTERRUPT_LATENCY(rtc_currd[tmr] * ticksper); /* set interrrupt latency */ return rtc_currd[tmr]; } /* Prior interfaces - default to timer 0 */ int32 sim_rtc_init (int32 time) { return sim_rtcn_init (time, 0); } int32 sim_rtc_calb (int32 ticksper) { return sim_rtcn_calb (ticksper, 0); } /* sim_timer_init - get minimum sleep time available on this host */ t_bool sim_timer_init (void) { int tmr; uint32 clock_start, clock_last, clock_now; sim_debug (DBG_TRC, &sim_timer_dev, "sim_timer_init()\n"); for (tmr=0; tmr<=SIM_NTIMERS; tmr++) { sim_timer_units[tmr].action = &sim_timer_tick_svc; sim_timer_units[tmr].flags = UNIT_DIS | UNIT_IDLE; } SIM_INTERNAL_UNIT.flags = UNIT_IDLE; sim_register_internal_device (&sim_timer_dev); sim_throttle_unit.action = &sim_throt_svc; sim_register_clock_unit_tmr (&SIM_INTERNAL_UNIT, SIM_INTERNAL_CLK); sim_idle_enab = FALSE; /* init idle off */ sim_idle_rate_ms = sim_os_ms_sleep_init (); /* get OS timer rate */ clock_last = clock_start = sim_os_msec (); sim_os_clock_resoluton_ms = 1000; do { uint32 clock_diff; clock_now = sim_os_msec (); clock_diff = clock_now - clock_last; if ((clock_diff > 0) && (clock_diff < sim_os_clock_resoluton_ms)) sim_os_clock_resoluton_ms = clock_diff; clock_last = clock_now; } while (clock_now < clock_start + 100); sim_os_tick_hz = 1000/(sim_os_clock_resoluton_ms * (sim_idle_rate_ms/sim_os_clock_resoluton_ms)); return (sim_idle_rate_ms != 0); } /* sim_timer_idle_capable - tell if the host is Idle capable and what the host OS tick size is */ t_bool sim_timer_idle_capable (uint32 *host_ms_sleep_1, uint32 *host_tick_ms) { if (host_tick_ms) *host_tick_ms = sim_os_clock_resoluton_ms; if (host_ms_sleep_1) *host_ms_sleep_1 = sim_os_sleep_min_ms; return (sim_idle_rate_ms != 0); } /* sim_show_timers - show running timer information */ t_stat sim_show_timers (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char* desc) { int tmr, clocks; struct timespec now; time_t time_t_now; int32 calb_tmr = (sim_calb_tmr == -1) ? sim_calb_tmr_last : sim_calb_tmr; double inst_per_sec = (sim_calb_tmr == -1) ? sim_inst_per_sec_last : sim_timer_inst_per_sec (); fprintf (st, "Minimum Host Sleep Time: %d ms (%dHz)\n", sim_os_sleep_min_ms, sim_os_tick_hz); if (sim_os_sleep_min_ms != sim_os_sleep_inc_ms) fprintf (st, "Minimum Host Sleep Incr Time: %d ms\n", sim_os_sleep_inc_ms); fprintf (st, "Host Clock Resolution: %d ms\n", sim_os_clock_resoluton_ms); fprintf (st, "Execution Rate: %s instructions/sec\n", sim_fmt_numeric (inst_per_sec)); if (sim_idle_enab) { fprintf (st, "Idling: Enabled\n"); fprintf (st, "Time before Idling starts: %d seconds\n", sim_idle_stable); } if (sim_throt_type != SIM_THROT_NONE) { sim_show_throt (st, NULL, uptr, val, desc); } fprintf (st, "Calibrated Timer: %s\n", (calb_tmr == -1) ? "Undetermined" : ((calb_tmr == SIM_NTIMERS) ? "Internal Timer" : (sim_clock_unit[calb_tmr] ? sim_uname(sim_clock_unit[calb_tmr]) : ""))); if (calb_tmr == SIM_NTIMERS) fprintf (st, "Catchup Ticks: %s for clocks ticking faster than %d Hz\n", sim_catchup_ticks ? "Enabled" : "Disabled", sim_os_tick_hz); if (sim_idle_calib_pct == 0) fprintf (st, "Calibration: Always\n"); else fprintf (st, "Calibration: Skipped when Idle exceeds %d%%\n", sim_idle_calib_pct); fprintf (st, "\n"); for (tmr=clocks=0; tmr<=SIM_NTIMERS; ++tmr) { if (0 == rtc_initd[tmr]) continue; if (sim_clock_unit[tmr]) { ++clocks; fprintf (st, "%s clock device is %s%s%s\n", sim_name, (tmr == SIM_NTIMERS) ? "Internal Calibrated Timer(" : "", sim_uname(sim_clock_unit[tmr]), (tmr == SIM_NTIMERS) ? ")" : ""); } fprintf (st, "%s%sTimer %d:\n", sim_asynch_timer ? "Asynchronous " : "", rtc_hz[tmr] ? "Calibrated " : "Uncalibrated ", tmr); if (rtc_hz[tmr]) { fprintf (st, " Running at: %d Hz\n", rtc_hz[tmr]); fprintf (st, " Tick Size: %s\n", sim_fmt_secs (rtc_clock_tick_size[tmr])); fprintf (st, " Ticks in current second: %d\n", rtc_ticks[tmr]); } fprintf (st, " Seconds Running: %s (%s)\n", sim_fmt_numeric ((double)rtc_elapsed[tmr]), sim_fmt_secs ((double)rtc_elapsed[tmr])); if (tmr == calb_tmr) { fprintf (st, " Calibration Opportunities: %s\n", sim_fmt_numeric ((double)rtc_calibrations[tmr])); if (sim_idle_calib_pct) fprintf (st, " Calib Skip Idle Thresh %%: %u\n", sim_idle_calib_pct); if (rtc_clock_calib_skip_idle[tmr]) fprintf (st, " Calibs Skip While Idle: %u\n", rtc_clock_calib_skip_idle[tmr]); if (rtc_clock_calib_backwards[tmr]) fprintf (st, " Calibs Skip Backwards: %u\n", rtc_clock_calib_backwards[tmr]); if (rtc_clock_calib_gap2big[tmr]) fprintf (st, " Calibs Skip Gap Too Big: %u\n", rtc_clock_calib_gap2big[tmr]); } if (rtc_gtime[tmr]) fprintf (st, " Instruction Time: %.0f\n", rtc_gtime[tmr]); if ((!sim_asynch_timer) && (sim_throt_type == SIM_THROT_NONE)) { fprintf (st, " Real Time: %u\n", rtc_rtime[tmr]); fprintf (st, " Virtual Time: %u\n", rtc_vtime[tmr]); fprintf (st, " Next Interval: %s\n", sim_fmt_numeric ((double)rtc_nxintv[tmr])); fprintf (st, " Base Tick Delay: %s\n", sim_fmt_numeric ((double)rtc_based[tmr])); fprintf (st, " Initial Insts Per Tick: %s\n", sim_fmt_numeric ((double)rtc_initd[tmr])); } fprintf (st, " Current Insts Per Tick: %s\n", sim_fmt_numeric ((double)rtc_currd[tmr])); fprintf (st, " Initializations: %d\n", rtc_calib_initializations[tmr]); fprintf (st, " Total Ticks: %s\n", sim_fmt_numeric ((double)(rtc_clock_ticks_tot[tmr]+rtc_clock_ticks[tmr]))); if (rtc_clock_skew_max[tmr] != 0.0) fprintf (st, " Peak Clock Skew: %s%s\n", sim_fmt_secs (fabs(rtc_clock_skew_max[tmr])), (rtc_clock_skew_max[tmr] < 0) ? " fast" : " slow"); if (rtc_calib_ticks_acked[tmr]) fprintf (st, " Ticks Acked: %s\n", sim_fmt_numeric ((double)rtc_calib_ticks_acked[tmr])); if (rtc_calib_ticks_acked_tot[tmr]+rtc_calib_ticks_acked[tmr] != rtc_calib_ticks_acked[tmr]) fprintf (st, " Total Ticks Acked: %s\n", sim_fmt_numeric ((double)(rtc_calib_ticks_acked_tot[tmr]+rtc_calib_ticks_acked[tmr]))); if (rtc_calib_tick_time[tmr]) fprintf (st, " Tick Time: %s\n", sim_fmt_secs (rtc_calib_tick_time[tmr])); if (rtc_calib_tick_time_tot[tmr]+rtc_calib_tick_time[tmr] != rtc_calib_tick_time[tmr]) fprintf (st, " Total Tick Time: %s\n", sim_fmt_secs (rtc_calib_tick_time_tot[tmr]+rtc_calib_tick_time[tmr])); if (rtc_clock_catchup_ticks[tmr]) fprintf (st, " Catchup Ticks Sched: %s\n", sim_fmt_numeric ((double)rtc_clock_catchup_ticks[tmr])); if (rtc_clock_catchup_ticks_tot[tmr]+rtc_clock_catchup_ticks[tmr] != rtc_clock_catchup_ticks[tmr]) fprintf (st, " Total Catchup Ticks Sched: %s\n", sim_fmt_numeric ((double)(rtc_clock_catchup_ticks_tot[tmr]+rtc_clock_catchup_ticks[tmr]))); if (rtc_clock_init_base_time[tmr]) { _double_to_timespec (&now, rtc_clock_init_base_time[tmr]); time_t_now = (time_t)now.tv_sec; fprintf (st, " Initialize Base Time: %8.8s.%03d\n", 11+ctime(&time_t_now), (int)(now.tv_nsec/1000000)); } if (rtc_clock_tick_start_time[tmr]) { _double_to_timespec (&now, rtc_clock_tick_start_time[tmr]); time_t_now = (time_t)now.tv_sec; fprintf (st, " Tick Start Time: %8.8s.%03d\n", 11+ctime(&time_t_now), (int)(now.tv_nsec/1000000)); } clock_gettime (CLOCK_REALTIME, &now); time_t_now = (time_t)now.tv_sec; fprintf (st, " Wall Clock Time Now: %8.8s.%03d\n", 11+ctime(&time_t_now), (int)(now.tv_nsec/1000000)); if (rtc_clock_catchup_eligible[tmr]) { _double_to_timespec (&now, rtc_clock_catchup_base_time[tmr]+rtc_calib_tick_time[tmr]); time_t_now = (time_t)now.tv_sec; fprintf (st, " Catchup Tick Time: %8.8s.%03d\n", 11+ctime(&time_t_now), (int)(now.tv_nsec/1000000)); _double_to_timespec (&now, rtc_clock_catchup_base_time[tmr]); time_t_now = (time_t)now.tv_sec; fprintf (st, " Catchup Base Time: %8.8s.%03d\n", 11+ctime(&time_t_now), (int)(now.tv_nsec/1000000)); } if (rtc_clock_time_idled[tmr]) fprintf (st, " Total Time Idled: %s\n", sim_fmt_secs (rtc_clock_time_idled[tmr]/1000.0)); } if (clocks == 0) fprintf (st, "%s clock device is not specified, co-scheduling is unavailable\n", sim_name); return SCPE_OK; } t_stat sim_show_clock_queues (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr) { int tmr; #if defined (SIM_ASYNCH_CLOCKS) pthread_mutex_lock (&sim_timer_lock); if (sim_asynch_timer) { const char *tim; if (sim_wallclock_queue == QUEUE_LIST_END) fprintf (st, "%s wall clock event queue empty\n", sim_name); else { fprintf (st, "%s wall clock event queue status\n", sim_name); for (uptr = sim_wallclock_queue; uptr != QUEUE_LIST_END; uptr = uptr->a_next) { if ((dptr = find_dev_from_unit (uptr)) != NULL) { fprintf (st, " %s", sim_dname (dptr)); if (dptr->numunits > 1) fprintf (st, " unit %d", (int32) (uptr - dptr->units)); } else fprintf (st, " Unknown"); tim = sim_fmt_secs(uptr->a_usec_delay/1000000.0); fprintf (st, " after %s\n", tim); } } } #endif /* SIM_ASYNCH_CLOCKS */ for (tmr=0; tmr<=SIM_NTIMERS; ++tmr) { if (sim_clock_unit[tmr] == NULL) continue; if (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { int32 accum; fprintf (st, "%s clock (%s) co-schedule event queue status\n", sim_name, sim_uname(sim_clock_unit[tmr])); accum = 0; for (uptr = sim_clock_cosched_queue[tmr]; uptr != QUEUE_LIST_END; uptr = uptr->next) { if ((dptr = find_dev_from_unit (uptr)) != NULL) { fprintf (st, " %s", sim_dname (dptr)); if (dptr->numunits > 1) fprintf (st, " unit %d", (int32) (uptr - dptr->units)); } else fprintf (st, " Unknown"); if (accum == 0) fprintf (st, " on next tick"); else fprintf (st, " after %d tick%s", accum, (accum > 1) ? "s" : ""); fprintf (st, "\n"); accum = accum + uptr->time; } } } #if defined (SIM_ASYNCH_IO) pthread_mutex_unlock (&sim_timer_lock); #endif /* SIM_ASYNCH_IO */ return SCPE_OK; } REG sim_timer_reg[] = { { NULL } }; REG sim_throttle_reg[] = { { DRDATAD (THROT_MS_START, sim_throt_ms_start, 32, ""), PV_RSPC|REG_RO}, { DRDATAD (THROT_MS_STOP, sim_throt_ms_stop, 32, ""), PV_RSPC|REG_RO}, { DRDATAD (THROT_TYPE, sim_throt_type, 32, ""), PV_RSPC|REG_RO}, { DRDATAD (THROT_VAL, sim_throt_val, 32, ""), PV_RSPC|REG_RO}, { DRDATAD (THROT_STATE, sim_throt_state, 32, ""), PV_RSPC|REG_RO}, { DRDATAD (THROT_SLEEP_TIME, sim_throt_sleep_time, 32, ""), PV_RSPC|REG_RO}, { DRDATAD (THROT_WAIT, sim_throt_wait, 32, ""), PV_RSPC|REG_RO}, { NULL } }; /* Clear, Set and show catchup */ /* Set/Clear catchup */ t_stat sim_timer_set_catchup (int32 flag, CONST char *cptr) { if (flag) { if (!sim_catchup_ticks) sim_catchup_ticks = TRUE; } else { if (sim_catchup_ticks) sim_catchup_ticks = FALSE; } return SCPE_OK; } t_stat sim_timer_show_catchup (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { fprintf (st, "Calibrated Ticks%s", sim_catchup_ticks ? " with Catchup Ticks" : ""); return SCPE_OK; } /* Set idle calibration threshold */ t_stat sim_timer_set_idle_pct (int32 flag, CONST char *cptr) { t_stat r; int32 newpct; if (cptr == NULL) return SCPE_ARG; newpct = (int32) get_uint (cptr, 10, 100, &r); if ((r != SCPE_OK) || (newpct == (int32)(sim_idle_calib_pct))) return r; if (newpct == 0) return SCPE_ARG; sim_idle_calib_pct = (uint32)newpct; return SCPE_OK; } /* Set/Clear asynch */ t_stat sim_timer_set_async (int32 flag, CONST char *cptr) { if (flag) { if (sim_asynch_enabled && (!sim_asynch_timer)) { sim_asynch_timer = TRUE; sim_timer_change_asynch (); } } else { if (sim_asynch_timer) { sim_asynch_timer = FALSE; sim_timer_change_asynch (); } } return SCPE_OK; } static CTAB set_timer_tab[] = { #if defined (SIM_ASYNCH_CLOCKS) { "ASYNCH", &sim_timer_set_async, 1 }, { "NOASYNCH", &sim_timer_set_async, 0 }, #endif { "CATCHUP", &sim_timer_set_catchup, 1 }, { "NOCATCHUP", &sim_timer_set_catchup, 0 }, { "CALIB", &sim_timer_set_idle_pct, 0 }, { NULL, NULL, 0 } }; MTAB sim_timer_mod[] = { { 0 }, }; static t_stat sim_timer_clock_reset (DEVICE *dptr); static const char *sim_timer_description (DEVICE *dptr) { return "Internal Timer facilities"; } static const char *sim_throttle_description (DEVICE *dptr) { return "Internal Throttle facility"; } DEVICE sim_timer_dev = { "INT-TMR", sim_timer_units, sim_timer_reg, sim_timer_mod, SIM_NTIMERS+1, 0, 0, 0, 0, 0, NULL, NULL, &sim_timer_clock_reset, NULL, NULL, NULL, NULL, DEV_DEBUG | DEV_NOSAVE, 0, sim_timer_debug}; DEVICE sim_throttle_dev = { "INT-THR", &sim_throttle_unit, sim_throttle_reg}; /* SET CLOCK command */ t_stat sim_set_timers (int32 arg, CONST char *cptr) { char *cvptr, gbuf[CBUFSIZE]; CTAB *ctptr; t_stat r; if ((cptr == NULL) || (*cptr == 0)) return SCPE_2FARG; while (*cptr != 0) { /* do all mods */ cptr = get_glyph_nc (cptr, gbuf, ','); /* get modifier */ if ((cvptr = strchr (gbuf, '='))) /* = value? */ *cvptr++ = 0; get_glyph (gbuf, gbuf, 0); /* modifier to UC */ if ((ctptr = find_ctab (set_timer_tab, gbuf))) { /* match? */ r = ctptr->action (ctptr->arg, cvptr); /* do the rest */ if (r != SCPE_OK) return r; } else return SCPE_NOPARAM; } return SCPE_OK; } /* sim_idle - idle simulator until next event or for specified interval Inputs: tmr = calibrated timer to use Must solve the linear equation ms_to_wait = w * ms_per_wait Or w = ms_to_wait / ms_per_wait */ t_bool sim_idle (uint32 tmr, t_bool sin_cyc) { uint32 cyc_ms = 0; uint32 w_ms, w_idle, act_ms; int32 act_cyc; if (rtc_clock_catchup_pending[tmr]) { /* Catchup clock tick pending? */ sim_debug (DBG_CAL, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d) - accelerating pending catch-up tick before idling %s\n", tmr, sin_cyc, sim_uname (sim_clock_unit[tmr])); sim_activate_abs (&sim_timer_units[tmr], 0); if (sin_cyc) sim_interval = sim_interval - 1; return FALSE; } if ((!sim_idle_enab) || /* idling disabled */ ((sim_clock_queue == QUEUE_LIST_END) && /* or clock queue empty? */ (!sim_asynch_timer))|| /* and not asynch? */ ((sim_clock_queue != QUEUE_LIST_END) && /* or clock queue not empty */ ((sim_clock_queue->flags & UNIT_IDLE) == 0))|| /* and event not idle-able? */ (rtc_elapsed[tmr] < sim_idle_stable)) { /* or timer not stable? */ sim_debug (DBG_IDL, &sim_timer_dev, "Can't idle: %s - elapsed: %d.%03d\n", !sim_idle_enab ? "idle disabled" : ((rtc_elapsed[tmr] < sim_idle_stable) ? "not stable" : ((sim_clock_queue != QUEUE_LIST_END) ? sim_uname (sim_clock_queue) : "")), rtc_elapsed[tmr], rtc_ticks[tmr]); if (sin_cyc) sim_interval = sim_interval - 1; return FALSE; } if (_rtcn_tick_catchup_check(tmr, 0)) { sim_debug (DBG_CAL, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d) - rescheduling catchup tick for %s\n", tmr, sin_cyc, sim_uname (sim_clock_unit[tmr])); if (sin_cyc) sim_interval = sim_interval - 1; return FALSE; } /* When a simulator is in an instruction path (or under other conditions which would indicate idling), the countdown of sim_interval will not be happening at a pace which is consistent with the rate it happens when not in the 'idle capable' state. The consequence of this is that the clock calibration may produce calibrated results which vary much more than they do when not in the idle able state. Sim_idle also uses the calibrated tick size to approximate an adjustment to sim_interval to reflect the number of instructions which would have executed during the actual idle time, so consistent calibrated numbers produce better adjustments. To negate this effect, we accumulate the time actually idled here. sim_rtcn_calb compares the accumulated idle time during the most recent second and if it exceeds the percentage defined by and sim_idle_calib_pct calibration is suppressed. Thus recalibration only happens if things didn't idle too much. we also check check sim_idle_enab above so that all simulators can avoid directly checking sim_idle_enab before calling sim_idle so that all of the bookkeeping on sim_idle_idled is done here in sim_timer where it means something, while not idling when it isn't enabled. */ sim_debug (DBG_TRC, &sim_timer_dev, "sim_idle(tmr=%d, sin_cyc=%d)\n", tmr, sin_cyc); cyc_ms = (rtc_currd[tmr] * rtc_hz[tmr]) / 1000; /* cycles per msec */ if ((sim_idle_rate_ms == 0) || (cyc_ms == 0)) { /* not possible? */ if (sin_cyc) sim_interval = sim_interval - 1; sim_debug (DBG_IDL, &sim_timer_dev, "not possible idle_rate_ms=%d - cyc/ms=%d\n", sim_idle_rate_ms, cyc_ms); return FALSE; } w_ms = (uint32) sim_interval / cyc_ms; /* ms to wait */ /* When the host system has a clock tick which is less frequent than the */ /* simulated system's clock, idling will cause delays which will miss */ /* simulated clock ticks. To accomodate this, and still allow idling, if */ /* the simulator acknowledges the processing of clock ticks, then catchup */ /* ticks can be used to make up for missed ticks. */ if (rtc_clock_catchup_eligible[tmr]) w_idle = (sim_interval * 1000) / rtc_currd[tmr]; /* 1000 * pending fraction of tick */ else w_idle = (w_ms * 1000) / sim_idle_rate_ms; /* 1000 * intervals to wait */ if (w_idle < 500) { /* shorter than 1/2 the interval? */ if (sin_cyc) sim_interval = sim_interval - 1; sim_debug (DBG_IDL, &sim_timer_dev, "no wait\n"); return FALSE; } if (sim_clock_queue == QUEUE_LIST_END) sim_debug (DBG_IDL, &sim_timer_dev, "sleeping for %d ms - pending event in %d instructions\n", w_ms, sim_interval); else sim_debug (DBG_IDL, &sim_timer_dev, "sleeping for %d ms - pending event on %s in %d instructions\n", w_ms, sim_uname(sim_clock_queue), sim_interval); act_ms = sim_idle_ms_sleep (w_ms); /* wait */ rtc_clock_time_idled[tmr] += act_ms; act_cyc = act_ms * cyc_ms; if (act_ms < w_ms) /* awakened early? */ act_cyc += (cyc_ms * sim_idle_rate_ms) / 2; /* account for half an interval's worth of cycles */ if (sim_interval > act_cyc) sim_interval = sim_interval - act_cyc; /* count down sim_interval */ else sim_interval = 0; /* or fire immediately */ if (sim_clock_queue == QUEUE_LIST_END) sim_debug (DBG_IDL, &sim_timer_dev, "slept for %d ms - pending event in %d instructions\n", act_ms, sim_interval); else sim_debug (DBG_IDL, &sim_timer_dev, "slept for %d ms - pending event on %s in %d instructions\n", act_ms, sim_uname(sim_clock_queue), sim_interval); return TRUE; } /* Set idling - implicitly disables throttling */ t_stat sim_set_idle (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { t_stat r; uint32 v; if (cptr && *cptr) { v = (uint32) get_uint (cptr, 10, SIM_IDLE_STMAX, &r); if ((r != SCPE_OK) || (v < SIM_IDLE_STMIN)) return sim_messagef (SCPE_ARG, "Invalid Stability value: %s. Valid values range from %d to %d.\n", cptr, SIM_IDLE_STMIN, SIM_IDLE_STMAX); sim_idle_stable = v; } sim_idle_enab = TRUE; if (sim_throt_type != SIM_THROT_NONE) { sim_set_throt (0, NULL); sim_printf ("Throttling disabled\n"); } return SCPE_OK; } /* Clear idling */ t_stat sim_clr_idle (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { sim_idle_enab = FALSE; return SCPE_OK; } /* Show idling */ t_stat sim_show_idle (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { if (sim_idle_enab) fprintf (st, "idle enabled"); else fprintf (st, "idle disabled"); if (sim_switches & SWMASK ('D')) fprintf (st, ", stability wait = %ds, minimum sleep resolution = %dms", sim_idle_stable, sim_os_sleep_min_ms); return SCPE_OK; } /* Throttling package */ t_stat sim_set_throt (int32 arg, CONST char *cptr) { CONST char *tptr; char c; t_value val, val2 = 0; if (arg == 0) { if ((cptr != NULL) && (*cptr != 0)) return sim_messagef (SCPE_ARG, "Unexpected NOTHROTTLE argument: %s\n", cptr); sim_throt_type = SIM_THROT_NONE; sim_throt_cancel (); } else if (sim_idle_rate_ms == 0) { return sim_messagef (SCPE_NOFNC, "Throttling is not available, Minimum OS sleep time is %dms\n", sim_os_sleep_min_ms); } else { if (*cptr == '\0') return sim_messagef (SCPE_ARG, "Missing throttle mode specification\n"); val = strtotv (cptr, &tptr, 10); if (cptr == tptr) return sim_messagef (SCPE_ARG, "Invalid throttle specification: %s\n", cptr); sim_throt_sleep_time = sim_idle_rate_ms; c = (char)toupper (*tptr++); if (c == '/') { val2 = strtotv (tptr, &tptr, 10); if ((*tptr != '\0') || (val == 0)) return sim_messagef (SCPE_ARG, "Invalid throttle delay specifier: %s\n", cptr); } if (c == 'M') sim_throt_type = SIM_THROT_MCYC; else if (c == 'K') sim_throt_type = SIM_THROT_KCYC; else if ((c == '%') && (val > 0) && (val < 100)) sim_throt_type = SIM_THROT_PCT; else if ((c == '/') && (val2 != 0)) sim_throt_type = SIM_THROT_SPC; else return sim_messagef (SCPE_ARG, "Invalid throttle specification: %s\n", cptr); if (sim_idle_enab) { sim_printf ("Idling disabled\n"); sim_clr_idle (NULL, 0, NULL, NULL); } sim_throt_val = (uint32) val; if (sim_throt_type == SIM_THROT_SPC) { if (val2 >= sim_idle_rate_ms) sim_throt_sleep_time = (uint32) val2; else { if ((sim_idle_rate_ms % val2) == 0) { sim_throt_sleep_time = sim_idle_rate_ms; sim_throt_val = (uint32) (val * (sim_idle_rate_ms / val2)); } else { sim_throt_sleep_time = sim_idle_rate_ms; sim_throt_val = (uint32) (val * (1 + (sim_idle_rate_ms / val2))); } } } } sim_register_internal_device (&sim_throttle_dev); sim_throt_cps = SIM_INITIAL_IPS; /* Initial value while correct one is determined */ return SCPE_OK; } t_stat sim_show_throt (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr) { if (sim_idle_rate_ms == 0) fprintf (st, "Throttling: Not Available\n"); else { switch (sim_throt_type) { case SIM_THROT_MCYC: fprintf (st, "Throttle: %d megacycles\n", sim_throt_val); if (sim_throt_wait) fprintf (st, "Throttling by sleeping for: %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait); break; case SIM_THROT_KCYC: fprintf (st, "Throttle: %d kilocycles\n", sim_throt_val); if (sim_throt_wait) fprintf (st, "Throttling by sleeping for: %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait); break; case SIM_THROT_PCT: fprintf (st, "Throttle: %d%%\n", sim_throt_val); if (sim_throt_wait) fprintf (st, "Throttling by sleeping for: %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_wait); break; case SIM_THROT_SPC: fprintf (st, "Throttle: sleep %d ms every %d cycles\n", sim_throt_sleep_time, sim_throt_val); break; default: fprintf (st, "Throttling: Disabled\n"); break; } if (sim_throt_type != SIM_THROT_NONE) { if (sim_throt_state != SIM_THROT_STATE_THROTTLE) fprintf (st, "Throttle State: %s - wait: %d\n", (sim_throt_state == SIM_THROT_STATE_INIT) ? "Waiting for Init" : "Timing", sim_throt_wait); } } return SCPE_OK; } void sim_throt_sched (void) { sim_throt_state = SIM_THROT_STATE_INIT; if (sim_throt_type) sim_activate (&sim_throttle_unit, SIM_THROT_WINIT); } void sim_throt_cancel (void) { sim_cancel (&sim_throttle_unit); } /* Throttle service Throttle service has three distinct states used while dynamically determining a throttling interval: SIM_THROT_STATE_INIT take initial measurement SIM_THROT_STATE_TIME take final measurement, calculate wait values SIM_THROT_STATE_THROTTLE periodic waits to slow down the CPU */ t_stat sim_throt_svc (UNIT *uptr) { int32 tmr; uint32 delta_ms; double a_cps, d_cps; if (sim_throt_type == SIM_THROT_SPC) { /* Non dynamic? */ sim_throt_state = SIM_THROT_STATE_THROTTLE; /* force state */ sim_throt_wait = sim_throt_val; } switch (sim_throt_state) { case SIM_THROT_STATE_INIT: /* take initial reading */ sim_idle_ms_sleep (sim_idle_rate_ms); /* start on a tick boundart to calibrate */ sim_throt_ms_start = sim_os_msec (); sim_throt_inst_start = sim_gtime(); sim_throt_wait = SIM_THROT_WST; sim_throt_state = SIM_THROT_STATE_TIME; /* next state */ sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc(INIT) Starting. Values wait = %d\n", sim_throt_wait); break; /* reschedule */ case SIM_THROT_STATE_TIME: /* take final reading */ sim_throt_ms_stop = sim_os_msec (); delta_ms = sim_throt_ms_stop - sim_throt_ms_start; if (delta_ms < SIM_THROT_MSMIN) { /* not enough time? */ if (sim_throt_wait >= 100000000) { /* too many inst? */ sim_throt_state = SIM_THROT_STATE_INIT; /* fails in 32b! */ sim_printf ("Can't throttle. Host CPU is too fast with a minimum sleep time of %d ms\n", sim_idle_rate_ms); sim_set_throt (0, NULL); /* disable throttling */ return SCPE_OK; } sim_idle_ms_sleep (sim_idle_rate_ms); /* start on a tick boundart to calibrate */ sim_throt_wait = sim_throt_wait * SIM_THROT_WMUL; sim_throt_ms_start = sim_os_msec (); sim_throt_inst_start = sim_gtime(); } else { /* long enough */ a_cps = ((double) sim_throt_wait) * 1000.0 / (double) delta_ms; if (sim_throt_type == SIM_THROT_MCYC) /* calc desired cps */ d_cps = (double) sim_throt_val * 1000000.0; else if (sim_throt_type == SIM_THROT_KCYC) d_cps = (double) sim_throt_val * 1000.0; else d_cps = (a_cps * ((double) sim_throt_val)) / 100.0; if (d_cps >= a_cps) { sim_throt_state = SIM_THROT_STATE_INIT; sim_printf ("Host CPU is too slow to simulate %s instructions per second\n", sim_fmt_numeric(d_cps)); sim_printf ("Throttling disabled.\n"); sim_set_throt (0, NULL); return SCPE_OK; } while (1) { sim_throt_wait = (int32) /* time between waits */ ((a_cps * d_cps * ((double) sim_throt_sleep_time)) / (1000.0 * (a_cps - d_cps))); if (sim_throt_wait >= SIM_THROT_WMIN) /* long enough? */ break; sim_throt_sleep_time += sim_os_sleep_inc_ms; sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc() Wait too small, increasing sleep time to %d ms. Values a_cps = %f, d_cps = %f, wait = %d\n", sim_throt_sleep_time, a_cps, d_cps, sim_throt_wait); } sim_throt_ms_start = sim_throt_ms_stop; sim_throt_inst_start = sim_gtime(); sim_throt_state = SIM_THROT_STATE_THROTTLE; sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc() Throttle values a_cps = %f, d_cps = %f, wait = %d, sleep = %d ms\n", a_cps, d_cps, sim_throt_wait, sim_throt_sleep_time); sim_throt_cps = d_cps; /* save the desired rate */ /* Run through all timers and adjust the calibration for each */ /* one that is running to reflect the throttle rate */ for (tmr=0; tmr<=SIM_NTIMERS; tmr++) if (rtc_hz[tmr]) { /* running? */ rtc_gtime[tmr] = sim_gtime(); /* save instruction time */ rtc_currd[tmr] = (int32)(sim_throt_cps / rtc_hz[tmr]);/* use throttle calibration */ } } break; case SIM_THROT_STATE_THROTTLE: /* throttling */ sim_idle_ms_sleep (sim_throt_sleep_time); delta_ms = sim_os_msec () - sim_throt_ms_start; if (sim_throt_type != SIM_THROT_SPC) { /* when not dynamic throttling */ if (delta_ms >= 10000) { /* recompute every 10 sec */ double delta_insts = sim_gtime() - sim_throt_inst_start; a_cps = (delta_insts * 1000.0) / (double) delta_ms; if (sim_throt_type == SIM_THROT_MCYC) /* calc desired cps */ d_cps = (double) sim_throt_val * 1000000.0; else if (sim_throt_type == SIM_THROT_KCYC) d_cps = (double) sim_throt_val * 1000.0; else d_cps = (a_cps * ((double) sim_throt_val)) / 100.0; if (fabs(100.0 * (d_cps - a_cps) / a_cps) > (double)SIM_THROT_DRIFT_PCT) { sim_throt_wait = sim_throt_val; sim_throt_state = SIM_THROT_STATE_TIME;/* next state to recalibrate */ sim_debug (DBG_THR, &sim_timer_dev, "sim_throt_svc() Recalibrating throttle based on values a_cps = %f, d_cps = %f\n", a_cps, d_cps); } sim_throt_ms_start = sim_os_msec (); sim_throt_inst_start = sim_gtime(); } } else /* record instruction rate */ sim_throt_cps = (int32)((1000.0 * sim_throt_val) / (double)delta_ms); break; } sim_activate (uptr, sim_throt_wait); /* reschedule */ return SCPE_OK; } /* Clock assist activites */ t_stat sim_timer_tick_svc (UNIT *uptr) { int tmr = (int)(uptr-sim_timer_units); t_stat stat; rtc_clock_ticks[tmr] += 1; rtc_calib_tick_time[tmr] += rtc_clock_tick_size[tmr]; /* * Some devices may depend on executing during the same instruction or * immediately after the clock tick event. To satisfy this, we directly * run the clock event here and if it completes successfully, schedule any * currently coschedule units to run now. Ticks should never return a * non-success status, while co-schedule activities might, so they are * queued to run from sim_process_event */ sim_debug (DBG_QUE, &sim_timer_dev, "sim_timer_tick_svc - scheduling %s - cosched interval: %d\n", sim_uname (sim_clock_unit[tmr]), sim_cosched_interval[tmr]); if (sim_clock_unit[tmr]->action == NULL) return SCPE_IERR; stat = sim_clock_unit[tmr]->action (sim_clock_unit[tmr]); --sim_cosched_interval[tmr]; /* Countdown ticks */ if (stat == SCPE_OK) { if (rtc_clock_catchup_eligible[tmr]) { /* calibration started? */ struct timespec now; double skew; clock_gettime(CLOCK_REALTIME, &now); skew = (_timespec_to_double(&now) - (rtc_calib_tick_time[tmr]+rtc_clock_catchup_base_time[tmr])); if (fabs(skew) > fabs(rtc_clock_skew_max[tmr])) rtc_clock_skew_max[tmr] = skew; } while ((sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) && (sim_cosched_interval[tmr] <= 0)) { UNIT *cptr = sim_clock_cosched_queue[tmr]; sim_clock_cosched_queue[tmr] = cptr->next; cptr->next = NULL; cptr->cancel = NULL; cptr->time = 0; if (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) sim_cosched_interval[tmr] = sim_clock_cosched_queue[tmr]->time; else sim_cosched_interval[tmr] = 0; sim_debug (DBG_QUE, &sim_timer_dev, "sim_timer_tick_svc(tmr=%d) - coactivating %s - cosched interval: %d\n", tmr, sim_uname (cptr), sim_cosched_interval[tmr]); _sim_activate (cptr, 0); } if (sim_clock_cosched_queue[tmr] == QUEUE_LIST_END) sim_cosched_interval[tmr] = 0; } if (rtc_hz[tmr]) /* Still running? */ sim_timer_activate_after (uptr, 1000000/rtc_hz[tmr]); return stat; } void sim_rtcn_get_time (struct timespec *now, int tmr) { sim_debug (DBG_CAL, &sim_timer_dev, "sim_rtcn_get_time(tmr=%d)\n", tmr); clock_gettime (CLOCK_REALTIME, now); } /* * If the host system has a relatively large clock tick (as compared to * the desired simulated hz) ticks will naturally be scheduled late and * these delays will accumulate. The net result will be unreasonably * slow ticks being delivered to the simulated system. * Additionally, when a simulator is idling and/or throttling, it will * deliberately call sim_os_ms_sleep and those sleep operations will be * variable and subject to the host system's minimum sleep resolution * which can exceed the desired sleep interval and add to the concept * of slow tick delivery to the simulated system. * We accomodate these problems and make up for lost ticks by injecting * catch-up ticks to the simulator. * * When necessary, catch-up ticks are scheduled to run under one * of two conditions: * 1) after indicated number of instructions in a call by the simulator * to sim_rtcn_tick_ack. sim_rtcn_tick_ack exists to provide a * mechanism to inform the simh timer facilities when the simulated * system has accepted the most recent clock tick interrupt. * 2) immediately when the simulator calls sim_idle * * catchup ticks are only scheduled (eligible to happen) under these * conditions after at least one tick has been acknowledged. */ /* _rtcn_tick_catchup_check - idle simulator until next event or for specified interval Inputs: tmr = calibrated timer to check/schedule time = instruction delay for next tick Returns TRUE if a catchup tick has been scheduled */ static t_bool _rtcn_tick_catchup_check (int32 tmr, int32 time) { double tnow; if ((!sim_catchup_ticks) || ((tmr < 0) || (tmr >= SIM_NTIMERS))) return FALSE; tnow = sim_timenow_double(); if ((rtc_hz[tmr] > sim_os_tick_hz) && /* faster than host tick */ (!rtc_clock_catchup_eligible[tmr]) && /* not eligible yet? */ (time != -1)) { /* called from ack? */ rtc_clock_catchup_base_time[tmr] = tnow; rtc_clock_ticks_tot[tmr] += rtc_clock_ticks[tmr]; rtc_clock_ticks[tmr] = 0; rtc_calib_tick_time_tot[tmr] += rtc_calib_tick_time[tmr]; rtc_calib_tick_time[tmr] = 0.0; rtc_clock_catchup_ticks_tot[tmr] += rtc_clock_catchup_ticks[tmr]; rtc_clock_catchup_ticks[tmr] = 0; rtc_calib_ticks_acked_tot[tmr] += rtc_calib_ticks_acked[tmr]; rtc_calib_ticks_acked[tmr] = 0; rtc_clock_catchup_eligible[tmr] = TRUE; sim_debug (DBG_QUE, &sim_timer_dev, "_rtcn_tick_catchup_check() - Enabling catchup ticks for %s\n", sim_uname (sim_clock_unit[tmr])); return TRUE; } if (rtc_clock_catchup_eligible[tmr] && (tnow > (rtc_clock_catchup_base_time[tmr] + (rtc_calib_tick_time[tmr] + rtc_clock_tick_size[tmr])))) { sim_debug (DBG_QUE, &sim_timer_dev, "_rtcn_tick_catchup_check(%d) - scheduling catchup tick for %s which is behind %s\n", time, sim_uname (sim_clock_unit[tmr]), sim_fmt_secs (tnow > (rtc_clock_catchup_base_time[tmr] + (rtc_calib_tick_time[tmr] + rtc_clock_tick_size[tmr])))); rtc_clock_catchup_pending[tmr] = TRUE; sim_activate_abs (&sim_timer_units[tmr], (time < 0) ? 0 : time); return TRUE; } return FALSE; } t_stat sim_rtcn_tick_ack (uint32 time, int32 tmr) { if ((tmr < 0) || (tmr >= SIM_NTIMERS)) return SCPE_TIMER; sim_debug (DBG_ACK, &sim_timer_dev, "sim_rtcn_tick_ack - for %s\n", sim_uname (sim_clock_unit[tmr])); _rtcn_tick_catchup_check (tmr, (int32)time); ++rtc_calib_ticks_acked[tmr]; return SCPE_OK; } static double _timespec_to_double (struct timespec *time) { return ((double)time->tv_sec)+(double)(time->tv_nsec)/1000000000.0; } static void _double_to_timespec (struct timespec *time, double dtime) { time->tv_sec = (time_t)floor(dtime); time->tv_nsec = (long)((dtime-floor(dtime))*1000000000.0); } double sim_timenow_double (void) { struct timespec now; clock_gettime (CLOCK_REALTIME, &now); return _timespec_to_double (&now); } #if defined(SIM_ASYNCH_CLOCKS) pthread_t sim_timer_thread; /* Wall Clock Timing Thread Id */ pthread_cond_t sim_timer_startup_cond; t_bool sim_timer_thread_running = FALSE; static void * _timer_thread(void *arg) { int sched_policy; struct sched_param sched_priority; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which, in general, won't be readily yielding the processor when this thread needs to run */ pthread_getschedparam (pthread_self(), &sched_policy, &sched_priority); ++sched_priority.sched_priority; pthread_setschedparam (pthread_self(), sched_policy, &sched_priority); sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - starting\n"); pthread_mutex_lock (&sim_timer_lock); pthread_cond_signal (&sim_timer_startup_cond); /* Signal we're ready to go */ while (sim_asynch_timer && sim_is_running) { struct timespec start_time, stop_time; struct timespec due_time; double wait_usec; int32 inst_delay; double inst_per_sec; UNIT *uptr, *cptr, *prvptr; if (sim_wallclock_entry) { /* something to insert in queue? */ sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - timing %s for %s\n", sim_uname(sim_wallclock_entry), sim_fmt_secs (sim_wallclock_entry->time/1000000.0)); uptr = sim_wallclock_entry; sim_wallclock_entry = NULL; prvptr = NULL; for (cptr = sim_wallclock_queue; cptr != QUEUE_LIST_END; cptr = cptr->a_next) { if (uptr->a_due_time < cptr->a_due_time) |
︙ | ︙ | |||
1299 1300 1301 1302 1303 1304 1305 | wait_usec = floor(1000000.0*(_timespec_to_double (&due_time) - _timespec_to_double (&start_time))); if (sim_wallclock_queue == QUEUE_LIST_END) sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting forever\n"); else sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting for %.0f usecs until %.6f for %s\n", wait_usec, sim_wallclock_queue->a_due_time, sim_uname(sim_wallclock_queue)); if ((wait_usec <= 0.0) || (0 != pthread_cond_timedwait (&sim_timer_wake, &sim_timer_lock, &due_time))) { | < | < < | < < < < < < < < < < < < < < < < < | < < | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | < < < < < < < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > | | < < < < < < < < < < < < < < < | > > > > > > | | | > > > > > > | > > > > > > > > > > > > > > | | | < | < < < < < < < < < < < < < < | < | < < < < < < < < | < < < < < < < < < | | | > > > < | > | > > | > > > > > > > > > > > > > > > | > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > | > > > > > > > > > > > > | | > > | < < < < | > > > > | > > > > | | < > > > > > > > > > > > | > | > > > > > > > > > > > > > > > > > > > > > | > > > | > > > > > > > > > > > > > > > > > | > > | > > > > > > > > > > > > | > > > > > > | > > > | > | > > > | > > > > | < > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > | > | | > | > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 | wait_usec = floor(1000000.0*(_timespec_to_double (&due_time) - _timespec_to_double (&start_time))); if (sim_wallclock_queue == QUEUE_LIST_END) sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting forever\n"); else sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - waiting for %.0f usecs until %.6f for %s\n", wait_usec, sim_wallclock_queue->a_due_time, sim_uname(sim_wallclock_queue)); if ((wait_usec <= 0.0) || (0 != pthread_cond_timedwait (&sim_timer_wake, &sim_timer_lock, &due_time))) { if (sim_wallclock_queue == QUEUE_LIST_END) /* queue empty? */ continue; /* wait again */ inst_per_sec = sim_timer_inst_per_sec (); uptr = sim_wallclock_queue; sim_wallclock_queue = uptr->a_next; uptr->a_next = NULL; /* hygiene */ clock_gettime(CLOCK_REALTIME, &stop_time); if (1 != sim_timespec_compare (&due_time, &stop_time)) inst_delay = 0; else inst_delay = (int32)(inst_per_sec*(_timespec_to_double(&due_time)-_timespec_to_double(&stop_time))); sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - slept %.0fms - activating(%s,%d)\n", 1000.0*(_timespec_to_double (&stop_time)-_timespec_to_double (&start_time)), sim_uname(uptr), inst_delay); sim_activate (uptr, inst_delay); } else {/* Something wants to adjust the queue since the wait condition was signaled */ } } pthread_mutex_unlock (&sim_timer_lock); sim_debug (DBG_TIM, &sim_timer_dev, "_timer_thread() - exiting\n"); return NULL; } #endif /* defined(SIM_ASYNCH_CLOCKS) */ /* In the event that there are no active clock devices, no instruction rate calibration will be performed. This is more likely on simpler simulators which don't have a full spectrum of standard devices or possibly when a clock device exists but its use is optional. Additonally, when a host system has a natural clock tick (or minimal sleep time) which is greater than the tick size that a simulator wants to run a clock at, we run this clock at the rate implied by the host system's minimal sleep time or 50Hz. To solve this we merely run an internal clock at 10Hz. */ #define CLK_TPS 10 #define CLK_INIT (SIM_INITIAL_IPS/CLK_TPS) static int32 sim_int_clk_tps; static t_stat sim_timer_clock_tick_svc (UNIT *uptr) { sim_rtcn_calb (sim_int_clk_tps, SIM_INTERNAL_CLK); sim_activate_after (uptr, 1000000/sim_int_clk_tps); /* reactivate unit */ return SCPE_OK; } /* This routine exists to assure that there is a single reliably calibrated clock properly counting instruction execution relative to time. The best way to assure reliable calibration is to use a clock which ticks no faster than the host system's clock. This is optimal so that accurate time measurements are taken. If the simulated system doesn't have a clock with an appropriate tick rate, an internal clock is run that meets this requirement, */ static void _rtcn_configure_calibrated_clock (int32 newtmr) { int32 tmr; /* Look for a timer running slower than the host system clock */ sim_int_clk_tps = MIN(CLK_TPS, sim_os_tick_hz); for (tmr=0; tmr<SIM_NTIMERS; tmr++) { if ((rtc_hz[tmr]) && (rtc_hz[tmr] <= (uint32)sim_os_tick_hz)) break; } if (tmr == SIM_NTIMERS) { /* None found? */ if ((tmr != newtmr) && (!sim_is_active (&SIM_INTERNAL_UNIT))) { if ((sim_calb_tmr != SIM_NTIMERS) &&/* non internal timer */ (sim_calb_tmr != -1) && /* previously active? */ (!rtc_hz[sim_calb_tmr])) { /* now stopped? */ sim_debug (DBG_CAL, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Cleaning up stopped timer %s support\n", sim_uname(sim_clock_unit[sim_calb_tmr])); if (sim_clock_unit[sim_calb_tmr]) sim_cancel (sim_clock_unit[sim_calb_tmr]); sim_cancel (&sim_timer_units[sim_calb_tmr]); /* Migrate any coscheduled devices to the standard queue */ /* they will fire and subsequently requeue themselves */ while (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { UNIT *uptr = sim_clock_cosched_queue[tmr]; _sim_coschedule_cancel (uptr); _sim_activate (uptr, 1); } } /* Start the internal timer */ sim_calb_tmr = SIM_NTIMERS; sim_debug (DBG_CAL, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Starting Internal Calibrated Timer at %dHz\n", sim_int_clk_tps); SIM_INTERNAL_UNIT.action = &sim_timer_clock_tick_svc; SIM_INTERNAL_UNIT.flags = UNIT_IDLE; sim_activate_abs (&SIM_INTERNAL_UNIT, 0); sim_rtcn_init_unit (&SIM_INTERNAL_UNIT, (CLK_INIT*CLK_TPS)/sim_int_clk_tps, SIM_INTERNAL_CLK); } return; } if ((tmr == newtmr) && (sim_calb_tmr == newtmr)) /* already set? */ return; if (sim_calb_tmr == SIM_NTIMERS) { /* was old the internal timer? */ sim_debug (DBG_CAL, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Stopping Internal Calibrated Timer, New Timer = %d (%dHz)\n", tmr, rtc_hz[tmr]); rtc_initd[SIM_NTIMERS] = 0; rtc_hz[SIM_NTIMERS] = 0; sim_cancel (&SIM_INTERNAL_UNIT); sim_cancel (&sim_timer_units[SIM_NTIMERS]); sim_register_clock_unit_tmr (NULL, SIM_INTERNAL_CLK); } else { if ((sim_calb_tmr != -1) && (rtc_hz[sim_calb_tmr] == 0)) { /* Migrate any coscheduled devices to the standard queue */ /* they will fire and subsequently requeue themselves */ while (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { UNIT *uptr = sim_clock_cosched_queue[tmr]; _sim_coschedule_cancel (uptr); _sim_activate (uptr, 1); } } sim_debug (DBG_CAL, &sim_timer_dev, "_rtcn_configure_calibrated_clock() - Changing Calibrated Timer from %d (%dHz) to %d (%dHz)\n", sim_calb_tmr, rtc_hz[sim_calb_tmr], tmr, rtc_hz[tmr]); sim_calb_tmr = tmr; } sim_calb_tmr = tmr; } static t_stat sim_timer_clock_reset (DEVICE *dptr) { sim_debug (DBG_TRC, &sim_timer_dev, "sim_timer_clock_reset()\n"); _rtcn_configure_calibrated_clock (sim_calb_tmr); sim_timer_dev.description = &sim_timer_description; sim_throttle_dev.description = &sim_throttle_description; if (sim_switches & SWMASK ('P')) { sim_cancel (&SIM_INTERNAL_UNIT); sim_calb_tmr = -1; } return SCPE_OK; } void sim_start_timer_services (void) { sim_debug (DBG_TRC, &sim_timer_dev, "sim_start_timer_services()\n"); _rtcn_configure_calibrated_clock (sim_calb_tmr); #if defined(SIM_ASYNCH_CLOCKS) pthread_mutex_lock (&sim_timer_lock); if (sim_asynch_timer) { pthread_attr_t attr; sim_debug (DBG_TRC, &sim_timer_dev, "sim_start_timer_services() - starting\n"); pthread_cond_init (&sim_timer_startup_cond, NULL); pthread_attr_init (&attr); pthread_attr_setscope (&attr, PTHREAD_SCOPE_SYSTEM); pthread_create (&sim_timer_thread, &attr, _timer_thread, NULL); pthread_attr_destroy( &attr); pthread_cond_wait (&sim_timer_startup_cond, &sim_timer_lock); /* Wait for thread to stabilize */ pthread_cond_destroy (&sim_timer_startup_cond); sim_timer_thread_running = TRUE; } pthread_mutex_unlock (&sim_timer_lock); #endif } void sim_stop_timer_services (void) { int tmr; sim_debug (DBG_TRC, &sim_timer_dev, "sim_stop_timer_services()\n"); for (tmr=0; tmr<=SIM_NTIMERS; tmr++) { int32 accum; if (sim_clock_unit[tmr]) { /* Stop clock assist unit and make sure the clock unit has a tick queued */ sim_cancel (&sim_timer_units[tmr]); if (rtc_hz[tmr]) _sim_activate (sim_clock_unit[tmr], rtc_currd[tmr]); /* Move coscheduled units to the standard event queue */ accum = 1; while (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { UNIT *cptr = sim_clock_cosched_queue[tmr]; sim_clock_cosched_queue[tmr] = cptr->next; cptr->next = NULL; cptr->cancel = NULL; accum += cptr->time; _sim_activate (cptr, accum*rtc_currd[tmr]); } } } sim_cancel (&SIM_INTERNAL_UNIT); /* Make sure Internal Timer is stopped */ sim_cancel (&sim_timer_units[SIM_NTIMERS]); sim_calb_tmr_last = sim_calb_tmr; /* Save calibrated timer value for display */ sim_inst_per_sec_last = sim_timer_inst_per_sec (); /* Save execution rate for display */ sim_calb_tmr = -1; #if defined(SIM_ASYNCH_CLOCKS) pthread_mutex_lock (&sim_timer_lock); if (sim_timer_thread_running) { sim_debug (DBG_TRC, &sim_timer_dev, "sim_stop_timer_services() - stopping\n"); pthread_cond_signal (&sim_timer_wake); pthread_mutex_unlock (&sim_timer_lock); pthread_join (sim_timer_thread, NULL); sim_timer_thread_running = FALSE; /* Any wallclock queued events are now migrated to the normal event queue */ while (sim_wallclock_queue != QUEUE_LIST_END) { UNIT *uptr = sim_wallclock_queue; double inst_delay_d = uptr->a_due_gtime - sim_gtime (); int32 inst_delay; uptr->cancel (uptr); if (inst_delay_d < 0.0) inst_delay_d = 0.0; /* Bound delay to avoid overflow. */ /* Long delays are usually canceled before they expire */ if (inst_delay_d > (double)0x7FFFFFFF) inst_delay_d = (double)0x7FFFFFFF; inst_delay = (int32)inst_delay_d; if ((inst_delay == 0) && (inst_delay_d != 0.0)) inst_delay = 1; /* Minimum non-zero delay is 1 instruction */ _sim_activate (uptr, inst_delay); /* queue it now */ } } else pthread_mutex_unlock (&sim_timer_lock); #endif } t_stat sim_timer_change_asynch (void) { #if defined(SIM_ASYNCH_CLOCKS) if (sim_asynch_enabled && sim_asynch_timer) sim_start_timer_services (); else sim_stop_timer_services (); #endif return SCPE_OK; } /* Instruction Execution rate. */ /* returns a double since it is mostly used in double expressions and to avoid overflow if/when strange timing delays might produce unexpected results */ double sim_timer_inst_per_sec (void) { double inst_per_sec = SIM_INITIAL_IPS; if (sim_calb_tmr == -1) return inst_per_sec; inst_per_sec = ((double)rtc_currd[sim_calb_tmr])*rtc_hz[sim_calb_tmr]; if (0 == inst_per_sec) inst_per_sec = ((double)rtc_currd[sim_calb_tmr])*sim_int_clk_tps; return inst_per_sec; } t_stat sim_timer_activate (UNIT *uptr, int32 interval) { AIO_VALIDATE; return sim_timer_activate_after (uptr, (uint32)((interval * 1000000.0) / sim_timer_inst_per_sec ())); } t_stat sim_timer_activate_after (UNIT *uptr, uint32 usec_delay) { int inst_delay, tmr; double inst_delay_d, inst_per_sec; AIO_VALIDATE; /* If this is a clock unit, we need to schedule the related timer unit instead */ for (tmr=0; tmr<=SIM_NTIMERS; tmr++) if (sim_clock_unit[tmr] == uptr) { uptr = &sim_timer_units[tmr]; break; } if (sim_is_active (uptr)) /* already active? */ return SCPE_OK; inst_per_sec = sim_timer_inst_per_sec (); inst_delay_d = ((inst_per_sec*usec_delay)/1000000.0); /* Bound delay to avoid overflow. */ /* Long delays are usually canceled before they expire */ if (inst_delay_d > (double)0x7fffffff) inst_delay_d = (double)0x7fffffff; inst_delay = (int32)inst_delay_d; if ((inst_delay == 0) && (usec_delay != 0)) inst_delay = 1; /* Minimum non-zero delay is 1 instruction */ if ((sim_calb_tmr != -1) && /* calibrated timer available? */ (inst_delay > 2*rtc_currd[sim_calb_tmr]) && /* delay > 2 * calibrated timer's ticks */ (uptr->flags & UNIT_IDLE)) { /* idleable unit? */ sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - coscheduling %s with calibrated timer after %d instructions (%d usecs)\n", sim_uname(uptr), inst_delay, usec_delay); return sim_clock_coschedule (uptr, inst_delay); /* coschedule with the calibrated timer */ } #if defined(SIM_ASYNCH_CLOCKS) if ((sim_calb_tmr == -1) || /* if No timer initialized */ (inst_delay < rtc_currd[sim_calb_tmr]) || /* or sooner than next clock tick? */ (rtc_calibrations[sim_calb_tmr] == 0) || /* or haven't calibrated yet */ (!sim_asynch_timer)) { /* or asynch disabled */ sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - activating %s after %d instructions\n", sim_uname(uptr), inst_delay); return _sim_activate (uptr, inst_delay); /* queue it now */ } if (1) { double d_now = sim_timenow_double (); uptr->a_usec_delay = usec_delay; uptr->a_due_time = d_now + (double)(usec_delay)/1000000.0; uptr->a_due_gtime = sim_gtime () + (sim_timer_inst_per_sec () * (double)(usec_delay)/1000000.0); uptr->time = usec_delay; uptr->cancel = &_sim_wallclock_cancel; /* bind cleanup method */ uptr->a_is_active = &_sim_wallclock_is_active; if (tmr < SIM_NTIMERS) { /* Timer Unit? */ sim_clock_unit[tmr]->cancel = &_sim_wallclock_cancel; sim_clock_unit[tmr]->a_is_active = &_sim_wallclock_is_active; } sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue wallclock addition %s at %.6f\n", sim_uname(uptr), uptr->a_due_time); } pthread_mutex_lock (&sim_timer_lock); uptr->a_next = QUEUE_LIST_END; /* Temporarily mark as active */ while (sim_wallclock_entry) { /* wait for any prior entry has been digested */ sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue insert entry %s busy waiting for 1ms\n", sim_uname(sim_wallclock_entry)); pthread_mutex_unlock (&sim_timer_lock); sim_os_ms_sleep (1); pthread_mutex_lock (&sim_timer_lock); } sim_wallclock_entry = uptr; pthread_mutex_unlock (&sim_timer_lock); pthread_cond_signal (&sim_timer_wake); /* wake the timer thread to deal with it */ return SCPE_OK; #else sim_debug (DBG_TIM, &sim_timer_dev, "sim_timer_activate_after() - queue addition %s at %d (%d usecs)\n", sim_uname(uptr), inst_delay, usec_delay); return _sim_activate (uptr, inst_delay); /* queue it now */ #endif } /* Clock coscheduling routines */ t_stat sim_register_clock_unit_tmr (UNIT *uptr, int32 tmr) { if (tmr == SIM_INTERNAL_CLK) tmr = SIM_NTIMERS; else { if ((tmr < 0) || (tmr >= SIM_NTIMERS)) return SCPE_IERR; } if (NULL == uptr) { /* deregistering? */ /* Migrate any coscheduled devices to the standard queue */ /* they will fire and subsequently requeue themselves */ while (sim_clock_cosched_queue[tmr] != QUEUE_LIST_END) { UNIT *uptr = sim_clock_cosched_queue[tmr]; _sim_coschedule_cancel (uptr); _sim_activate (uptr, 1); } sim_clock_unit[tmr] = NULL; return SCPE_OK; } if (NULL == sim_clock_unit[tmr]) sim_clock_cosched_queue[tmr] = QUEUE_LIST_END; sim_clock_unit[tmr] = uptr; uptr->dynflags |= UNIT_TMR_UNIT; sim_timer_units[tmr].flags = ((tmr == SIM_NTIMERS) ? 0 : UNIT_DIS) | (sim_clock_unit[tmr] ? UNIT_IDLE : 0); return SCPE_OK; } /* Default timer is 0, otherwise use a calibrated one if it exists */ static int32 _default_tmr () { return ((rtc_currd[0] && rtc_hz[0]) ? 0 : ((sim_calb_tmr != -1) ? sim_calb_tmr : 0)); } static int32 _tick_size () { int32 tmr = _default_tmr (); return ((rtc_currd[tmr] && rtc_hz[tmr]) ? rtc_currd[tmr] : 10000); } int32 sim_rtcn_tick_size (int32 tmr) { return (rtc_currd[tmr]) ? rtc_currd[tmr] : 10000; } t_stat sim_register_clock_unit (UNIT *uptr) { return sim_register_clock_unit_tmr (uptr, 0); } t_stat sim_clock_coschedule (UNIT *uptr, int32 interval) { int32 ticks = (interval + (_tick_size ()/2))/_tick_size ();/* Convert to ticks */ sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule(%s, interval=%d, ticks=%d)\n", sim_uname(uptr), interval, ticks); return sim_clock_coschedule_tmr (uptr, _default_tmr (), ticks); } t_stat sim_clock_coschedule_abs (UNIT *uptr, int32 interval) { int32 ticks = (interval + (_tick_size ()/2))/_tick_size ();/* Convert to ticks */ sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule_abs(%s, interval=%d, ticks=%d)\n", sim_uname(uptr), interval, ticks); sim_cancel (uptr); return sim_clock_coschedule_tmr (uptr, _default_tmr (), ticks); } t_stat sim_clock_coschedule_tmr (UNIT *uptr, int32 tmr, int32 ticks) { if (ticks < 0) return SCPE_ARG; if (sim_is_active (uptr)) { sim_debug (DBG_TIM, &sim_timer_dev, "sim_clock_coschedule_tmr(tmr=%d) - %s is already active\n", tmr, sim_uname (uptr)); return SCPE_OK; } if (tmr == SIM_INTERNAL_CLK) tmr = SIM_NTIMERS; else { if ((tmr < 0) || (tmr > SIM_NTIMERS)) return sim_activate (uptr, MAX(1, ticks) * 10000); } if (NULL == sim_clock_unit[tmr]) return sim_activate (uptr, ticks * (rtc_currd[tmr] ? rtc_currd[tmr] : _tick_size ())); else { UNIT *cptr, *prvptr; int32 accum; sim_debug (DBG_QUE, &sim_timer_dev, "sim_clock_coschedule_tmr(tmr=%d) - queueing %s for clock co-schedule (ticks=%d)\n", tmr, sim_uname (uptr), ticks); prvptr = NULL; accum = 0; for (cptr = sim_clock_cosched_queue[tmr]; cptr != QUEUE_LIST_END; cptr = cptr->next) { if (ticks < (accum + cptr->time)) break; accum = accum + cptr->time; prvptr = cptr; } if (prvptr == NULL) { cptr = uptr->next = sim_clock_cosched_queue[tmr]; sim_clock_cosched_queue[tmr] = uptr; } else { cptr = uptr->next = prvptr->next; prvptr->next = uptr; } uptr->time = ticks - accum; if (cptr != QUEUE_LIST_END) cptr->time = cptr->time - uptr->time; uptr->cancel = &_sim_coschedule_cancel; /* bind cleanup method */ sim_cosched_interval[tmr] = sim_clock_cosched_queue[tmr]->time; } return SCPE_OK; } t_stat sim_clock_coschedule_tmr_abs (UNIT *uptr, int32 tmr, int32 ticks) { sim_cancel (uptr); return sim_clock_coschedule_tmr (uptr, tmr, ticks); } /* Cancel a unit on the coschedule queue */ static void _sim_coschedule_cancel (UNIT *uptr) { AIO_UPDATE_QUEUE; if (uptr->next) { /* On a queue? */ int tmr; UNIT *nptr; for (tmr=0; tmr<=SIM_NTIMERS; tmr++) { if (sim_clock_unit[tmr]) { if (uptr == sim_clock_cosched_queue[tmr]) { nptr = sim_clock_cosched_queue[tmr] = uptr->next; uptr->next = NULL; } else { UNIT *cptr; for (cptr = sim_clock_cosched_queue[tmr]; (cptr != QUEUE_LIST_END); cptr = cptr->next) { if (cptr->next == uptr) { nptr = cptr->next = (uptr)->next; uptr->next = NULL; break; } } } if (uptr->next == NULL) { /* found? */ uptr->cancel = NULL; if (nptr != QUEUE_LIST_END) nptr->time += uptr->time; sim_debug (DBG_QUE, &sim_timer_dev, "Canceled Clock Coscheduled Event for %s\n", sim_uname(uptr)); return; } } } } } t_bool sim_timer_is_active (UNIT *uptr) { int32 tmr; if (!(uptr->dynflags & UNIT_TMR_UNIT)) return FALSE; for (tmr=0; tmr<SIM_NTIMERS; tmr++) { if (sim_clock_unit[tmr] == uptr) return sim_is_active (&sim_timer_units[tmr]); } return FALSE; } #if defined(SIM_ASYNCH_CLOCKS) static void _sim_wallclock_cancel (UNIT *uptr) { int32 tmr; AIO_UPDATE_QUEUE; pthread_mutex_lock (&sim_timer_lock); /* If this is a clock unit, we need to cancel both this and the related timer unit */ for (tmr=0; tmr<SIM_NTIMERS; tmr++) if (sim_clock_unit[tmr] == uptr) { uptr = &sim_timer_units[tmr]; break; } if (uptr->a_next) { UNIT *cptr; if (uptr == sim_wallclock_entry) { /* Pending on the queue? */ sim_wallclock_entry = NULL; uptr->a_next = NULL; } else { if (uptr == sim_wallclock_queue) { sim_wallclock_queue = uptr->a_next; uptr->a_next = NULL; sim_debug (DBG_QUE, &sim_timer_dev, "Canceling Timer Event for %s\n", sim_uname(uptr)); pthread_cond_signal (&sim_timer_wake); } else { for (cptr = sim_wallclock_queue; (cptr != QUEUE_LIST_END); cptr = cptr->a_next) { if (cptr->a_next == (uptr)) { cptr->a_next = (uptr)->a_next; uptr->a_next = NULL; sim_debug (DBG_QUE, &sim_timer_dev, "Canceled Timer Event for %s\n", sim_uname(uptr)); break; } } } } if (uptr->a_next == NULL) { uptr->a_due_time = uptr->a_due_gtime = uptr->a_usec_delay = 0; uptr->cancel = NULL; uptr->a_is_active = NULL; if (tmr < SIM_NTIMERS) { /* Timer Unit? */ sim_clock_unit[tmr]->cancel = NULL; sim_clock_unit[tmr]->a_is_active = NULL; } } } pthread_mutex_unlock (&sim_timer_lock); } static t_bool _sim_wallclock_is_active (UNIT *uptr) { int32 tmr; if (uptr->a_next) return TRUE; /* If this is a clock unit, we need to examine the related timer unit instead */ for (tmr=0; tmr<SIM_NTIMERS; tmr++) if (sim_clock_unit[tmr] == uptr) return (sim_timer_units[tmr].a_next != NULL); return FALSE; } #endif /* defined(SIM_ASYNCH_CLOCKS) */ int32 sim_timer_activate_time (UNIT *uptr) { UNIT *cptr; int32 tmr; #if defined(SIM_ASYNCH_CLOCKS) if (uptr->a_is_active == &_sim_wallclock_is_active) { double d_result; pthread_mutex_lock (&sim_timer_lock); if (uptr == sim_wallclock_entry) { d_result = uptr->a_due_gtime - sim_gtime (); if (d_result < 0.0) d_result = 0.0; if (d_result > (double)0x7FFFFFFE) d_result = (double)0x7FFFFFFE; pthread_mutex_unlock (&sim_timer_lock); return ((int32)d_result) + 1; } for (cptr = sim_wallclock_queue; cptr != QUEUE_LIST_END; cptr = cptr->a_next) if (uptr == cptr) { d_result = uptr->a_due_gtime - sim_gtime (); if (d_result < 0.0) d_result = 0.0; if (d_result > (double)0x7FFFFFFE) d_result = (double)0x7FFFFFFE; pthread_mutex_unlock (&sim_timer_lock); return ((int32)d_result) + 1; } pthread_mutex_unlock (&sim_timer_lock); } if (uptr->a_next) return uptr->a_event_time + 1; #endif /* defined(SIM_ASYNCH_CLOCKS) */ if (uptr->cancel == &_sim_coschedule_cancel) { for (tmr=0; tmr<=SIM_NTIMERS; tmr++) { int32 accum; accum = sim_cosched_interval[tmr]; for (cptr = sim_clock_cosched_queue[tmr]; cptr != QUEUE_LIST_END; cptr = cptr->next) { if (cptr != sim_clock_cosched_queue[tmr]) accum += cptr->time; if (cptr == uptr) return (rtc_currd[tmr] * accum) + sim_activate_time (&sim_timer_units[tmr]); } } } for (tmr=0; tmr<SIM_NTIMERS; tmr++) if (sim_clock_unit[tmr] == uptr) return sim_activate_time (&sim_timer_units[tmr]); return -1; /* Not found. */ } |
Changes to src/sim_timer.h.
︙ | ︙ | |||
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | 17-Oct-06 RMS Added idle support 02-Jan-04 RMS Split out from SCP */ #ifndef SIM_TIMER_H_ #define SIM_TIMER_H_ 0 /* Pick up a struct timespec definition if it is available */ #include <time.h> #if defined(SIM_ASYNCH_IO) || defined(USE_READER_THREAD) #include <pthread.h> #endif #if defined (__APPLE__) #define HAVE_STRUCT_TIMESPEC 1 /* OSX defined the structure but doesn't tell us */ #endif | > > > > > > > > | 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | 17-Oct-06 RMS Added idle support 02-Jan-04 RMS Split out from SCP */ #ifndef SIM_TIMER_H_ #define SIM_TIMER_H_ 0 #ifdef __cplusplus extern "C" { #endif /* Pick up a struct timespec definition if it is available */ #include <time.h> #if defined(__struct_timespec_defined) #define _TIMESPEC_DEFINED #endif #if defined(SIM_ASYNCH_IO) || defined(USE_READER_THREAD) #include <pthread.h> #endif #if defined (__APPLE__) #define HAVE_STRUCT_TIMESPEC 1 /* OSX defined the structure but doesn't tell us */ #endif |
︙ | ︙ | |||
52 53 54 55 56 57 58 | #endif /* _MSC_VER >= 1900 */ #endif /* defined(_MSC_VER) */ #if !defined(HAVE_STRUCT_TIMESPEC) #define HAVE_STRUCT_TIMESPEC 1 #if !defined(_TIMESPEC_DEFINED) #define _TIMESPEC_DEFINED struct timespec { | | | < | | | | | > | | | | | | > > > | | > < < > > > | | | | | | | > | > > > > | > > | > > > > > > > > > > | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | #endif /* _MSC_VER >= 1900 */ #endif /* defined(_MSC_VER) */ #if !defined(HAVE_STRUCT_TIMESPEC) #define HAVE_STRUCT_TIMESPEC 1 #if !defined(_TIMESPEC_DEFINED) #define _TIMESPEC_DEFINED struct timespec { time_t tv_sec; long tv_nsec; }; #endif /* !defined(_TIMESPEC_DEFINED) */ #endif /* !defined(HAVE_STRUCT_TIMESPEC) */ int clock_gettime(int clock_id, struct timespec *tp); #endif #define SIM_NTIMERS 8 /* # timers */ #define SIM_TMAX 500 /* max timer makeup */ #define SIM_INITIAL_IPS 500000 /* uncalibrated assumption */ /* about instructions per second */ #define SIM_IDLE_CAL 10 /* ms to calibrate */ #define SIM_IDLE_STMIN 2 /* min sec for stability */ #define SIM_IDLE_STDFLT 20 /* dft sec for stability */ #define SIM_IDLE_STMAX 600 /* max sec for stability */ #define SIM_THROT_WINIT 1000 /* cycles to skip */ #define SIM_THROT_WST 10000 /* initial wait */ #define SIM_THROT_WMUL 4 /* multiplier */ #define SIM_THROT_WMIN 50 /* min wait */ #define SIM_THROT_DRIFT_PCT 5 /* drift percentage for recalibrate */ #define SIM_THROT_MSMIN 10 /* min for measurement */ #define SIM_THROT_NONE 0 /* throttle parameters */ #define SIM_THROT_MCYC 1 /* MegaCycles Per Sec */ #define SIM_THROT_KCYC 2 /* KiloCycles Per Sec */ #define SIM_THROT_PCT 3 /* Max Percent of host CPU */ #define SIM_THROT_SPC 4 /* Specific periodic Delay */ #define SIM_THROT_STATE_INIT 0 /* Starting */ #define SIM_THROT_STATE_TIME 1 /* Checking Time */ #define SIM_THROT_STATE_THROTTLE 2 /* Throttling */ #define TIMER_DBG_IDLE 0x001 /* Debug Flag for Idle Debugging */ #define TIMER_DBG_QUEUE 0x002 /* Debug Flag for Asynch Queue Debugging */ #define TIMER_DBG_MUX 0x004 /* Debug Flag for Asynch Queue Debugging */ t_bool sim_timer_init (void); void sim_timespec_diff (struct timespec *diff, struct timespec *min, struct timespec *sub); double sim_timenow_double (void); int32 sim_rtcn_init (int32 time, int32 tmr); int32 sim_rtcn_init_unit (UNIT *uptr, int32 time, int32 tmr); void sim_rtcn_get_time (struct timespec *now, int tmr); t_stat sim_rtcn_tick_ack (uint32 time, int32 tmr); void sim_rtcn_init_all (void); int32 sim_rtcn_calb (int32 ticksper, int32 tmr); int32 sim_rtc_init (int32 time); int32 sim_rtc_calb (int32 ticksper); t_stat sim_set_timers (int32 arg, CONST char *cptr); t_stat sim_show_timers (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char* desc); t_stat sim_show_clock_queues (FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, CONST char *cptr); t_bool sim_idle (uint32 tmr, t_bool sin_cyc); t_stat sim_set_throt (int32 arg, CONST char *cptr); t_stat sim_show_throt (FILE *st, DEVICE *dnotused, UNIT *unotused, int32 flag, CONST char *cptr); t_stat sim_set_idle (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat sim_clr_idle (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat sim_show_idle (FILE *st, UNIT *uptr, int32 val, CONST void *desc); void sim_throt_sched (void); void sim_throt_cancel (void); uint32 sim_os_msec (void); void sim_os_sleep (unsigned int sec); uint32 sim_os_ms_sleep (unsigned int msec); uint32 sim_os_ms_sleep_init (void); void sim_start_timer_services (void); void sim_stop_timer_services (void); t_stat sim_timer_change_asynch (void); t_stat sim_timer_activate (UNIT *uptr, int32 interval); t_stat sim_timer_activate_after (UNIT *uptr, uint32 usec_delay); int32 sim_timer_activate_time (UNIT *uptr); t_bool sim_timer_is_active (UNIT *uptr); t_stat sim_register_clock_unit (UNIT *uptr); t_stat sim_register_clock_unit_tmr (UNIT *uptr, int32 tmr); t_stat sim_clock_coschedule (UNIT *uptr, int32 interval); t_stat sim_clock_coschedule_abs (UNIT *uptr, int32 interval); t_stat sim_clock_coschedule_tmr (UNIT *uptr, int32 tmr, int32 ticks); t_stat sim_clock_coschedule_tmr_abs (UNIT *uptr, int32 tmr, int32 ticks); double sim_timer_inst_per_sec (void); int32 sim_rtcn_tick_size (int32 tmr); t_bool sim_timer_idle_capable (uint32 *host_ms_sleep_1, uint32 *host_tick_ms); #define PRIORITY_BELOW_NORMAL -1 #define PRIORITY_NORMAL 0 #define PRIORITY_ABOVE_NORMAL 1 t_stat sim_os_set_thread_priority (int below_normal_above); extern t_bool sim_idle_enab; /* idle enabled flag */ extern volatile t_bool sim_idle_wait; /* idle waiting flag */ extern t_bool sim_asynch_timer; extern DEVICE sim_timer_dev; extern UNIT * volatile sim_clock_cosched_queue[SIM_NTIMERS+1]; extern const t_bool rtc_avail; #ifdef __cplusplus } #endif #endif |
Changes to src/sim_tmxr.c.
︙ | ︙ | |||
336 337 338 339 340 341 342 343 344 345 346 347 348 349 | #include "sim_serial.h" #include "sim_sock.h" #include "sim_timer.h" #include "sim_tmxr.h" #include "scp.h" #include <ctype.h> /* Telnet protocol constants - negatives are for init'ing signed char data */ /* Commands */ #define TN_IAC 0xFFu /* -1 */ /* protocol delim */ #define TN_DONT 0xFEu /* -2 */ /* dont */ #define TN_DO 0xFDu /* -3 */ /* do */ | > | 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | #include "sim_serial.h" #include "sim_sock.h" #include "sim_timer.h" #include "sim_tmxr.h" #include "scp.h" #include <ctype.h> #include <math.h> /* Telnet protocol constants - negatives are for init'ing signed char data */ /* Commands */ #define TN_IAC 0xFFu /* -1 */ /* protocol delim */ #define TN_DONT 0xFEu /* -2 */ /* dont */ #define TN_DO 0xFDu /* -3 */ /* do */ |
︙ | ︙ | |||
425 426 427 428 429 430 431 432 433 434 435 436 437 438 | BIT(RTS), /* Request To Send */ BIT(DCD), /* Data Carrier Detect */ BIT(RNG), /* Ring Indicator */ BIT(CTS), /* Clear To Send */ BIT(DSR), /* Data Set Ready */ ENDBITS }; /* Local routines */ static void tmxr_add_to_open_list (TMXR* mux); /* Initialize the line state. | > > > > > > > > > > | 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 | BIT(RTS), /* Request To Send */ BIT(DCD), /* Data Carrier Detect */ BIT(RNG), /* Ring Indicator */ BIT(CTS), /* Clear To Send */ BIT(DSR), /* Data Set Ready */ ENDBITS }; static u_char mantra[] = { /* Telnet Option Negotiation Mantra */ TN_IAC, TN_WILL, TN_LINE, TN_IAC, TN_WILL, TN_SGA, TN_IAC, TN_WILL, TN_ECHO, TN_IAC, TN_WILL, TN_BIN, TN_IAC, TN_DO, TN_BIN }; #define TMXR_GUARD ((int32)(lp->serport ? 1 : sizeof(mantra)))/* buffer guard */ /* Local routines */ static void tmxr_add_to_open_list (TMXR* mux); /* Initialize the line state. |
︙ | ︙ | |||
555 556 557 558 559 560 561 | here, because the disconnect routines will do that just after calling us. */ static void tmxr_report_disconnection (TMLN *lp) { if (lp->notelnet) return; | | | 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 | here, because the disconnect routines will do that just after calling us. */ static void tmxr_report_disconnection (TMLN *lp) { if (lp->notelnet) return; tmxr_linemsgf (lp, "\r\nDisconnected from the %s simulator\r\n\n", sim_name);/* report disconnection */ return; } static int32 loop_write_ex (TMLN *lp, char *buf, int32 length, t_bool prefix_datagram) { int32 written = 0; int32 loopfree = lp->lpbsz - lp->lpbcnt; |
︙ | ︙ | |||
681 682 683 684 685 686 687 | { int32 written; int32 i = lp->txbpr; if (lp->loopback) return loop_write (lp, &(lp->txb[i]), length); | | > > | > > > | | 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | { int32 written; int32 i = lp->txbpr; if (lp->loopback) return loop_write (lp, &(lp->txb[i]), length); if (lp->serport) { /* serial port connection? */ if (sim_gtime () < lp->txnexttime) return 0; written = sim_write_serial (lp->serport, &(lp->txb[i]), length); if (written > 0) lp->txnexttime = floor (sim_gtime () + (lp->txdelta * sim_timer_inst_per_sec ())); return written; } else { /* Telnet connection */ written = sim_write_sock (lp->sock, &(lp->txb[i]), length); if (written == SOCKET_ERROR) /* did an error occur? */ if (lp->datagram) return written; /* ignore errors on datagram sockets */ else |
︙ | ︙ | |||
733 734 735 736 737 738 739 | Note: This routine may be called with a UNIT that does not belong to the device indicated in the TMXR structure. That is, the multiplexer lines may belong to a device other than the one attached to the socket (the HP 2100 MUX device is one example). Therefore, we must look up the device from the unit at each call, rather than depending on the DEVICE pointer stored in the TMXR. */ | | | 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 | Note: This routine may be called with a UNIT that does not belong to the device indicated in the TMXR structure. That is, the multiplexer lines may belong to a device other than the one attached to the socket (the HP 2100 MUX device is one example). Therefore, we must look up the device from the unit at each call, rather than depending on the DEVICE pointer stored in the TMXR. */ static TMLN *tmxr_find_ldsc (UNIT *uptr, int32 val, const TMXR *mp) { if (mp == NULL) /* invalid multiplexer descriptor? */ return NULL; /* programming error! */ if (uptr) { /* called from SET? */ DEVICE *dptr = find_dev_from_unit (uptr); /* find device */ if (dptr == NULL) /* what?? */ return NULL; |
︙ | ︙ | |||
765 766 767 768 769 770 771 | Implementation note: 1. A return status of SCPE_IERR implies a programming error (passing an invalid pointer or an invalid unit). */ | | | | 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 | Implementation note: 1. A return status of SCPE_IERR implies a programming error (passing an invalid pointer or an invalid unit). */ static TMLN *tmxr_get_ldsc (UNIT *uptr, const char *cptr, TMXR *mp, t_stat *status) { t_value ln; TMLN *lp = NULL; t_stat code = SCPE_OK; if (mp == NULL) /* missing mux descriptor? */ code = SCPE_IERR; /* programming error! */ else if (uptr) { /* implied line form? */ lp = tmxr_find_ldsc (uptr, mp->lines, mp); /* determine line from unit */ if (lp == NULL) /* invalid line number? */ code = SCPE_IERR; /* programming error! */ } else if (cptr == NULL) /* named line form, parameter supplied? */ code = SCPE_MISVAL; /* no, so report missing */ else { ln = get_uint (cptr, 10, mp->lines - 1, &code); /* get line number */ if (code == SCPE_OK) /* line number OK? */ lp = mp->ldsc + (int32) ln; /* use as index to determine line */ } |
︙ | ︙ | |||
952 953 954 955 956 957 958 | SOCKET newsock; TMLN *lp; int32 *op; int32 i, j; char *address; char msg[512]; uint32 poll_time = sim_os_msec (); | < < < < < < < | 968 969 970 971 972 973 974 975 976 977 978 979 980 981 | SOCKET newsock; TMLN *lp; int32 *op; int32 i, j; char *address; char msg[512]; uint32 poll_time = sim_os_msec (); if (mp->last_poll_time == 0) { /* first poll initializations */ UNIT *uptr = mp->uptr; if (!uptr) /* Attached ? */ return -1; /* No connections are possinle! */ |
︙ | ︙ | |||
994 995 996 997 998 999 1000 | tmxr_debug_trace (mp, "tmxr_poll_conn()"); mp->last_poll_time = poll_time; /* Check for a pending Telnet/tcp connection */ if (mp->master) { | > > > > > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | > < > | 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 | tmxr_debug_trace (mp, "tmxr_poll_conn()"); mp->last_poll_time = poll_time; /* Check for a pending Telnet/tcp connection */ if (mp->master) { if (mp->ring_sock != INVALID_SOCKET) { /* Use currently 'ringing' socket if one is active */ newsock = mp->ring_sock; mp->ring_sock = INVALID_SOCKET; address = mp->ring_ipad; mp->ring_ipad = NULL; } else newsock = sim_accept_conn_ex (mp->master, &address, (mp->packet ? SIM_SOCK_OPT_NODELAY : 0));/* poll connect */ if (newsock != INVALID_SOCKET) { /* got a live one? */ sprintf (msg, "tmxr_poll_conn() - Connection from %s", address); tmxr_debug_connect (mp, msg); op = mp->lnorder; /* get line connection order list pointer */ i = mp->lines; /* play it safe in case lines == 0 */ ++mp->sessions; /* count the new session */ for (j = 0; j < mp->lines; j++, i++) { /* find next avail line */ if (op && (*op >= 0) && (*op < mp->lines)) /* order list present and valid? */ i = *op++; /* get next line in list to try */ else /* no list or not used or range error */ i = j; /* get next sequential line */ lp = mp->ldsc + i; /* get pointer to line descriptor */ if ((lp->conn == FALSE) && /* is the line available? */ (lp->destination == NULL) && (lp->master == 0) && (lp->ser_connect_pending == FALSE) && (lp->modem_control ? ((lp->modembits & TMXR_MDM_DTR) != 0) : TRUE)) break; /* yes, so stop search */ } if (i >= mp->lines) { /* all busy? */ int32 ringable_count = 0; for (j = 0; j < mp->lines; j++, i++) { /* find next avail line */ lp = mp->ldsc + j; /* get pointer to line descriptor */ if ((lp->conn == FALSE) && /* is the line available? */ (lp->destination == NULL) && (lp->master == 0) && (lp->ser_connect_pending == FALSE) && ((lp->modembits & TMXR_MDM_DTR) == 0)) { ++ringable_count; tmxr_set_get_modem_bits (lp, TMXR_MDM_RNG, 0, NULL); tmxr_debug_connect_line (lp, "tmxr_poll_conn() - Ringing line"); } } if (ringable_count > 0) { if (mp->ring_start_time == 0) { mp->ring_start_time = poll_time; mp->ring_sock = newsock; mp->ring_ipad = address; } else { if ((poll_time - mp->ring_start_time) < TMXR_MODEM_RING_TIME*1000) { mp->ring_sock = newsock; mp->ring_ipad = address; } else { /* Timeout waiting for DTR */ int ln; /* turn off pending ring signals */ for (ln = 0; ln < lp->mp->lines; ln++) { TMLN *tlp = lp->mp->ldsc + ln; if (((tlp->destination == NULL) && (tlp->master == 0)) && (tlp->modembits & TMXR_MDM_RNG) && (tlp->conn == FALSE)) tlp->modembits &= ~TMXR_MDM_RNG; } mp->ring_start_time = 0; tmxr_msg (newsock, "No answer on any connection\r\n"); tmxr_debug_connect (mp, "tmxr_poll_conn() - No Answer - All connections busy"); sim_close_sock (newsock); free (address); } } } else { tmxr_msg (newsock, "All connections busy\r\n"); tmxr_debug_connect (mp, "tmxr_poll_conn() - All connections busy"); sim_close_sock (newsock); free (address); } } else { lp = mp->ldsc + i; /* get line desc */ lp->conn = TRUE; /* record connection */ lp->sock = newsock; /* save socket */ lp->ipad = address; /* ip address */ tmxr_init_line (lp); /* init line */ lp->notelnet = mp->notelnet; /* apply mux default telnet setting */ if (!lp->notelnet) { sim_write_sock (newsock, (char *)mantra, sizeof(mantra)); tmxr_debug (TMXR_DBG_XMT, lp, "Sending", (char *)mantra, sizeof(mantra)); lp->telnet_sent_opts = (uint8 *)realloc (lp->telnet_sent_opts, 256); memset (lp->telnet_sent_opts, 0, 256); } |
︙ | ︙ | |||
1131 1132 1133 1134 1135 1136 1137 | tmxr_debug_connect_line (lp, msg); sim_close_sock (lp->connecting); /* abort our as yet unconnnected socket */ lp->connecting = 0; } } if (lp->conn == FALSE) { /* is the line available? */ if ((!lp->modem_control) || (lp->modembits & TMXR_MDM_DTR)) { | < > > > | 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 | tmxr_debug_connect_line (lp, msg); sim_close_sock (lp->connecting); /* abort our as yet unconnnected socket */ lp->connecting = 0; } } if (lp->conn == FALSE) { /* is the line available? */ if ((!lp->modem_control) || (lp->modembits & TMXR_MDM_DTR)) { lp->conn = TRUE; /* record connection */ lp->sock = newsock; /* save socket */ lp->ipad = address; /* ip address */ tmxr_init_line (lp); /* init line */ if (!lp->notelnet) { sim_write_sock (newsock, (char *)mantra, sizeof(mantra)); tmxr_debug (TMXR_DBG_XMT, lp, "Sending", (char *)mantra, sizeof(mantra)); lp->telnet_sent_opts = (uint8 *)realloc (lp->telnet_sent_opts, 256); memset (lp->telnet_sent_opts, 0, 256); } tmxr_report_connection (mp, lp); lp->cnms = sim_os_msec (); /* time of connection */ return i; } else { tmxr_msg (newsock, "Line connection not available\r\n"); |
︙ | ︙ | |||
1375 1376 1377 1378 1379 1380 1381 | if (incoming_state & TMXR_MDM_CTS) incoming_state |= TMXR_MDM_DCD; } else incoming_state |= TMXR_MDM_DCD; } else | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > | > > > > > > > | | 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 | if (incoming_state & TMXR_MDM_CTS) incoming_state |= TMXR_MDM_DCD; } else incoming_state |= TMXR_MDM_DCD; } else incoming_state = TMXR_MDM_DCD | TMXR_MDM_DSR | ((lp->modembits & TMXR_MDM_DTR) ? 0 : TMXR_MDM_RNG); } else { if (((before_modem_bits & TMXR_MDM_DTR) == 0) && /* Upward transition of DTR? */ ((lp->modembits & TMXR_MDM_DTR) != 0) && (lp->conn == FALSE) && /* Not connected */ (lp->modembits & TMXR_MDM_RNG)) { /* and Ring Signal Present */ if ((lp->destination == NULL) && (lp->master == 0) && (lp->mp && (lp->mp->ring_sock))) { int ln; lp->conn = TRUE; /* record connection */ lp->sock = lp->mp->ring_sock; /* save socket */ lp->mp->ring_sock = INVALID_SOCKET; lp->ipad = lp->mp->ring_ipad; /* ip address */ lp->mp->ring_ipad = NULL; lp->mp->ring_start_time = 0; tmxr_init_line (lp); /* init line */ lp->notelnet = lp->mp->notelnet; /* apply mux default telnet setting */ if (!lp->notelnet) { sim_write_sock (lp->sock, (char *)mantra, sizeof(mantra)); tmxr_debug (TMXR_DBG_XMT, lp, "Sending", (char *)mantra, sizeof(mantra)); lp->telnet_sent_opts = (uint8 *)realloc (lp->telnet_sent_opts, 256); memset (lp->telnet_sent_opts, 0, 256); } tmxr_report_connection (lp->mp, lp); lp->cnms = sim_os_msec (); /* time of connection */ lp->modembits &= ~TMXR_MDM_RNG; /* turn off ring on this line*/ /* turn off other pending ring signals */ for (ln = 0; ln < lp->mp->lines; ln++) { TMLN *tlp = lp->mp->ldsc + ln; if (((tlp->destination == NULL) && (tlp->master == 0)) && (tlp->modembits & TMXR_MDM_RNG) && (tlp->conn == FALSE)) tlp->modembits &= ~TMXR_MDM_RNG; } } } if ((lp->master) || (lp->mp && lp->mp->master) || (lp->port && lp->destination)) incoming_state = TMXR_MDM_DSR; else incoming_state = 0; } lp->modembits |= incoming_state; dptr = (lp->dptr ? lp->dptr : (lp->mp ? lp->mp->dptr : NULL)); if ((lp->modembits != before_modem_bits) && (sim_deb && lp->mp && dptr)) { sim_debug_bits (TMXR_DBG_MDM, dptr, tmxr_modem_bits, before_modem_bits, lp->modembits, FALSE); sim_debug (TMXR_DBG_MDM, dptr, " - Line %d - %p\n", (int)(lp-lp->mp->ldsc), lp->txb); } if (incoming_bits) *incoming_bits = lp->modembits; if (lp->mp && lp->modem_control) { /* This API ONLY works on modem_control enabled multiplexer lines */ if (bits_to_set | bits_to_clear) { /* Anything to do? */ if (lp->loopback) { if ((lp->modembits ^ before_modem_bits) & TMXR_MDM_DTR) { /* DTR changed? */ lp->ser_connect_pending = (lp->modembits & TMXR_MDM_DTR); lp->conn = !(lp->modembits & TMXR_MDM_DTR); } return SCPE_OK; } if (lp->serport) return sim_control_serial (lp->serport, bits_to_set, bits_to_clear, incoming_bits); if ((lp->sock) || (lp->connecting)) { if ((before_modem_bits & bits_to_clear & TMXR_MDM_DTR) != 0) { /* drop DTR? */ if (lp->sock) tmxr_report_disconnection (lp); /* report closure */ tmxr_reset_ln (lp); } } else { if ((lp->destination) && /* Virtual Null Modem Cable */ (bits_to_set & ~before_modem_bits & /* and DTR being Raised */ TMXR_MDM_DTR)) { char msg[512]; sprintf (msg, "tmxr_set_get_modem_bits() - establishing outgoing connection to: %s", lp->destination); tmxr_debug_connect_line (lp, msg); lp->connecting = sim_connect_sock_ex (lp->datagram ? lp->port : NULL, lp->destination, "localhost", NULL, (lp->datagram ? SIM_SOCK_OPT_DATAGRAM : 0) | (lp->mp->packet ? SIM_SOCK_OPT_NODELAY : 0)); } } } return SCPE_OK; } if ((lp->sock) || (lp->connecting)) { if ((before_modem_bits & bits_to_clear & TMXR_MDM_DTR) != 0) { /* drop DTR? */ if (lp->sock) tmxr_report_disconnection (lp); /* report closure */ tmxr_reset_ln (lp); } } if ((lp->serport) && (!lp->loopback)) sim_control_serial (lp->serport, 0, 0, incoming_bits); return SCPE_INCOMP; } /* Enable or Disable loopback mode on a line Inputs: lp - the line to change enable_loopback - enable or disable flag |
︙ | ︙ | |||
1494 1495 1496 1497 1498 1499 1500 | } t_bool tmxr_get_line_halfduplex (TMLN *lp) { return (lp->halfduplex != FALSE); } | | < < > | > > | > | | 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 | } t_bool tmxr_get_line_halfduplex (TMLN *lp) { return (lp->halfduplex != FALSE); } t_stat tmxr_set_config_line (TMLN *lp, CONST char *config) { t_stat r; tmxr_debug_trace_line (lp, "tmxr_set_config_line()"); if (lp->serport) r = sim_config_serial (lp->serport, config); else { lp->serconfig = (char *)realloc (lp->serconfig, 1 + strlen (config)); strcpy (lp->serconfig, config); r = tmxr_set_line_speed (lp, lp->serconfig);; if (r != SCPE_OK) { free (lp->serconfig); lp->serconfig = NULL; } } if ((r == SCPE_OK) && (lp->mp) && (lp->mp->uptr)) /* Record port state for proper restore */ lp->mp->uptr->filename = tmxr_mux_attach_string (lp->mp->uptr->filename, lp->mp); return r; } /* Get character from specific line |
︙ | ︙ | |||
1540 1541 1542 1543 1544 1545 1546 | int32 tmxr_getc_ln (TMLN *lp) { int32 j; t_stat val = 0; uint32 tmp; tmxr_debug_trace_line (lp, "tmxr_getc_ln()"); | | > > > > > > | 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 | int32 tmxr_getc_ln (TMLN *lp) { int32 j; t_stat val = 0; uint32 tmp; tmxr_debug_trace_line (lp, "tmxr_getc_ln()"); if ((lp->conn && lp->rcve) && /* conn & enb & */ ((!lp->rxbps) || /* (!rate limited || enough time passed)? */ (sim_gtime () >= lp->rxnexttime))) { if (!sim_send_poll_data (&lp->send, &val)) { /* injected input characters available? */ j = lp->rxbpi - lp->rxbpr; /* # input chrs */ if (j) { /* any? */ tmp = lp->rxb[lp->rxbpr]; /* get char */ val = TMXR_VALID | (tmp & 0377); /* valid + chr */ if (lp->rbr[lp->rxbpr]) { /* break? */ lp->rbr[lp->rxbpr] = 0; /* clear status */ val = val | SCPE_BREAK; /* indicate to caller */ } lp->rxbpr = lp->rxbpr + 1; /* adv pointer */ } } } /* end if conn */ if (lp->rxbpi == lp->rxbpr) /* empty? zero ptrs */ lp->rxbpi = lp->rxbpr = 0; if (lp->rxbps) { if (val) lp->rxnexttime = floor (sim_gtime () + ((lp->rxdelta * sim_timer_inst_per_sec ())/lp->rxbpsfactor)); } tmxr_debug_return(lp, val); return val; } /* Get packet from specific line Inputs: |
︙ | ︙ | |||
1874 1875 1876 1877 1878 1879 1880 | } /* end for */ return; } /* Return count of available characters for line */ | | > > > > > > > > > > > | 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | } /* end for */ return; } /* Return count of available characters for line */ int32 tmxr_rqln_bare (const TMLN *lp, t_bool speed) { if ((speed) && (lp->rxbps)) { /* consider speed and rate limiting? */ if (sim_gtime () < lp->rxnexttime) /* too soon? */ return 0; else return (lp->rxbpi - lp->rxbpr + ((lp->rxbpi < lp->rxbpr)? lp->rxbsz : 0)) ? 1 : 0; } return (lp->rxbpi - lp->rxbpr + ((lp->rxbpi < lp->rxbpr)? lp->rxbsz: 0)); } int32 tmxr_rqln (const TMLN *lp) { return tmxr_rqln_bare (lp, TRUE); } /* Store character in line buffer Inputs: *lp = pointer to line descriptor chr = character |
︙ | ︙ | |||
1901 1902 1903 1904 1905 1906 1907 | { if ((lp->conn == FALSE) && /* no conn & not buffered telnet? */ (!lp->txbfd || lp->notelnet)) { ++lp->txdrp; /* lost */ return SCPE_LOST; } tmxr_debug_trace_line (lp, "tmxr_putc_ln()"); | | | 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 | { if ((lp->conn == FALSE) && /* no conn & not buffered telnet? */ (!lp->txbfd || lp->notelnet)) { ++lp->txdrp; /* lost */ return SCPE_LOST; } tmxr_debug_trace_line (lp, "tmxr_putc_ln()"); #define TXBUF_AVAIL(lp) ((lp->serport ? 2: lp->txbsz) - tmxr_tqln (lp)) #define TXBUF_CHAR(lp, c) { \ lp->txb[lp->txbpi++] = (char)(c); \ lp->txbpi %= lp->txbsz; \ if (lp->txbpi == lp->txbpr) \ lp->txbpr = (1+lp->txbpr)%lp->txbsz, ++lp->txdrp; \ } if ((lp->txbfd && !lp->notelnet) || (TXBUF_AVAIL(lp) > 1)) {/* room for char (+ IAC)? */ |
︙ | ︙ | |||
1998 1999 2000 2001 2002 2003 2004 | tmxr_debug_trace (mp, "tmxr_poll_tx()"); for (i = 0; i < mp->lines; i++) { /* loop thru lines */ lp = mp->ldsc + i; /* get line desc */ if (!lp->conn) /* skip if !conn */ continue; nbytes = tmxr_send_buffered_data (lp); /* buffered bytes */ if (nbytes == 0) { /* buf empty? enab line */ | | | 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 | tmxr_debug_trace (mp, "tmxr_poll_tx()"); for (i = 0; i < mp->lines; i++) { /* loop thru lines */ lp = mp->ldsc + i; /* get line desc */ if (!lp->conn) /* skip if !conn */ continue; nbytes = tmxr_send_buffered_data (lp); /* buffered bytes */ if (nbytes == 0) { /* buf empty? enab line */ #if defined(SIM_ASYNCH_MUX) UNIT *ruptr = lp->uptr ? lp->uptr : lp->mp->uptr; if ((ruptr->dynflags & UNIT_TM_POLL) && sim_asynch_enabled && tmxr_rqln (lp)) _sim_activate (ruptr, 0); #endif lp->xmte = 1; /* enable line transmit */ |
︙ | ︙ | |||
2072 2073 2074 2075 2076 2077 2078 | return tmxr_send_buffered_data (lp); return tmxr_tqln(lp) + tmxr_tpqln(lp); } /* Return count of buffered characters for line */ | | | | | 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 | return tmxr_send_buffered_data (lp); return tmxr_tqln(lp) + tmxr_tpqln(lp); } /* Return count of buffered characters for line */ int32 tmxr_tqln (const TMLN *lp) { return (lp->txbpi - lp->txbpr + ((lp->txbpi < lp->txbpr)? lp->txbsz: 0)); } /* Return count of buffered packet characters for line */ int32 tmxr_tpqln (const TMLN *lp) { return (lp->txppsize - lp->txppoffset); } /* Return transmit packet busy status for line */ t_bool tmxr_tpbusyln (const TMLN *lp) { return (0 != (lp->txppsize - lp->txppoffset)); } static void _mux_detach_line (TMLN *lp, t_bool close_listener, t_bool close_connecting) { if (close_listener && lp->master) { |
︙ | ︙ | |||
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 | uptr->filename = tmxr_mux_attach_string (uptr->filename, lp->mp); /* No connections or listeners exist, then we're equivalent to being fully detached. We should reflect that */ if (uptr->filename == NULL) tmxr_detach (lp->mp, uptr); } return SCPE_OK; } /* Open a master listening socket (and all of the other variances of connections). A listening socket for the port number described by "cptr" is opened for the multiplexer associated with descriptor "mp". If the open is successful, all lines not currently otherwise connected (via serial, outgoing or direct listener) are initialized for Telnet connections. Initialization for all connection styles (MUX wide listener, per line serial, listener, outgoing, logging, buffering) are handled by this routine. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | > > > > > > > | | | | | | | | | | | | | | > > > > > > > | > | | | | | | | > > | | | | | | | | | | 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 | uptr->filename = tmxr_mux_attach_string (uptr->filename, lp->mp); /* No connections or listeners exist, then we're equivalent to being fully detached. We should reflect that */ if (uptr->filename == NULL) tmxr_detach (lp->mp, uptr); } return SCPE_OK; } static int32 _tmln_speed_delta (CONST char *cptr) { struct { const char *bps; int32 delta; } *spd, speeds[] = { {"50", TMLN_SPD_50_BPS}, {"75", TMLN_SPD_75_BPS}, {"110", TMLN_SPD_110_BPS}, {"134", TMLN_SPD_134_BPS}, {"150", TMLN_SPD_150_BPS}, {"300", TMLN_SPD_300_BPS}, {"600", TMLN_SPD_600_BPS}, {"1200", TMLN_SPD_1200_BPS}, {"1800", TMLN_SPD_1800_BPS}, {"2000", TMLN_SPD_2000_BPS}, {"2400", TMLN_SPD_2400_BPS}, {"3600", TMLN_SPD_3600_BPS}, {"4800", TMLN_SPD_4800_BPS}, {"7200", TMLN_SPD_7200_BPS}, {"9600", TMLN_SPD_9600_BPS}, {"19200", TMLN_SPD_19200_BPS}, {"38400", TMLN_SPD_38400_BPS}, {"57600", TMLN_SPD_57600_BPS}, {"76800", TMLN_SPD_76800_BPS}, {"115200", TMLN_SPD_115200_BPS}, {"0", 0}}; /* End of List, last valid value */ int nspeed; char speed[24]; nspeed = (uint32)strtotv (cptr, &cptr, 10); if ((*cptr != '\0') && (*cptr != '-') && (*cptr != '*')) return -1; sprintf (speed, "%d", nspeed); spd = speeds; while (1) { if (0 == strcmp(spd->bps, speed)) return spd->delta; if (spd->delta == 0) break; ++spd; } return -1; } t_stat tmxr_set_line_speed (TMLN *lp, CONST char *speed) { UNIT *uptr; CONST char *cptr; t_stat r; if (!speed || !*speed) return SCPE_2FARG; if (_tmln_speed_delta (speed) < 0) return SCPE_ARG; lp->rxbps = (uint32)strtotv (speed, &cptr, 10); if (*cptr == '*') { uint32 rxbpsfactor = (uint32) get_uint (cptr+1, 10, 32, &r); if (r != SCPE_OK) return r; lp->rxbpsfactor = TMXR_RX_BPS_UNIT_SCALE * rxbpsfactor; } lp->rxdelta = _tmln_speed_delta (speed); lp->rxnexttime = 0.0; uptr = lp->uptr; if ((!uptr) && (lp->mp)) uptr = lp->mp->uptr; if (uptr) uptr->wait = lp->rxdelta; if (lp->rxbpsfactor == 0.0) lp->rxbpsfactor = TMXR_RX_BPS_UNIT_SCALE; lp->txbps = lp->rxbps; lp->txdelta = lp->rxdelta; lp->txnexttime = lp->rxnexttime; return SCPE_OK; } /* Open a master listening socket (and all of the other variances of connections). A listening socket for the port number described by "cptr" is opened for the multiplexer associated with descriptor "mp". If the open is successful, all lines not currently otherwise connected (via serial, outgoing or direct listener) are initialized for Telnet connections. Initialization for all connection styles (MUX wide listener, per line serial, listener, outgoing, logging, buffering) are handled by this routine. */ t_stat tmxr_open_master (TMXR *mp, CONST char *cptr) { int32 i, line, nextline = -1; char tbuf[CBUFSIZE], listen[CBUFSIZE], destination[CBUFSIZE], logfiletmpl[CBUFSIZE], buffered[CBUFSIZE], hostport[CBUFSIZE], port[CBUFSIZE], option[CBUFSIZE], speed[CBUFSIZE]; SOCKET sock; SERHANDLE serport; CONST char *tptr = cptr; t_bool nolog, notelnet, listennotelnet, modem_control, loopback, datagram, packet; TMLN *lp; t_stat r = SCPE_OK; if (*tptr == '\0') return SCPE_ARG; for (i = 0; i < mp->lines; i++) { /* initialize lines */ lp = mp->ldsc + i; lp->mp = mp; /* set the back pointer */ lp->modem_control = mp->modem_control; if (lp->rxbpsfactor == 0.0) lp->rxbpsfactor = TMXR_RX_BPS_UNIT_SCALE; } mp->ring_sock = INVALID_SOCKET; free (mp->ring_ipad); mp->ring_ipad = NULL; mp->ring_start_time = 0; tmxr_debug_trace (mp, "tmxr_open_master()"); while (*tptr) { line = nextline; memset(logfiletmpl, '\0', sizeof(logfiletmpl)); memset(listen, '\0', sizeof(listen)); memset(destination, '\0', sizeof(destination)); memset(buffered, '\0', sizeof(buffered)); memset(port, '\0', sizeof(port)); memset(option, '\0', sizeof(option)); memset(speed, '\0', sizeof(speed)); nolog = notelnet = listennotelnet = loopback = FALSE; datagram = mp->datagram; packet = mp->packet; if (mp->buffered) sprintf(buffered, "%d", mp->buffered); if (line != -1) notelnet = listennotelnet = mp->notelnet; modem_control = mp->modem_control; while (*tptr) { tptr = get_glyph_nc (tptr, tbuf, ','); if (!tbuf[0]) break; cptr = tbuf; if (!isdigit(*cptr)) { char gbuf[CBUFSIZE]; CONST char *init_cptr = cptr; cptr = get_glyph (cptr, gbuf, '='); if (0 == MATCH_CMD (gbuf, "LINE")) { if ((NULL == cptr) || ('\0' == *cptr)) return sim_messagef (SCPE_2FARG, "Missing Line Specifier\n"); nextline = (int32) get_uint (cptr, 10, mp->lines-1, &r); if (r) return sim_messagef (SCPE_ARG, "Invalid Line Specifier: %s\n", cptr); break; } if (0 == MATCH_CMD (gbuf, "LOG")) { if ((NULL == cptr) || ('\0' == *cptr)) return sim_messagef (SCPE_2FARG, "Missing Log Specifier\n"); strncpy(logfiletmpl, cptr, sizeof(logfiletmpl)-1); continue; } if (0 == MATCH_CMD (gbuf, "LOOPBACK")) { if ((NULL != cptr) && ('\0' != *cptr)) return sim_messagef (SCPE_2MARG, "Unexpected Loopback Specifier: %s\n", cptr); loopback = TRUE; continue; } if ((0 == MATCH_CMD (gbuf, "NOBUFFERED")) || (0 == MATCH_CMD (gbuf, "UNBUFFERED"))) { if ((NULL != cptr) && ('\0' != *cptr)) return sim_messagef (SCPE_2MARG, "Unexpected Unbuffered Specifier: %s\n", cptr); buffered[0] = '\0'; continue; } if (0 == MATCH_CMD (gbuf, "BUFFERED")) { if ((NULL == cptr) || ('\0' == *cptr)) strcpy (buffered, "32768"); else { i = (int32) get_uint (cptr, 10, 1024*1024, &r); if (r || (i == 0)) return sim_messagef (SCPE_ARG, "Invalid Buffered Specifier: %s\n", cptr); sprintf(buffered, "%d", i); } continue; } if (0 == MATCH_CMD (gbuf, "NOLOG")) { if ((NULL != cptr) && ('\0' != *cptr)) return sim_messagef (SCPE_2MARG, "Unexpected NoLog Specifier: %s\n", cptr); nolog = TRUE; continue; } if (0 == MATCH_CMD (gbuf, "NOMODEM")) { if ((NULL != cptr) && ('\0' != *cptr)) return sim_messagef (SCPE_2MARG, "Unexpected NoModem Specifier: %s\n", cptr); modem_control = FALSE; continue; } if (0 == MATCH_CMD (gbuf, "MODEM")) { if ((NULL != cptr) && ('\0' != *cptr)) return sim_messagef (SCPE_2MARG, "Unexpected Modem Specifier: %s\n", cptr); modem_control = TRUE; continue; } if ((0 == MATCH_CMD (gbuf, "DATAGRAM")) || (0 == MATCH_CMD (gbuf, "UDP"))) { if ((NULL != cptr) && ('\0' != *cptr)) return sim_messagef (SCPE_2MARG, "Unexpected Datagram Specifier: %s\n", cptr); notelnet = datagram = TRUE; continue; } if (0 == MATCH_CMD (gbuf, "PACKET")) { if ((NULL != cptr) && ('\0' != *cptr)) return sim_messagef (SCPE_2MARG, "Unexpected Packet Specifier: %s\n", cptr); packet = TRUE; continue; } if ((0 == MATCH_CMD (gbuf, "STREAM")) || (0 == MATCH_CMD (gbuf, "TCP"))) { if ((NULL != cptr) && ('\0' != *cptr)) return sim_messagef (SCPE_2MARG, "Unexpected Stream Specifier: %s\n", cptr); datagram = FALSE; continue; } if (0 == MATCH_CMD (gbuf, "CONNECT")) { if ((NULL == cptr) || ('\0' == *cptr)) return sim_messagef (SCPE_2FARG, "Missing Connect Specifier\n"); strcpy (destination, cptr); continue; } if (0 == MATCH_CMD (gbuf, "SPEED")) { if ((NULL == cptr) || ('\0' == *cptr) || (_tmln_speed_delta (cptr) < 0)) return sim_messagef (SCPE_ARG, "Invalid Speed Specifier: %s\n", (cptr ? cptr : "")); strcpy (speed, cptr); continue; } cptr = get_glyph (gbuf, port, ';'); if (sim_parse_addr (port, NULL, 0, NULL, NULL, 0, NULL, NULL)) return sim_messagef (SCPE_ARG, "Invalid Port Specifier: %s\n", port); if (cptr) { char *tptr = gbuf + (cptr - gbuf); get_glyph (cptr, tptr, 0); /* upcase this string */ if (0 == MATCH_CMD (cptr, "NOTELNET")) listennotelnet = TRUE; else if (0 == MATCH_CMD (cptr, "TELNET")) listennotelnet = FALSE; else return sim_messagef (SCPE_ARG, "Invalid Specifier: %s\n", tptr); } cptr = init_cptr; } cptr = get_glyph_nc (cptr, port, ';'); sock = sim_master_sock (port, &r); /* make master socket to validate port */ if (r) return sim_messagef (SCPE_ARG, "Invalid Port Specifier: %s\n", port); if (sock == INVALID_SOCKET) /* open error */ return sim_messagef (SCPE_OPENERR, "Can't open network port: %s\n", port); sim_close_sock (sock); sim_os_ms_sleep (2); /* let the close finish (required on some platforms) */ strcpy (listen, port); cptr = get_glyph (cptr, option, ';'); if (option[0]) { if (0 == MATCH_CMD (option, "NOTELNET")) listennotelnet = TRUE; else if (0 == MATCH_CMD (option, "TELNET")) listennotelnet = FALSE; else return sim_messagef (SCPE_ARG, "Invalid Specifier: %s\n", option); } } if (destination[0]) { /* Validate destination */ serport = sim_open_serial (destination, NULL, &r); if (serport != INVALID_HANDLE) { sim_close_serial (serport); if (strchr (destination, ';') && mp->modem_control && !(sim_switches & SIM_SW_REST)) return sim_messagef (SCPE_ARG, "Serial line parameters must be set within simulated OS: %s\n", 1 + strchr (destination, ';')); } else { char *eptr; memset (hostport, '\0', sizeof(hostport)); strncpy (hostport, destination, sizeof(hostport)-1); if ((eptr = strchr (hostport, ';'))) *(eptr++) = '\0'; if (eptr) { get_glyph (eptr, eptr, 0); /* upcase this string */ if (0 == MATCH_CMD (eptr, "NOTELNET")) notelnet = TRUE; else if (0 == MATCH_CMD (eptr, "TELNET")) if (datagram) return sim_messagef (SCPE_ARG, "Telnet invalid on Datagram socket\n"); else notelnet = FALSE; else return sim_messagef (SCPE_ARG, "Unexpected specifier: %s\n", eptr); } sock = sim_connect_sock_ex (NULL, hostport, "localhost", NULL, (datagram ? SIM_SOCK_OPT_DATAGRAM : 0) | (packet ? SIM_SOCK_OPT_NODELAY : 0)); if (sock != INVALID_SOCKET) sim_close_sock (sock); else return sim_messagef (SCPE_ARG, "Invalid destination: %s\n", hostport); } } if (line == -1) { if (modem_control != mp->modem_control) return SCPE_ARG; if (logfiletmpl[0]) { strncpy(mp->logfiletmpl, logfiletmpl, sizeof(mp->logfiletmpl)-1); |
︙ | ︙ | |||
2411 2412 2413 2414 2415 2416 2417 | lp->txlog = NULL; } } } if ((listen[0]) && (!datagram)) { sock = sim_master_sock (listen, &r); /* make master socket */ if (r) | | | > > > > > > > > | > > | | 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 | lp->txlog = NULL; } } } if ((listen[0]) && (!datagram)) { sock = sim_master_sock (listen, &r); /* make master socket */ if (r) return sim_messagef (SCPE_ARG, "Invalid network listen port: %s\n", listen); if (sock == INVALID_SOCKET) /* open error */ return sim_messagef (SCPE_OPENERR, "Can't open network socket for listen port: %s\n", listen); if (mp->port) { /* close prior listener */ sim_close_sock (mp->master); mp->master = 0; free (mp->port); mp->port = NULL; } sim_printf ("Listening on port %s\n", listen); mp->port = (char *)realloc (mp->port, 1 + strlen (listen)); strcpy (mp->port, listen); /* save port */ mp->master = sock; /* save master socket */ mp->ring_sock = INVALID_SOCKET; free (mp->ring_ipad); mp->ring_ipad = NULL; mp->ring_start_time = 0; mp->notelnet = listennotelnet; /* save desired telnet behavior flag */ for (i = 0; i < mp->lines; i++) { /* initialize lines */ lp = mp->ldsc + i; lp->mp = mp; /* set the back pointer */ lp->packet = mp->packet; if (lp->serport) { /* serial port attached? */ tmxr_reset_ln (lp); /* close current serial connection */ sim_control_serial (lp->serport, 0, TMXR_MDM_DTR|TMXR_MDM_RTS, NULL);/* drop DTR and RTS */ sim_close_serial (lp->serport); lp->serport = 0; free (lp->serconfig); lp->serconfig = NULL; } else { if (speed[0]) tmxr_set_line_speed (lp, speed); } tmxr_init_line (lp); /* initialize line state */ lp->sock = 0; /* clear the socket */ } } if (loopback) { if (mp->lines > 1) return sim_messagef (SCPE_ARG, "Ambiguous Loopback specification\n"); sim_printf ("Operating in loopback mode\n"); for (i = 0; i < mp->lines; i++) { lp = mp->ldsc + i; tmxr_set_line_loopback (lp, loopback); if (speed[0]) tmxr_set_line_speed (lp, speed); } } if (destination[0]) { if (mp->lines > 1) return sim_messagef (SCPE_ARG, "Ambiguous Destination specification\n"); lp = &mp->ldsc[0]; serport = sim_open_serial (destination, lp, &r); if (serport != INVALID_HANDLE) { _mux_detach_line (lp, TRUE, TRUE); if (lp->mp && lp->mp->master) { /* if existing listener, close it */ sim_close_sock (lp->mp->master); lp->mp->master = 0; |
︙ | ︙ | |||
2487 2488 2489 2490 2491 2492 2493 | lp->datagram = datagram; if (datagram) { if (listen[0]) { lp->port = (char *)realloc (lp->port, 1 + strlen (listen)); strcpy (lp->port, listen); /* save port */ } else | | > > | | | 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 | lp->datagram = datagram; if (datagram) { if (listen[0]) { lp->port = (char *)realloc (lp->port, 1 + strlen (listen)); strcpy (lp->port, listen); /* save port */ } else return sim_messagef (SCPE_ARG, "Missing listen port for Datagram socket\n"); } lp->packet = packet; sock = sim_connect_sock_ex (datagram ? listen : NULL, hostport, "localhost", NULL, (datagram ? SIM_SOCK_OPT_DATAGRAM : 0) | (packet ? SIM_SOCK_OPT_NODELAY : 0)); if (sock != INVALID_SOCKET) { _mux_detach_line (lp, FALSE, TRUE); lp->destination = (char *)malloc(1+strlen(hostport)); strcpy (lp->destination, hostport); lp->mp = mp; if (!lp->modem_control || (lp->modembits & TMXR_MDM_DTR)) { lp->connecting = sock; lp->ipad = (char *)malloc (1 + strlen (lp->destination)); strcpy (lp->ipad, lp->destination); } else sim_close_sock (sock); lp->notelnet = notelnet; tmxr_init_line (lp); /* init the line state */ if (speed[0] && (!datagram)) tmxr_set_line_speed (lp, speed); return SCPE_OK; } else return sim_messagef (SCPE_ARG, "Can't open %s socket on %s%s%s\n", datagram ? "Datagram" : "Stream", datagram ? listen : "", datagram ? "<->" : "", hostport); } } } else { /* line specific attach */ lp = &mp->ldsc[line]; lp->mp = mp; if (logfiletmpl[0]) { sim_close_logfile (&lp->txlogref); lp->txlog = NULL; lp->txlogname = (char *)realloc (lp->txlogname, 1 + strlen (logfiletmpl)); strcpy (lp->txlogname, logfiletmpl); r = sim_open_logfile (lp->txlogname, TRUE, &lp->txlog, &lp->txlogref); if (r == SCPE_OK) setvbuf(lp->txlog, NULL, _IOFBF, 65536); else { free (lp->txlogname); lp->txlogname = NULL; return sim_messagef (r, "Can't open log file: %s\n", logfiletmpl); } } if (buffered[0] == '\0') { lp->rxbsz = lp->txbsz = TMXR_MAXBUF; lp->txbfd = 0; } else { |
︙ | ︙ | |||
2551 2552 2553 2554 2555 2556 2557 | lp->txlogname = NULL; if (lp->txlog) { sim_close_logfile (&lp->txlogref); lp->txlog = NULL; } } if ((listen[0]) && (!datagram)) { | | | | | | 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 | lp->txlogname = NULL; if (lp->txlog) { sim_close_logfile (&lp->txlogref); lp->txlog = NULL; } } if ((listen[0]) && (!datagram)) { if ((mp->lines == 1) && (mp->master)) return sim_messagef (SCPE_ARG, "Single Line MUX can have either line specific OR MUS listener but NOT both\n"); sock = sim_master_sock (listen, &r); /* make master socket */ if (r) return sim_messagef (SCPE_ARG, "Invalid Listen Specification: %s\n", listen); if (sock == INVALID_SOCKET) /* open error */ return sim_messagef (SCPE_OPENERR, "Can't listen on port: %s\n", listen); _mux_detach_line (lp, TRUE, FALSE); sim_printf ("Line %d Listening on port %s\n", line, listen); lp->port = (char *)realloc (lp->port, 1 + strlen (listen)); strcpy (lp->port, listen); /* save port */ lp->master = sock; /* save master socket */ if (listennotelnet != mp->notelnet) lp->notelnet = listennotelnet; |
︙ | ︙ | |||
2594 2595 2596 2597 2598 2599 2600 | lp->datagram = datagram; if (datagram) { if (listen[0]) { lp->port = (char *)realloc (lp->port, 1 + strlen (listen)); strcpy (lp->port, listen); /* save port */ } else | | | > > | 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 | lp->datagram = datagram; if (datagram) { if (listen[0]) { lp->port = (char *)realloc (lp->port, 1 + strlen (listen)); strcpy (lp->port, listen); /* save port */ } else return sim_messagef (SCPE_ARG, "Missing listen port for Datagram socket\n"); } sock = sim_connect_sock_ex (datagram ? listen : NULL, hostport, "localhost", NULL, (datagram ? SIM_SOCK_OPT_DATAGRAM : 0) | (packet ? SIM_SOCK_OPT_NODELAY : 0)); if (sock != INVALID_SOCKET) { _mux_detach_line (lp, FALSE, TRUE); lp->destination = (char *)malloc(1+strlen(hostport)); strcpy (lp->destination, hostport); if (!lp->modem_control || (lp->modembits & TMXR_MDM_DTR)) { lp->connecting = sock; lp->ipad = (char *)malloc (1 + strlen (lp->destination)); strcpy (lp->ipad, lp->destination); } else sim_close_sock (sock); lp->notelnet = notelnet; tmxr_init_line (lp); /* init the line state */ } else return sim_messagef (SCPE_ARG, "Can't open %s socket on %s%s%s\n", datagram ? "Datagram" : "Stream", datagram ? listen : "", datagram ? "<->" : "", hostport); } } if (loopback) { tmxr_set_line_loopback (lp, loopback); sim_printf ("Line %d operating in loopback mode\n", line); } lp->modem_control = modem_control; if (speed[0] && (!datagram) && (!lp->serport)) tmxr_set_line_speed (lp, speed); r = SCPE_OK; } } if (r == SCPE_OK) tmxr_add_to_open_list (mp); return r; } |
︙ | ︙ | |||
2714 2715 2716 2717 2718 2719 2720 | return SCPE_OK; } static TMXR **tmxr_open_devices = NULL; static int tmxr_open_device_count = 0; | | < < < | < | 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 | return SCPE_OK; } static TMXR **tmxr_open_devices = NULL; static int tmxr_open_device_count = 0; #if defined(SIM_ASYNCH_MUX) pthread_t sim_tmxr_poll_thread; /* Polling Thread Id */ #if defined(_WIN32) || defined(VMS) pthread_t sim_tmxr_serial_poll_thread; /* Serial Polling Thread Id */ pthread_cond_t sim_tmxr_serial_startup_cond; #endif pthread_mutex_t sim_tmxr_poll_lock; pthread_cond_t sim_tmxr_poll_cond; pthread_cond_t sim_tmxr_startup_cond; int32 sim_tmxr_poll_count = 0; t_bool sim_tmxr_poll_running = FALSE; static void * _tmxr_poll(void *arg) { struct timeval timeout; int timeout_usec; DEVICE *dptr = tmxr_open_devices[0]->dptr; UNIT **units = NULL; UNIT **activated = NULL; SOCKET *sockets = NULL; int wait_count = 0; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which, in general, won't be readily yielding the processor when this thread needs to run */ sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); sim_debug (TMXR_DBG_ASY, dptr, "_tmxr_poll() - starting\n"); units = (UNIT **)calloc(FD_SETSIZE, sizeof(*units)); activated = (UNIT **)calloc(FD_SETSIZE, sizeof(*activated)); sockets = (SOCKET *)calloc(FD_SETSIZE, sizeof(*sockets)); timeout_usec = 1000000; |
︙ | ︙ | |||
2949 2950 2951 2952 2953 2954 2955 | return NULL; } #if defined(_WIN32) static void * _tmxr_serial_poll(void *arg) { | < < < | < | 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 | return NULL; } #if defined(_WIN32) static void * _tmxr_serial_poll(void *arg) { int timeout_usec; DEVICE *dptr = tmxr_open_devices[0]->dptr; UNIT **units = NULL; UNIT **activated = NULL; SERHANDLE *serports = NULL; int wait_count = 0; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which, in general, won't be readily yielding the processor when this thread needs to run */ sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); sim_debug (TMXR_DBG_ASY, dptr, "_tmxr_serial_poll() - starting\n"); units = (UNIT **)calloc(MAXIMUM_WAIT_OBJECTS, sizeof(*units)); activated = (UNIT **)calloc(MAXIMUM_WAIT_OBJECTS, sizeof(*activated)); serports = (SERHANDLE *)calloc(MAXIMUM_WAIT_OBJECTS, sizeof(*serports)); timeout_usec = 1000000; |
︙ | ︙ | |||
3085 3086 3087 3088 3089 3090 3091 | pthread_cond_t sim_serial_line_startup_cond; static void * _tmxr_serial_line_poll(void *arg) { TMLN *lp = (TMLN *)arg; | < < < | < | 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 | pthread_cond_t sim_serial_line_startup_cond; static void * _tmxr_serial_line_poll(void *arg) { TMLN *lp = (TMLN *)arg; DEVICE *dptr = tmxr_open_devices[0]->dptr; UNIT *uptr = (lp->uptr ? lp->uptr : lp->mp->uptr); DEVICE *d = find_dev_from_unit(uptr); int wait_count = 0; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which, in general, won't be readily yielding the processor when this thread needs to run */ sim_os_set_thread_priority (PRIORITY_ABOVE_NORMAL); sim_debug (TMXR_DBG_ASY, dptr, "_tmxr_serial_line_poll() - starting\n"); pthread_mutex_lock (&sim_tmxr_poll_lock); pthread_cond_signal (&sim_serial_line_startup_cond); /* Signal we're ready to go */ while (sim_asynch_enabled) { int i, j; |
︙ | ︙ | |||
3167 3168 3169 3170 3171 3172 3173 | return NULL; } static void * _tmxr_serial_poll(void *arg) { | < < < < < | 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 | return NULL; } static void * _tmxr_serial_poll(void *arg) { int timeout_usec; DEVICE *dptr = tmxr_open_devices[0]->dptr; TMLN **lines = NULL; pthread_t *threads = NULL; /* Boost Priority for this I/O thread vs the CPU instruction execution thread which, in general, won't be readily yielding the processor when this thread needs to run */ sim_debug (TMXR_DBG_ASY, dptr, "_tmxr_serial_poll() - starting\n"); lines = (TMLN **)calloc(MAXIMUM_WAIT_OBJECTS, sizeof(*lines)); threads = (pthread_t *)calloc(MAXIMUM_WAIT_OBJECTS, sizeof(*threads)); pthread_mutex_lock (&sim_tmxr_poll_lock); pthread_cond_signal (&sim_tmxr_serial_startup_cond); /* Signal we're ready to go */ |
︙ | ︙ | |||
3229 3230 3231 3232 3233 3234 3235 | sim_debug (TMXR_DBG_ASY, dptr, "_tmxr_serial_poll() - exiting\n"); return NULL; } #endif /* VMS */ | | | | 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 | sim_debug (TMXR_DBG_ASY, dptr, "_tmxr_serial_poll() - exiting\n"); return NULL; } #endif /* VMS */ #endif /* defined(SIM_ASYNCH_MUX) */ t_stat tmxr_start_poll (void) { #if defined(SIM_ASYNCH_MUX) pthread_mutex_lock (&sim_tmxr_poll_lock); if ((tmxr_open_device_count > 0) && sim_asynch_enabled && sim_is_running && !sim_tmxr_poll_running) { pthread_attr_t attr; |
︙ | ︙ | |||
3257 3258 3259 3260 3261 3262 3263 | pthread_mutex_unlock (&sim_tmxr_poll_lock); #endif return SCPE_OK; } t_stat tmxr_stop_poll (void) { | | | 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 | pthread_mutex_unlock (&sim_tmxr_poll_lock); #endif return SCPE_OK; } t_stat tmxr_stop_poll (void) { #if defined(SIM_ASYNCH_MUX) pthread_mutex_lock (&sim_tmxr_poll_lock); if (sim_tmxr_poll_running) { pthread_cond_signal (&sim_tmxr_poll_cond); pthread_mutex_unlock (&sim_tmxr_poll_lock); pthread_join (sim_tmxr_poll_thread, NULL); sim_tmxr_poll_running = FALSE; /* Transitioning from asynch mode so kick all polling units onto the event queue */ |
︙ | ︙ | |||
3290 3291 3292 3293 3294 3295 3296 | } static void tmxr_add_to_open_list (TMXR* mux) { int i; t_bool found = FALSE; | | | | | | 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 | } static void tmxr_add_to_open_list (TMXR* mux) { int i; t_bool found = FALSE; #if defined(SIM_ASYNCH_MUX) pthread_mutex_lock (&sim_tmxr_poll_lock); #endif for (i=0; i<tmxr_open_device_count; ++i) if (tmxr_open_devices[i] == mux) { found = TRUE; break; } if (!found) { tmxr_open_devices = (TMXR **)realloc(tmxr_open_devices, (tmxr_open_device_count+1)*sizeof(*tmxr_open_devices)); tmxr_open_devices[tmxr_open_device_count++] = mux; for (i=0; i<mux->lines; i++) if (0 == mux->ldsc[i].send.delay) mux->ldsc[i].send.delay = SEND_DEFAULT_DELAY; } #if defined(SIM_ASYNCH_MUX) pthread_mutex_unlock (&sim_tmxr_poll_lock); if ((tmxr_open_device_count == 1) && (sim_asynch_enabled)) tmxr_start_poll (); #endif } static void _tmxr_remove_from_open_list (TMXR* mux) { int i, j; #if defined(SIM_ASYNCH_MUX) tmxr_stop_poll (); pthread_mutex_lock (&sim_tmxr_poll_lock); #endif for (i=0; i<tmxr_open_device_count; ++i) if (tmxr_open_devices[i] == mux) { for (j=i+1; j<tmxr_open_device_count; ++j) tmxr_open_devices[j-1] = tmxr_open_devices[j]; --tmxr_open_device_count; break; } #if defined(SIM_ASYNCH_MUX) pthread_mutex_unlock (&sim_tmxr_poll_lock); #endif } static t_stat _tmxr_locate_line_send_expect (const char *cptr, SEND **snd, EXPECT **exp) { char gbuf[CBUFSIZE]; |
︙ | ︙ | |||
3386 3387 3388 3389 3390 3391 3392 | #endif return SCPE_OK; } /* Attach unit to master socket */ | | > | | 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 | #endif return SCPE_OK; } /* Attach unit to master socket */ t_stat tmxr_attach_ex (TMXR *mp, UNIT *uptr, CONST char *cptr, t_bool async) { t_stat r; int32 i; r = tmxr_open_master (mp, cptr); /* open master socket */ if (r != SCPE_OK) /* error? */ return r; mp->uptr = uptr; /* save unit for polling */ uptr->filename = tmxr_mux_attach_string (uptr->filename, mp);/* save */ uptr->flags = uptr->flags | UNIT_ATT; /* no more errors */ uptr->tmxr = (void *)mp; if ((mp->lines > 1) || ((mp->master == 0) && (mp->ldsc[0].connecting == 0) && (mp->ldsc[0].serport == 0))) uptr->dynflags = uptr->dynflags | UNIT_ATTMULT; /* allow multiple attach commands */ #if defined(SIM_ASYNCH_MUX) if (!async || (uptr->flags & TMUF_NOASYNCH)) /* if asynch disabled */ uptr->dynflags |= TMUF_NOASYNCH; /* tag as no asynch */ #else uptr->dynflags |= TMUF_NOASYNCH; /* tag as no asynch */ #endif if (mp->dptr == NULL) /* has device been set? */ |
︙ | ︙ | |||
3438 3439 3440 3441 3442 3443 3444 | t_stat tmxr_shutdown (void) { if (tmxr_open_device_count) return SCPE_IERR; return SCPE_OK; } | | | 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 | t_stat tmxr_shutdown (void) { if (tmxr_open_device_count) return SCPE_IERR; return SCPE_OK; } t_stat tmxr_show_open_devices (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char* desc) { int i, j; if (0 == tmxr_open_device_count) fprintf(st, "No Attached Multiplexer Devices\n"); else { for (i=0; i<tmxr_open_device_count; ++i) { |
︙ | ︙ | |||
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 | fprintf(st, ", Buffered=%d", mp->buffered); attach = tmxr_mux_attach_string (NULL, mp); if (attach) fprintf(st, ",\n attached to %s, ", attach); free (attach); tmxr_show_summ(st, NULL, 0, mp); fprintf(st, ", sessions=%d", mp->sessions); fprintf(st, "\n"); for (j = 0; j < mp->lines; j++) { lp = mp->ldsc + j; if (mp->lines > 1) { if (lp->dptr && (mp->dptr != lp->dptr)) fprintf (st, "Device: %s ", sim_dname(lp->dptr)); fprintf (st, "Line: %d", j); if (mp->notelnet != lp->notelnet) fprintf (st, " - %stelnet", lp->notelnet ? "no" : ""); if (lp->uptr && (lp->uptr != lp->mp->uptr)) fprintf (st, " - Unit: %s", sim_uname (lp->uptr)); if (mp->modem_control != lp->modem_control) fprintf(st, ", ModemControl=%s", lp->modem_control ? "enabled" : "disabled"); if (lp->loopback) fprintf(st, ", Loopback"); fprintf (st, "\n"); } if ((!lp->sock) && (!lp->connecting) && (!lp->serport) && (!lp->master)) { if (lp->modem_control) tmxr_fconns (st, lp, -1); continue; } | > > > > > > > > > > > > > > > > > | 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 | fprintf(st, ", Buffered=%d", mp->buffered); attach = tmxr_mux_attach_string (NULL, mp); if (attach) fprintf(st, ",\n attached to %s, ", attach); free (attach); tmxr_show_summ(st, NULL, 0, mp); fprintf(st, ", sessions=%d", mp->sessions); if (mp->lines == 1) { if (mp->ldsc->rxbps) { fprintf(st, ", Speed=%d", mp->ldsc->rxbps); if (mp->ldsc->rxbpsfactor != TMXR_RX_BPS_UNIT_SCALE) fprintf(st, "*%.0f", mp->ldsc->rxbpsfactor/TMXR_RX_BPS_UNIT_SCALE); fprintf(st, " bps"); } } fprintf(st, "\n"); if (mp->ring_start_time) { fprintf (st, " incoming Connection from: %s ringing for %d milliseconds\n", mp->ring_ipad, sim_os_msec () - mp->ring_start_time); } for (j = 0; j < mp->lines; j++) { lp = mp->ldsc + j; if (mp->lines > 1) { if (lp->dptr && (mp->dptr != lp->dptr)) fprintf (st, "Device: %s ", sim_dname(lp->dptr)); fprintf (st, "Line: %d", j); if (mp->notelnet != lp->notelnet) fprintf (st, " - %stelnet", lp->notelnet ? "no" : ""); if (lp->uptr && (lp->uptr != lp->mp->uptr)) fprintf (st, " - Unit: %s", sim_uname (lp->uptr)); if (mp->modem_control != lp->modem_control) fprintf(st, ", ModemControl=%s", lp->modem_control ? "enabled" : "disabled"); if (lp->loopback) fprintf(st, ", Loopback"); if (lp->rxbps) { fprintf(st, ", Speed=%d", lp->rxbps); if (lp->rxbpsfactor != TMXR_RX_BPS_UNIT_SCALE) fprintf(st, "*%.0f", lp->rxbpsfactor/TMXR_RX_BPS_UNIT_SCALE); fprintf(st, " bps"); } fprintf (st, "\n"); } if ((!lp->sock) && (!lp->connecting) && (!lp->serport) && (!lp->master)) { if (lp->modem_control) tmxr_fconns (st, lp, -1); continue; } |
︙ | ︙ | |||
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 | } if (mp->master) sim_close_sock (mp->master); /* close master socket */ mp->master = 0; free (mp->port); mp->port = NULL; _tmxr_remove_from_open_list (mp); return SCPE_OK; } /* Detach unit from master socket and close all active network connections and/or serial ports. | > > > > > > > | 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 | } if (mp->master) sim_close_sock (mp->master); /* close master socket */ mp->master = 0; free (mp->port); mp->port = NULL; if (mp->ring_sock != INVALID_SOCKET) { sim_close_sock (mp->ring_sock); mp->ring_sock = INVALID_SOCKET; free (mp->ring_ipad); mp->ring_ipad = NULL; mp->ring_start_time = 0; } _tmxr_remove_from_open_list (mp); return SCPE_OK; } /* Detach unit from master socket and close all active network connections and/or serial ports. |
︙ | ︙ | |||
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 | int32 i; if (!(uptr->flags & UNIT_ATT)) /* attached? */ return SCPE_OK; tmxr_close_master (mp); /* close master socket */ free (uptr->filename); /* free setup string */ uptr->filename = NULL; mp->last_poll_time = 0; for (i=0; i < mp->lines; i++) { UNIT *uptr = mp->ldsc[i].uptr ? mp->ldsc[i].uptr : mp->uptr; UNIT *o_uptr = mp->ldsc[i].o_uptr ? mp->ldsc[i].o_uptr : mp->uptr; uptr->dynflags &= ~UNIT_TM_POLL; /* no polling */ o_uptr->dynflags &= ~UNIT_TM_POLL; /* no polling */ } uptr->flags &= ~(UNIT_ATT); /* not attached */ uptr->dynflags &= ~(UNIT_TM_POLL|TMUF_NOASYNCH); /* no polling, not asynch disabled */ return SCPE_OK; } t_stat tmxr_activate (UNIT *uptr, int32 interval) { | > > > | | | > > > > > > > > > > > > > > > > | > > > > > > > > > > | > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > | 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 | int32 i; if (!(uptr->flags & UNIT_ATT)) /* attached? */ return SCPE_OK; tmxr_close_master (mp); /* close master socket */ free (uptr->filename); /* free setup string */ uptr->filename = NULL; uptr->tmxr = NULL; mp->last_poll_time = 0; for (i=0; i < mp->lines; i++) { UNIT *uptr = mp->ldsc[i].uptr ? mp->ldsc[i].uptr : mp->uptr; UNIT *o_uptr = mp->ldsc[i].o_uptr ? mp->ldsc[i].o_uptr : mp->uptr; uptr->dynflags &= ~UNIT_TM_POLL; /* no polling */ o_uptr->dynflags &= ~UNIT_TM_POLL; /* no polling */ } uptr->flags &= ~(UNIT_ATT); /* not attached */ uptr->dynflags &= ~(UNIT_TM_POLL|TMUF_NOASYNCH); /* no polling, not asynch disabled */ return SCPE_OK; } t_stat tmxr_activate (UNIT *uptr, int32 interval) { if (uptr->dynflags & UNIT_TMR_UNIT) return sim_timer_activate (uptr, interval); #if defined(SIM_ASYNCH_MUX) if ((!(uptr->dynflags & UNIT_TM_POLL)) || (!sim_asynch_enabled)) { return _sim_activate (uptr, interval); } return SCPE_OK; #else return _sim_activate (uptr, interval); #endif } t_stat tmxr_activate_after (UNIT *uptr, uint32 usecs_walltime) { #if defined(SIM_ASYNCH_MUX) if ((!(uptr->dynflags & UNIT_TM_POLL)) || (!sim_asynch_enabled)) { return _sim_activate_after (uptr, usecs_walltime); } return SCPE_OK; #else return _sim_activate_after (uptr, usecs_walltime); #endif } t_stat tmxr_activate_after_abs (UNIT *uptr, uint32 usecs_walltime) { #if defined(SIM_ASYNCH_MUX) if ((!(uptr->dynflags & UNIT_TM_POLL)) || (!sim_asynch_enabled)) { return _sim_activate_after_abs (uptr, usecs_walltime); } return SCPE_OK; #else return _sim_activate_after_abs (uptr, usecs_walltime); #endif } t_stat tmxr_clock_coschedule (UNIT *uptr, int32 interval) { int32 ticks = (interval + (sim_rtcn_tick_size (0)/2))/sim_rtcn_tick_size (0);/* Convert to ticks */ return tmxr_clock_coschedule_tmr (uptr, 0, ticks); } t_stat tmxr_clock_coschedule_abs (UNIT *uptr, int32 interval) { int32 ticks = (interval + (sim_rtcn_tick_size (0)/2))/sim_rtcn_tick_size (0);/* Convert to ticks */ sim_cancel (uptr); return tmxr_clock_coschedule_tmr (uptr, 0, ticks); } #define MIN(a,b) (((a) < (b)) ? (a) : (b)) t_stat tmxr_clock_coschedule_tmr (UNIT *uptr, int32 tmr, int32 ticks) { TMXR *mp = (TMXR *)uptr->tmxr; int32 interval = ticks * sim_rtcn_tick_size (tmr); #if defined(SIM_ASYNCH_MUX) if ((!(uptr->dynflags & UNIT_TM_POLL)) || (!sim_asynch_enabled)) { return sim_clock_coschedule (uptr, tmr, ticks); } return SCPE_OK; #else if (mp) { int32 i, soon = interval; double sim_gtime_now = sim_gtime (); for (i = 0; i < mp->lines; i++) { TMLN *lp = &mp->ldsc[i]; if (tmxr_rqln_bare (lp, FALSE)) { int32 due; if (lp->rxbps) if (lp->rxnexttime > sim_gtime_now) due = (int32)(lp->rxnexttime - sim_gtime_now); else due = sim_processing_event ? 1 : 0; /* avoid potential infinite loop if called from service routine */ else due = (int32)((uptr->wait * sim_timer_inst_per_sec ())/TMXR_RX_BPS_UNIT_SCALE); soon = MIN(soon, due); } } if (soon != interval) { sim_debug (TIMER_DBG_MUX, &sim_timer_dev, "scheduling %s after %d instructions\n", sim_uname (uptr), soon); return _sim_activate (uptr, soon); } } sim_debug (TIMER_DBG_MUX, &sim_timer_dev, "coscheduling %s after interval %d ticks\n", sim_uname (uptr), ticks); return sim_clock_coschedule_tmr (uptr, tmr, ticks); #endif } t_stat tmxr_clock_coschedule_tmr_abs (UNIT *uptr, int32 tmr, int32 ticks) { sim_cancel (uptr); return tmxr_clock_coschedule_tmr (uptr, tmr, ticks); } /* Generic Multiplexer attach help */ t_stat tmxr_attach_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr) { TMXR *mux = (TMXR *)dptr->help_ctx; t_bool single_line = FALSE; /* default to Multi-Line help */ |
︙ | ︙ | |||
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 | else { fprintf (st, " sim> ATTACH %s Line=n,Connect=ser0\n\n", dptr->name); fprintf (st, "or equivalently:\n\n"); fprintf (st, " sim> ATTACH %s Line=n,Connect=COM1\n\n", dptr->name); if (mux) fprintf (st, "Valid line numbers are from 0 thru %d\n\n", mux->lines-1); } fprintf (st, "An optional serial port configuration string may be present after the port\n"); fprintf (st, "name. If present, it must be separated from the port name with a semicolon\n"); fprintf (st, "and has this form:\n\n"); fprintf (st, " <rate>-<charsize><parity><stopbits>\n\n"); fprintf (st, "where:\n"); fprintf (st, " rate = communication rate in bits per second\n"); fprintf (st, " charsize = character size in bits (5-8, including optional parity)\n"); | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 | else { fprintf (st, " sim> ATTACH %s Line=n,Connect=ser0\n\n", dptr->name); fprintf (st, "or equivalently:\n\n"); fprintf (st, " sim> ATTACH %s Line=n,Connect=COM1\n\n", dptr->name); if (mux) fprintf (st, "Valid line numbers are from 0 thru %d\n\n", mux->lines-1); } if (single_line) { /* Single Line Multiplexer */ fprintf (st, "The input data rate for the %s device can be controlled by\n", dptr->name); fprintf (st, "specifying SPEED=nnn{*fac} on the the ATTACH command.\n"); } else { fprintf (st, "The input data rate for all lines or a particular line of a the %s\n", dptr->name); fprintf (st, "device can be controlled by specifying SPEED=nnn{*fac} on the ATTACH command.\n"); } fprintf (st, "SPEED values can be any one of:\n\n"); fprintf (st, " 0 50 75 110 134 150 300 600 1200 1800 2000 2400\n"); fprintf (st, " 3600 4800 7200 9600 19200 38400 57600 76800 115200\n\n"); fprintf (st, "A SPEED value of 0 causes input data to be delivered to the simulated\n"); fprintf (st, "port as fast as it arrives.\n\n"); fprintf (st, "If a simulated multiplexor devices can programmatically set a serial\n"); fprintf (st, "port line speed, the programmatically specified speed will take precidence\n"); fprintf (st, "over any input speed specified on an attach command.\n"); fprintf (st, "Some simulated systems run very much faster than the original system\n"); fprintf (st, "which is being simulated. To accommodate this, the speed specified may\n"); fprintf (st, "include a factor which will increase the input data delivery rate by\n"); fprintf (st, "the specified factor. A factor is specified with a speed value of the\n"); fprintf (st, "form \"speed*factor\". Factor values can range from 1 thru 32.\n"); fprintf (st, "Example:\n\n"); fprintf (st, " sim> ATTACH %s 1234,SPEED=2400\n", dptr->name); fprintf (st, " sim> ATTACH %s 1234,SPEED=9600*8\n", dptr->name); if (!single_line) fprintf (st, " sim> ATTACH %s Line=2,SPEED=2400\n", dptr->name); fprintf (st, "\n"); fprintf (st, "The SPEED parameter only influences the rate at which data is deliverd\n"); fprintf (st, "into the simulated multiplexor port. Output data rates are unaffected\n"); fprintf (st, "If an attach command specifies a speed multiply factor, that value will\n"); fprintf (st, "persist independent of any programatic action by the simulated system to\n"); fprintf (st, "change the port speed.\n\n"); fprintf (st, "An optional serial port configuration string may be present after the port\n"); fprintf (st, "name. If present, it must be separated from the port name with a semicolon\n"); fprintf (st, "and has this form:\n\n"); fprintf (st, " <rate>-<charsize><parity><stopbits>\n\n"); fprintf (st, "where:\n"); fprintf (st, " rate = communication rate in bits per second\n"); fprintf (st, " charsize = character size in bits (5-8, including optional parity)\n"); |
︙ | ︙ | |||
3909 3910 3911 3912 3913 3914 3915 | free (buf); return; } /* Print connections - used only in named SHOW command */ | | | 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 | free (buf); return; } /* Print connections - used only in named SHOW command */ void tmxr_fconns (FILE *st, const TMLN *lp, int32 ln) { int32 hr, mn, sc; uint32 ctime; if (ln >= 0) fprintf (st, "line %d: ", ln); |
︙ | ︙ | |||
3978 3979 3980 3981 3982 3983 3984 | fprintf (st, " Logging to %s\n", lp->txlogname); return; } /* Print statistics - used only in named SHOW command */ | | | 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 | fprintf (st, " Logging to %s\n", lp->txlogname); return; } /* Print statistics - used only in named SHOW command */ void tmxr_fstats (FILE *st, const TMLN *lp, int32 ln) { static const char *enab = "on"; static const char *dsab = "off"; if (ln >= 0) fprintf (st, "Line %d:", ln); if ((!lp->sock) && (!lp->connecting) && (!lp->serport)) |
︙ | ︙ | |||
4040 4041 4042 4043 4044 4045 4046 | connection will be closed. Implementation notes: 1. This function is usually called as an MTAB processing routine. */ | | | 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 | connection will be closed. Implementation notes: 1. This function is usually called as an MTAB processing routine. */ t_stat tmxr_dscln (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { TMXR *mp = (TMXR *) desc; TMLN *lp; t_stat status; if (val) /* explicit line? */ uptr = NULL; /* indicate to get routine */ |
︙ | ︙ | |||
4068 4069 4070 4071 4072 4073 4074 | return SCPE_OK; } /* Enable logging for line */ | | | 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 | return SCPE_OK; } /* Enable logging for line */ t_stat tmxr_set_log (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { TMXR *mp = (TMXR *) desc; TMLN *lp; if (cptr == NULL) /* no file name? */ return SCPE_2FARG; lp = tmxr_find_ldsc (uptr, val, mp); /* find line desc */ |
︙ | ︙ | |||
4097 4098 4099 4100 4101 4102 4103 | lp->mp->uptr->filename = tmxr_mux_attach_string (lp->mp->uptr->filename, lp->mp); return SCPE_OK; } /* Disable logging for line */ | | > | | | | 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 | lp->mp->uptr->filename = tmxr_mux_attach_string (lp->mp->uptr->filename, lp->mp); return SCPE_OK; } /* Disable logging for line */ t_stat tmxr_set_nolog (UNIT *uptr, int32 val, CONST char *cptr, void *desc) { TMXR *mp = (TMXR *) desc; TMLN *lp; if (cptr) /* no arguments */ return SCPE_2MARG; lp = tmxr_find_ldsc (uptr, val, mp); /* find line desc */ if (lp == NULL) return SCPE_IERR; if (lp->txlog) { /* logging? */ sim_close_logfile (&lp->txlogref); /* close log */ free (lp->txlogname); /* free namebuf */ lp->txlog = NULL; lp->txlogname = NULL; } if (mp->uptr) lp->mp->uptr->filename = tmxr_mux_attach_string (lp->mp->uptr->filename, lp->mp); return SCPE_OK; } /* Show logging status for line */ t_stat tmxr_show_log (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { const TMXR *mp = (const TMXR *) desc; TMLN *lp; lp = tmxr_find_ldsc (uptr, val, mp); /* find line desc */ if (lp == NULL) return SCPE_IERR; if (lp->txlog) fprintf (st, "logging to %s", lp->txlogname); |
︙ | ︙ | |||
4163 4164 4165 4166 4167 4168 4169 | array are set to the order specified by the command string. All values are populated, first with those explicitly specified in the command string, and then in ascending sequence with those not specified. If an error occurs, the original line order is not disturbed. */ | | > > | > > | > | | 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 | array are set to the order specified by the command string. All values are populated, first with those explicitly specified in the command string, and then in ascending sequence with those not specified. If an error occurs, the original line order is not disturbed. */ t_stat tmxr_set_lnorder (UNIT *uptr, int32 val, CONST char *carg, void *desc) { TMXR *mp = (TMXR *) desc; char *tbuf; char *tptr; CONST char *cptr; t_addr low, high, max = (t_addr) mp->lines - 1; int32 *list; t_bool *set; uint32 line, idx = 0; t_stat result = SCPE_OK; if (mp->lnorder == NULL) /* line connection order undefined? */ return SCPE_NXPAR; /* "Non-existent parameter" error */ else if ((carg == NULL) || (*carg == '\0')) /* line range not supplied? */ return SCPE_MISVAL; /* "Missing value" error */ list = (int32 *) calloc (mp->lines, sizeof (int32)); /* allocate new line order array */ if (list == NULL) /* allocation failed? */ return SCPE_MEM; /* report it */ set = (t_bool *) calloc (mp->lines, sizeof (t_bool)); /* allocate line set tracking array */ if (set == NULL) { /* allocation failed? */ free (list); /* free successful list allocation */ return SCPE_MEM; /* report it */ } tbuf = (char *) calloc (strlen(carg)+2, sizeof(*carg)); strcpy (tbuf, carg); tptr = tbuf + strlen (tbuf); /* append a semicolon */ *tptr++ = ';'; /* to the command string */ *tptr = '\0'; /* to make parsing easier for get_range */ cptr = tbuf; while (*cptr) { /* parse command string */ cptr = get_range (NULL, cptr, &low, &high, 10, max, ';');/* get a line range */ if (cptr == NULL) { /* parsing error? */ result = SCPE_ARG; /* "Invalid argument" error */ break; } else if ((low > max) || (high > max)) { /* line out of range? */ |
︙ | ︙ | |||
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 | } memcpy (mp->lnorder, list, mp->lines * sizeof (int32)); /* copy working array to connection array */ } free (list); /* free list allocation */ free (set); /* free set allocation */ return result; } /* Show line connection order. Parameters: - st = stream on which output is to be written - uptr = (not used) - val = (not used) - desc = pointer to multiplexer's TMXR structure If a connection order array is not defined in the multiplexer descriptor, the command is rejected. If the first value of the connection order array is set to -1, then the connection order is sequential. Otherwise, the line values in the array are printed as a semicolon-separated list. Ranges are printed where possible to shorten the output. */ | > | | | 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 | } memcpy (mp->lnorder, list, mp->lines * sizeof (int32)); /* copy working array to connection array */ } free (list); /* free list allocation */ free (set); /* free set allocation */ free (tbuf); /* free arg copy with ; */ return result; } /* Show line connection order. Parameters: - st = stream on which output is to be written - uptr = (not used) - val = (not used) - desc = pointer to multiplexer's TMXR structure If a connection order array is not defined in the multiplexer descriptor, the command is rejected. If the first value of the connection order array is set to -1, then the connection order is sequential. Otherwise, the line values in the array are printed as a semicolon-separated list. Ranges are printed where possible to shorten the output. */ t_stat tmxr_show_lnorder (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { int32 i, j, low, last; const TMXR *mp = (const TMXR *) desc; int32 *iptr = mp->lnorder; t_bool first = TRUE; if (iptr == NULL) /* connection order undefined? */ return SCPE_NXPAR; /* "Non-existent parameter" error */ if (*iptr < 0) /* sequential order indicated? */ |
︙ | ︙ | |||
4308 4309 4310 4311 4312 4313 4314 | fputc ('\n', st); return SCPE_OK; } /* Show summary processor */ | | | | | | 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 | fputc ('\n', st); return SCPE_OK; } /* Show summary processor */ t_stat tmxr_show_summ (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { const TMXR *mp = (const TMXR *) desc; int32 i, t; if (mp == NULL) return SCPE_IERR; for (i = t = 0; i < mp->lines; i++) if ((mp->ldsc[i].sock != 0) || (mp->ldsc[i].serport != 0)) t = t + 1; if (mp->lines > 1) fprintf (st, "%d current connection%s", t, (t != 1) ? "s" : ""); else fprintf (st, "%s", (t == 1) ? "connected" : "disconnected"); return SCPE_OK; } /* Show conn/stat processor */ t_stat tmxr_show_cstat (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { const TMXR *mp = (const TMXR *) desc; int32 i, any; if (mp == NULL) return SCPE_IERR; for (i = any = 0; i < mp->lines; i++) { if ((mp->ldsc[i].sock != 0) || (mp->ldsc[i].serport != 0) || mp->ldsc[i].modem_control) { |
︙ | ︙ | |||
4353 4354 4355 4356 4357 4358 4359 | if (any == 0) fprintf (st, (mp->lines == 1? "disconnected\n": "all disconnected\n")); return SCPE_OK; } /* Show number of lines */ | | | | 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 | if (any == 0) fprintf (st, (mp->lines == 1? "disconnected\n": "all disconnected\n")); return SCPE_OK; } /* Show number of lines */ t_stat tmxr_show_lines (FILE *st, UNIT *uptr, int32 val, CONST void *desc) { const TMXR *mp = (const TMXR *) desc; if (mp == NULL) return SCPE_IERR; fprintf (st, "lines=%d", mp->lines); return SCPE_OK; } |
︙ | ︙ |
Changes to src/sim_tmxr.h.
︙ | ︙ | |||
42 43 44 45 46 47 48 49 50 51 | 30-Dec-01 RMS Renamed tmxr_fstatus, added tmxr_fstats 20-Oct-01 RMS Removed tmxr_getchar, formalized buffer guard, added tmxr_rqln, tmxr_tqln */ #ifndef SIM_TMXR_H_ #define SIM_TMXR_H_ 0 #ifndef SIMH_SERHANDLE_DEFINED #define SIMH_SERHANDLE_DEFINED 0 | > > > > < | < < < < > | 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 | 30-Dec-01 RMS Renamed tmxr_fstatus, added tmxr_fstats 20-Oct-01 RMS Removed tmxr_getchar, formalized buffer guard, added tmxr_rqln, tmxr_tqln */ #ifndef SIM_TMXR_H_ #define SIM_TMXR_H_ 0 #ifdef __cplusplus extern "C" { #endif #ifndef SIMH_SERHANDLE_DEFINED #define SIMH_SERHANDLE_DEFINED 0 typedef struct SERPORT *SERHANDLE; #endif #include "sim_sock.h" #define TMXR_V_VALID 15 #define TMXR_VALID (1 << TMXR_V_VALID) #define TMXR_MAXBUF 256 /* buffer size */ #define TMXR_DTR_DROP_TIME 500 /* milliseconds to drop DTR for 'pseudo' modem control */ #define TMXR_MODEM_RING_TIME 3 /* seconds to wait for DTR for incoming connections */ #define TMXR_DEFAULT_CONNECT_POLL_INTERVAL 1 /* seconds between connection polls */ #define TMXR_DBG_XMT 0x0010000 /* Debug Transmit Data */ #define TMXR_DBG_RCV 0x0020000 /* Debug Received Data */ #define TMXR_DBG_RET 0x0040000 /* Debug Returned Received Data */ #define TMXR_DBG_MDM 0x0080000 /* Debug Modem Signals */ #define TMXR_DBG_CON 0x0100000 /* Debug Connection Activities */ |
︙ | ︙ | |||
92 93 94 95 96 97 98 99 100 101 102 103 104 105 | /* Unit flags */ #define TMUF_V_NOASYNCH (UNIT_V_UF + 12) /* Asynch Disabled unit */ #define TMUF_NOASYNCH (1u << TMUF_V_NOASYNCH) /* This flag can be defined */ /* statically in a unit's flag field */ /* This will disable the unit from */ /* supporting asynchronmous mux behaviors */ typedef struct tmln TMLN; typedef struct tmxr TMXR; struct loopbuf { int32 bpr; /* xmt buf remove */ int32 bpi; /* xmt buf insert */ int32 size; | > > > > > > > > > > > > > > > > > > > > > > > > | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | /* Unit flags */ #define TMUF_V_NOASYNCH (UNIT_V_UF + 12) /* Asynch Disabled unit */ #define TMUF_NOASYNCH (1u << TMUF_V_NOASYNCH) /* This flag can be defined */ /* statically in a unit's flag field */ /* This will disable the unit from */ /* supporting asynchronmous mux behaviors */ /* Receive line speed limits */ #define TMLN_SPD_50_BPS 200000 /* usec per character */ #define TMLN_SPD_75_BPS 133333 /* usec per character */ #define TMLN_SPD_110_BPS 90909 /* usec per character */ #define TMLN_SPD_134_BPS 74626 /* usec per character */ #define TMLN_SPD_150_BPS 66666 /* usec per character */ #define TMLN_SPD_300_BPS 33333 /* usec per character */ #define TMLN_SPD_600_BPS 16666 /* usec per character */ #define TMLN_SPD_1200_BPS 8333 /* usec per character */ #define TMLN_SPD_1800_BPS 5555 /* usec per character */ #define TMLN_SPD_2000_BPS 5000 /* usec per character */ #define TMLN_SPD_2400_BPS 4166 /* usec per character */ #define TMLN_SPD_3600_BPS 2777 /* usec per character */ #define TMLN_SPD_4800_BPS 2083 /* usec per character */ #define TMLN_SPD_7200_BPS 1388 /* usec per character */ #define TMLN_SPD_9600_BPS 1041 /* usec per character */ #define TMLN_SPD_19200_BPS 520 /* usec per character */ #define TMLN_SPD_38400_BPS 260 /* usec per character */ #define TMLN_SPD_57600_BPS 173 /* usec per character */ #define TMLN_SPD_76800_BPS 130 /* usec per character */ #define TMLN_SPD_115200_BPS 86 /* usec per character */ typedef struct tmln TMLN; typedef struct tmxr TMXR; struct loopbuf { int32 bpr; /* xmt buf remove */ int32 bpi; /* xmt buf insert */ int32 size; |
︙ | ︙ | |||
138 139 140 141 142 143 144 145 146 147 148 149 150 151 | char *txlogname; /* xmt log file name */ char *rxb; /* rcv buffer */ char *rbr; /* rcv break */ char *txb; /* xmt buffer */ uint8 *rxpb; /* rcv packet buffer */ uint32 rxpbsize; /* rcv packet buffer size */ uint32 rxpboffset; /* rcv packet buffer offset */ uint8 *txpb; /* xmt packet buffer */ uint32 txpbsize; /* xmt packet buffer size */ uint32 txppsize; /* xmt packet packet size */ uint32 txppoffset; /* xmt packet buffer offset */ TMXR *mp; /* back pointer to mux */ char *serconfig; /* line config */ SERHANDLE serport; /* serial port handle */ | > > > > > > > > | 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 | char *txlogname; /* xmt log file name */ char *rxb; /* rcv buffer */ char *rbr; /* rcv break */ char *txb; /* xmt buffer */ uint8 *rxpb; /* rcv packet buffer */ uint32 rxpbsize; /* rcv packet buffer size */ uint32 rxpboffset; /* rcv packet buffer offset */ uint32 rxbps; /* rcv bps speed (0 - unlimited) */ double rxbpsfactor; /* receive speed factor (scaled to usecs) */ #define TMXR_RX_BPS_UNIT_SCALE 1000000.0 uint32 rxdelta; /* rcv inter character min time (usecs) */ double rxnexttime; /* min time for next receive character */ uint32 txbps; /* xmt bps speed (0 - unlimited) */ uint32 txdelta; /* xmt inter character min time (usecs) */ double txnexttime; /* min time for next transmit character */ uint8 *txpb; /* xmt packet buffer */ uint32 txpbsize; /* xmt packet buffer size */ uint32 txppsize; /* xmt packet packet size */ uint32 txppoffset; /* xmt packet buffer offset */ TMXR *mp; /* back pointer to mux */ char *serconfig; /* line config */ SERHANDLE serport; /* serial port handle */ |
︙ | ︙ | |||
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 | UNIT *uptr; /* polling unit (connection) */ char logfiletmpl[FILENAME_MAX]; /* template logfile name */ int32 txcount; /* count of transmit bytes */ int32 buffered; /* Buffered Line Behavior and Buffer Size Flag */ int32 sessions; /* count of tcp connections received */ uint32 poll_interval; /* frequency of connection polls (seconds) */ uint32 last_poll_time; /* time of last connection poll */ t_bool notelnet; /* default telnet capability for incoming connections */ t_bool modem_control; /* multiplexer supports modem control behaviors */ t_bool packet; /* Lines are packet oriented */ t_bool datagram; /* Lines use datagram packet transport */ }; int32 tmxr_poll_conn (TMXR *mp); t_stat tmxr_reset_ln (TMLN *lp); t_stat tmxr_detach_ln (TMLN *lp); int32 tmxr_input_pending_ln (TMLN *lp); int32 tmxr_getc_ln (TMLN *lp); t_stat tmxr_get_packet_ln (TMLN *lp, const uint8 **pbuf, size_t *psize); t_stat tmxr_get_packet_ln_ex (TMLN *lp, const uint8 **pbuf, size_t *psize, uint8 frame_byte); void tmxr_poll_rx (TMXR *mp); t_stat tmxr_putc_ln (TMLN *lp, int32 chr); t_stat tmxr_put_packet_ln (TMLN *lp, const uint8 *buf, size_t size); t_stat tmxr_put_packet_ln_ex (TMLN *lp, const uint8 *buf, size_t size, uint8 frame_byte); void tmxr_poll_tx (TMXR *mp); int32 tmxr_send_buffered_data (TMLN *lp); | > > > | | > | | | | | | | | | | | | | | | | | | > > | > | | | | | | | > > > > | > > > > > > | | | | > | 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | UNIT *uptr; /* polling unit (connection) */ char logfiletmpl[FILENAME_MAX]; /* template logfile name */ int32 txcount; /* count of transmit bytes */ int32 buffered; /* Buffered Line Behavior and Buffer Size Flag */ int32 sessions; /* count of tcp connections received */ uint32 poll_interval; /* frequency of connection polls (seconds) */ uint32 last_poll_time; /* time of last connection poll */ uint32 ring_start_time; /* time ring signal was raised */ char *ring_ipad; /* incoming connection address awaiting DTR */ SOCKET ring_sock; /* incoming connection socket awaiting DTR */ t_bool notelnet; /* default telnet capability for incoming connections */ t_bool modem_control; /* multiplexer supports modem control behaviors */ t_bool packet; /* Lines are packet oriented */ t_bool datagram; /* Lines use datagram packet transport */ }; int32 tmxr_poll_conn (TMXR *mp); t_stat tmxr_reset_ln (TMLN *lp); t_stat tmxr_detach_ln (TMLN *lp); int32 tmxr_input_pending_ln (TMLN *lp); int32 tmxr_getc_ln (TMLN *lp); t_stat tmxr_get_packet_ln (TMLN *lp, const uint8 **pbuf, size_t *psize); t_stat tmxr_get_packet_ln_ex (TMLN *lp, const uint8 **pbuf, size_t *psize, uint8 frame_byte); void tmxr_poll_rx (TMXR *mp); t_stat tmxr_putc_ln (TMLN *lp, int32 chr); t_stat tmxr_put_packet_ln (TMLN *lp, const uint8 *buf, size_t size); t_stat tmxr_put_packet_ln_ex (TMLN *lp, const uint8 *buf, size_t size, uint8 frame_byte); void tmxr_poll_tx (TMXR *mp); int32 tmxr_send_buffered_data (TMLN *lp); t_stat tmxr_open_master (TMXR *mp, CONST char *cptr); t_stat tmxr_close_master (TMXR *mp); t_stat tmxr_connection_poll_interval (TMXR *mp, uint32 seconds); t_stat tmxr_attach_ex (TMXR *mp, UNIT *uptr, CONST char *cptr, t_bool async); t_stat tmxr_detach (TMXR *mp, UNIT *uptr); t_stat tmxr_attach_help(FILE *st, DEVICE *dptr, UNIT *uptr, int32 flag, const char *cptr); char *tmxr_line_attach_string(TMLN *lp); t_stat tmxr_set_modem_control_passthru (TMXR *mp); t_stat tmxr_clear_modem_control_passthru (TMXR *mp); t_stat tmxr_set_get_modem_bits (TMLN *lp, int32 bits_to_set, int32 bits_to_clear, int32 *incoming_bits); t_stat tmxr_set_line_loopback (TMLN *lp, t_bool enable_loopback); t_bool tmxr_get_line_loopback (TMLN *lp); t_stat tmxr_set_line_halfduplex (TMLN *lp, t_bool enable_loopback); t_bool tmxr_get_line_halfduplex (TMLN *lp); t_stat tmxr_set_line_speed (TMLN *lp, CONST char *speed); t_stat tmxr_set_config_line (TMLN *lp, CONST char *config); t_stat tmxr_set_line_unit (TMXR *mp, int line, UNIT *uptr_poll); t_stat tmxr_set_line_output_unit (TMXR *mp, int line, UNIT *uptr_poll); t_stat tmxr_set_console_units (UNIT *rxuptr, UNIT *txuptr); t_stat tmxr_ex (t_value *vptr, t_addr addr, UNIT *uptr, int32 sw); t_stat tmxr_dep (t_value val, t_addr addr, UNIT *uptr, int32 sw); void tmxr_msg (SOCKET sock, const char *msg); void tmxr_linemsg (TMLN *lp, const char *msg); void tmxr_linemsgf (TMLN *lp, const char *fmt, ...); void tmxr_linemsgvf (TMLN *lp, const char *fmt, va_list args); void tmxr_fconns (FILE *st, const TMLN *lp, int32 ln); void tmxr_fstats (FILE *st, const TMLN *lp, int32 ln); t_stat tmxr_set_log (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat tmxr_set_nolog (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat tmxr_show_log (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat tmxr_dscln (UNIT *uptr, int32 val, CONST char *cptr, void *desc); int32 tmxr_rqln (const TMLN *lp); int32 tmxr_tqln (const TMLN *lp); int32 tmxr_tpqln (const TMLN *lp); t_bool tmxr_tpbusyln (const TMLN *lp); t_stat tmxr_set_lnorder (UNIT *uptr, int32 val, CONST char *cptr, void *desc); t_stat tmxr_show_lnorder (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat tmxr_show_summ (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat tmxr_show_cstat (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat tmxr_show_lines (FILE *st, UNIT *uptr, int32 val, CONST void *desc); t_stat tmxr_show_open_devices (FILE* st, DEVICE *dptr, UNIT* uptr, int32 val, CONST char* desc); t_stat tmxr_activate (UNIT *uptr, int32 interval); t_stat tmxr_activate_after (UNIT *uptr, uint32 usecs_walltime); t_stat tmxr_activate_after_abs (UNIT *uptr, uint32 usecs_walltime); t_stat tmxr_clock_coschedule (UNIT *uptr, int32 interval); t_stat tmxr_clock_coschedule_abs (UNIT *uptr, int32 interval); t_stat tmxr_clock_coschedule_tmr (UNIT *uptr, int32 tmr, int32 ticks); t_stat tmxr_clock_coschedule_tmr_abs (UNIT *uptr, int32 tmr, int32 ticks); t_stat tmxr_change_async (void); t_stat tmxr_locate_line_send (const char *dev_line, SEND **snd); t_stat tmxr_locate_line_expect (const char *dev_line, EXPECT **exp); t_stat tmxr_startup (void); t_stat tmxr_shutdown (void); t_stat tmxr_start_poll (void); t_stat tmxr_stop_poll (void); void _tmxr_debug (uint32 dbits, TMLN *lp, const char *msg, char *buf, int bufsize); #define tmxr_debug(dbits, lp, msg, buf, bufsize) do {if (sim_deb && (lp)->mp && (lp)->mp->dptr && ((dbits) & (lp)->mp->dptr->dctrl)) _tmxr_debug (dbits, lp, msg, buf, bufsize); } while (0) #define tmxr_debug_msg(dbits, lp, msg) do {if (sim_deb && (lp)->mp && (lp)->mp->dptr && ((dbits) & (lp)->mp->dptr->dctrl)) sim_debug (dbits, (lp)->mp->dptr, "%s", msg); } while (0) #define tmxr_debug_return(lp, val) do {if (sim_deb && (val) && (lp)->mp && (lp)->mp->dptr && (TMXR_DBG_RET & (lp)->mp->dptr->dctrl)) { if ((lp)->rxbps) sim_debug (TMXR_DBG_RET, (lp)->mp->dptr, "Ln%d: 0x%x - Next after: %.0f\n", (int)((lp)-(lp)->mp->ldsc), val, (lp)->rxnexttime); else sim_debug (TMXR_DBG_RET, (lp)->mp->dptr, "Ln%d: 0x%x\n", (int)((lp)-(lp)->mp->ldsc), val); } } while (0) #define tmxr_debug_trace(mp, msg) do {if (sim_deb && (mp)->dptr && (TMXR_DBG_TRC & (mp)->dptr->dctrl)) sim_debug (TMXR_DBG_TRC, mp->dptr, "%s\n", (msg)); } while (0) #define tmxr_debug_trace_line(lp, msg) do {if (sim_deb && (lp)->mp && (lp)->mp->dptr && (TMXR_DBG_TRC & (lp)->mp->dptr->dctrl)) sim_debug (TMXR_DBG_TRC, (lp)->mp->dptr, "Ln%d:%s\n", (int)((lp)-(lp)->mp->ldsc), (msg)); } while (0) #define tmxr_debug_connect(mp, msg) do {if (sim_deb && (mp)->dptr && (TMXR_DBG_CON & (mp)->dptr->dctrl)) sim_debug (TMXR_DBG_CON, mp->dptr, "%s\n", (msg)); } while (0) #define tmxr_debug_connect_line(lp, msg) do {if (sim_deb && (lp)->mp && (lp)->mp->dptr && (TMXR_DBG_CON & (lp)->mp->dptr->dctrl)) sim_debug (TMXR_DBG_CON, (lp)->mp->dptr, "Ln%d:%s\n", (int)((lp)-(lp)->mp->ldsc), (msg)); } while (0) #if defined(SIM_ASYNCH_MUX) && !defined(SIM_ASYNCH_IO) #undef SIM_ASYNCH_MUX #endif /* defined(SIM_ASYNCH_MUX) && !defined(SIM_ASYNCH_IO) */ #if defined(SIM_ASYNCH_MUX) #define tmxr_attach(mp, uptr, cptr) tmxr_attach_ex(mp, uptr, cptr, TRUE) #else #define tmxr_attach(mp, uptr, cptr) tmxr_attach_ex(mp, uptr, cptr, FALSE) #endif #if (!defined(NOT_MUX_USING_CODE)) #define sim_activate tmxr_activate #define sim_activate_after tmxr_activate_after #define sim_activate_after_abs tmxr_activate_after_abs #define sim_clock_coschedule tmxr_clock_coschedule #define sim_clock_coschedule_abs tmxr_clock_coschedule_abs #define sim_clock_coschedule_tmr tmxr_clock_coschedule_tmr #define sim_clock_coschedule_tmr_abs tmxr_clock_coschedule_tmr_abs #endif #ifdef __cplusplus } #endif #endif /* _SIM_TMXR_H_ */ |
Changes to tools/mkrel.
1 | #!/bin/bash | > | > > > > | 1 2 3 4 5 6 7 | #!/bin/bash tag=v$(date +%Y%m%d) fossil ci --tag $tag && cd ../release && fossil merge $tag && make -j11 && fossil ci |