1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
| /* pidp8i.c: PiDP-8/I additions to the PDP-8 simulator
Copyright © 2015 by Oscar Vermeulen, © 2017 by Ian Schofield, and
© 2016-2018 by Warren Young
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS LISTED ABOVE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
Except as contained in this notice, the names of the authors above shall
not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from those
authors.
*/
#include "pidp8i.h"
#include <PDP8/pdp8_defs.h>
#include <assert.h>
#include <dirent.h> // for USB stick searching
#include <errno.h>
#include <string.h>
//// MODULE GLOBALS ////////////////////////////////////////////////////
// handle_sing_step() sets this to nonzero and returns a value breaking
// us out of the PDP-8 simulator's sim_instr() loop, which causes SCP to
// call our build_pidp8i_scp_cmd(), which gives SCP a command to run:
// either "exit" when it wants the simulator to stop (e.g the shutdown
// and reboot combos) or "do $script" on IF + SING_STEP combo.
//
// We loop the flow control from this module out into the generic SIMH
// code and then back in here so we don't have to export this global.
// Basically, this module global lets us remember what handle_sing_step
// wants SCP to do in the window between switch handling time and SCP
// command handling time.
static enum {
CMD_NONE = 0, // "do nothing" idle case
CMD_DO_BOOTSCRIPT_1, // SING_STEP + IF combos
CMD_DO_BOOTSCRIPT_2,
CMD_DO_BOOTSCRIPT_3,
CMD_DO_BOOTSCRIPT_4,
CMD_DO_BOOTSCRIPT_5,
CMD_DO_BOOTSCRIPT_6,
CMD_DO_BOOTSCRIPT_7,
CMD_EXIT,
} insert_scp_cmd = CMD_NONE;
//// get_this_executable_path //////////////////////////////////////////
// Uses various non-portable tricks to come up with an absolute path to
// the current executable. We can't just copy argv[0] from main()
// because that might be a path relative to a directory we aren't in any
// more, it could be NULL, it could be entirely bogus, or it might only
// work with our caller's non-exported PATH.
//
// This really only has to work on the Raspberry Pi running Raspbian,
// since that's the only way you can get IF + SING_STEP currently.
static const char* get_this_executable_path ()
{
static char retpath[PATH_MAX] = { '\0' };
#ifdef HAVE_DECL___PROGNAME
// Nonportable BSD method available here, so absolutize it.
return realpath (__progname, retpath);
#else
// This method only works on Linux and on BSDs configured to export
// a Linux-compatible /proc. It won't work on SVR4 /proc.
static const char* pse = "/proc/self/exe";
if (access (pse, R_OK) == 0) {
size_t rpmax = sizeof (retpath);
ssize_t n = readlink (pse, retpath, rpmax);
if (n > 0) {
retpath[n >= rpmax ? rpmax - 1 : n] = '\0';
return retpath;
}
else {
fprintf (stderr, "Failed to absolutize %s: %s!\n", pse,
strerror(errno));
}
}
else {
fprintf (stderr, "Failed to read %s: %s!\n", pse,
strerror(errno));
}
#endif
return 0;
}
//// build_pidp8i_scp_cmd //////////////////////////////////////////////
// If insert_scp_cmd is nonzero, we return the corresponding SCP command
// we want run to make the simulator do something else.
char *build_pidp8i_scp_cmd (char *cbuf, size_t cbufsize)
{
if (insert_scp_cmd == CMD_NONE) {
return 0; // nothing to do yet
}
else if ((insert_scp_cmd > 0) && (insert_scp_cmd <= 7)) {
// We got one of the IF + SING_STEP combos, so restart the
// simulator with the corresponding init script.
char script_path[256];
snprintf (script_path, sizeof (script_path), "@BOOTDIR@/%d.script",
insert_scp_cmd);
insert_scp_cmd = CMD_NONE; // it's a one-shot
if (access (script_path, R_OK) == 0) {
// Rather than return a "do scriptname" command directly,
// clean up the current simulator and overwrite ourselves
// with a fresh simulator running the new script to ensure
// new script to avoid device conflicts. For instance, if
// IF=0 assumes the tape device is TC08 and IF=3 TD8E, we'd
// get a device 77 conflict without this dance.
const char* self_path = get_this_executable_path ();
extern t_stat detach_all (int32 start, t_bool shutdown);
extern int use_pidp8i_extensions;
printf ("Relaunching %s with %s...\r\n", self_path, script_path);
detach_all (0, TRUE);
printf ("All devices detached...\r\n");
if (use_pidp8i_extensions) {
stop_pidp8i_gpio_thread ();
printf ("GPIO thread topped...\r\n");
}
execlp (self_path, self_path, script_path);
return 0;
}
else {
// That boot script doesn't exist or isn't readable.
//
// Fall through to the "exit" command builder below because
// we don't want to keep coming back in here at host CPU
// speed, failing the same way and issuing the same error
// until the slow human manages to flip the offending switch
// back. This is especially annoying when the PiDP-8/I is
// attached to a slow serial console. Ask me how I know.
int access_errno = errno; // preserve it from getcwd()
char cwd[256];
getcwd (cwd, sizeof (cwd));
fprintf (stderr, "Cannot read %s from %s: %s!\n", script_path,
cwd, strerror (access_errno));
}
}
else if (insert_scp_cmd > CMD_EXIT) {
fprintf (stderr, "Invalid PiDP-8/I SCP command value %d given!\n",
insert_scp_cmd);
}
else {
// C doesn't require that "if" statements handle all cases
// statically, so do a runtime check to make sure we have
// exhausted all the other cases above.
//
// We can get in here by means other than programmer error in
// modifying the enum: some C compilers allow signed values
// to be assigned to enums, so we could get in here on negative
// values. We can't test for that above because one of the C
// compilers we build under (clang on macOS 10.12+) won't allow
// that short of nasty low-level hackery, so it complains if we
// test for negative values, claiming it can never happen.
assert (insert_scp_cmd == CMD_EXIT);
}
// If we get here, we got a nonzero command value but didn't get
// into the happy path above, so die.
return strncpy (cbuf, "exit", cbufsize);
}
//// set_pidp8i_led ////////////////////////////////////////////////////
// Sets the current state for a single LED at the given row and column
// on the PiDP-8/I PCB. Also increments the LED on-count value for
// that LED.
//
// You may say, "You can't just use the C postincrement operator here!
// Look at the assembly output! You must use an atomic increment for
// this!" And indeed, there is a big difference between the two
// methods: https://godbolt.org/g/0Qt0Ap
//
// The thing is, both structures referred to by pdis_* are fixed in RAM,
// and the two threads involved are arranged in a strict producer-and-
// consumer fashion, so it doesn't actually matter if pdis_update gets
// swapped for pdis_paint while we're halfway through an increment: we
// get a copy of the pointer to dereference here, so we'll finish our
// increment within the same structure we started with, even if
// pdis_update points at the other display structure before we leave.
static inline void set_pidp8i_led (display *pd, size_t row, size_t col)
{
++pd->on[row][col];
pd->curr[row] |= 1 << col;
}
//// set_pidp8i_row_leds ///////////////////////////////////////////////
// Like set_pidp8i_led, except that it takes a 12-bit state value for
// setting all LEDs on the given row. Because we copy the pdis_update
// pointer before making changes, if the display swap happens while
// we're working, we'll simply finish updating what has become the
// paint-from display, which is what you want; you don't want the
// updates spread over both displays.
static inline void set_pidp8i_row_leds (display *pd, size_t row,
uint16 state)
{
size_t *prow = pd->on[row];
pd->curr[row] = state;
for (size_t col = 0, mask = 1; col < NCOLS; ++col, mask <<= 1) {
if (state & mask) ++prow[col];
}
}
//// set_3_pidp8i_leds /////////////////////////////////////////////////
// Special case of set_pidp8i_row_leds for the DF and IF LEDs: we only
// pay attention to bits 12, 13, and 14 of the given state value,
// because SIMH's PDP-8 simulator shifts those 3 bits up there so it can
// simply OR these 3-bit registers with PC to produce a 15-bit extended
// address.
//
// We don't take a row parameter because we know which row they're on,
// but we do take a column parameter so we can generalize for IF & DF.
static inline void set_3_pidp8i_leds (display *pd, size_t col,
uint16 state)
{
static const int row = 7; // DF and IF are on row 6
size_t *prow = pd->on[row];
size_t last_col = col + 3;
pd->curr[row] |= state >> (12 - col);
for (size_t mask = 1 << 12; col < last_col; ++col, mask <<= 1) {
if (state & mask) ++prow[col];
}
}
//// set_5_pidp8i_leds /////////////////////////////////////////////////
// Like set_3... but for the 5-bit SC register. Because it's only used
// for that purpose, we don't need the col parameter.
static inline void set_5_pidp8i_leds (display *pd, uint16 state)
{
static const int row = 6; // SC is on row 6
size_t *prow = pd->on[row];
size_t last_col = 7;
pd->curr[row] |= (state & 0x1f) << 2;
for (size_t col = 2, mask = 1; col < last_col; ++col, mask <<= 1) {
if (state & mask) ++prow[col];
}
}
//// get_pidp8i_initial_max_skips //////////////////////////////////////
// Return the number of times we should skip updating the front panel
// LEDs the first time thru, to give the simulator time to settle.
// If we don't do this, the front panel LEDs can start out dim and
// slowly rise or they can overshoot and then take a while to recover
// with the IPS.
size_t get_pidp8i_initial_max_skips (size_t updates_per_sec)
{
DEVICE *pthrot = find_dev ("INT-THROTTLE");
if (pthrot) {
extern int suppressILS;
REG *ptyper = find_reg ("THROT_TYPE", NULL, pthrot);
REG *pvalr = find_reg ("THROT_VAL", NULL, pthrot);
if (ptyper && pvalr) {
uint32 *ptype = ptyper->loc;
uint32 *pval = pvalr->loc;
size_t ips = 0;
switch (*ptype) {
case SIM_THROT_MCYC: ips = *pval * 1e6; break;
case SIM_THROT_KCYC: ips = *pval * 1e3; break;
case SIM_THROT_SPC: {
suppressILS = 1;
break;
}
}
if (ips) {
suppressILS = 0;
printf("PiDP-8/I initial throttle = %zu IPS\r\n", ips);
return ips / updates_per_sec;
}
}
}
// No better idea, so give a plausible value for an unthrottled Pi 1
return 200;
}
//// set_pidp8i_leds ///////////////////////////////////////////////////
// Given all of the PDP-8's internal registers that affect the front
// panel display, modify the GPIO thread's LED state values accordingly.
//
// Also update the LED brightness values based on those new states.
void set_pidp8i_leds (uint32_t sPC, uint32_t sMA, uint32_t sMB,
uint16_t sIR, int32_t sLAC, int32_t sMQ, int32_t sIF, int32_t sDF,
int32_t sSC, int32_t int_req, int Pause)
{
// Bump the instruction count. This should always be equal to the
// Fetch LED's value, but integers are too cheap to get cute here.
//
// Note that we only update pdis_update directly once in this whole
// process. This is in case the display swap happens while we're
// working: we want to finish work on the same display even though
// it's now called the paint-from display, so it's consistent.
display* pd = pdis_update;
++pd->inst_count;
// Rows 0-4, easy cases: single-register LED strings.
//
// The values passed for rows 1 and 2 are non-obvious. See the code
// calling us from ../SIMH/PDP8/pdp8_cpu.c for details.
set_pidp8i_row_leds (pd, 0, sPC);
set_pidp8i_row_leds (pd, 1, sMA);
set_pidp8i_row_leds (pd, 2, sMB);
set_pidp8i_row_leds (pd, 3, sLAC & 07777);
set_pidp8i_row_leds (pd, 4, sMQ);
#if 0 // debugging
static time_t last = 0, now;
if (time(&now) != last) {
uint16* pcurr = pd->curr;
printf("\r\nSET: [PC:%04o] [MA:%04o] [MB:%04o] [AC:%04o] [MQ:%04o]",
pcurr[0], pcurr[1], pcurr[2], pcurr[3], pcurr[4]);
last = now;
}
#endif
// Row 5a: instruction type column, decoded from high octal
// digit of IR value
pd->curr[5] = 0;
uint16 inst_type = sIR & 07000;
switch (inst_type) {
case 00000: set_pidp8i_led (pd, 5, 11); break; // 000 AND
case 01000: set_pidp8i_led (pd, 5, 10); break; // 001 TAD
case 02000: set_pidp8i_led (pd, 5, 9); break; // 010 DCA
case 03000: set_pidp8i_led (pd, 5, 8); break; // 011 ISZ
case 04000: set_pidp8i_led (pd, 5, 7); break; // 100 JMS
case 05000: set_pidp8i_led (pd, 5, 6); break; // 101 JMP
case 06000: set_pidp8i_led (pd, 5, 5); break; // 110 IOT
case 07000: set_pidp8i_led (pd, 5, 4); break; // 111 OPR 1 & 2
}
// Row 5b: set the Defer LED if...
if ((inst_type <= 05000) && // it's a memory reference instruction
(sIR & 00400)) { // and indirect addressing flag is set
set_pidp8i_led (pd, 5, 1);
}
// Row 5c: The Fetch & Execute LEDs are pulsed once per instruction.
// On real hardware, the pulses don't happen at exactly the same
// time, but we can't simulate that because SIMH handles each CPU
// instruction "whole." When running real code, all we care about
// is that both LEDs are twiddled so rapidly that they both just
// become a 50% blur, mimicking the hardware closely enough.
//
// The exception is that when the CPU is stopped, both LEDs are off,
// because the pulses happen "outside" the STOP state: Fetch before
// and Execute after resuming from STOP.
extern int swStop, swSingInst;
int running = !swStop && !swSingInst;
if (running) {
set_pidp8i_led (pd, 5, 2); // Execute
set_pidp8i_led (pd, 5, 3); // Fetch
}
// Row 6a: Remaining LEDs in upper right block
pd->curr[6] = 0;
if (running) set_pidp8i_led (pd, 6, 7); // bump Run LED
if (Pause) set_pidp8i_led (pd, 6, 8); // bump Pause LED
if (int_req & INT_ION) set_pidp8i_led (pd, 6, 9); // bump ION LED
// Row 6b: The Step Count LEDs are also on row 6
set_5_pidp8i_leds (pd, sSC);
// Row 7: DF, IF, and Link.
pd->curr[7] = 0;
set_3_pidp8i_leds (pd, 9, sDF);
set_3_pidp8i_leds (pd, 6, sIF);
if (sLAC & 010000) set_pidp8i_led (pd, 7, 5);
// If we're stopped or single-stepped, the display-swapping code
// won't happen, so copy the above over to the paint-from version.
extern int resumeFromInstructionLoopExit;
if (!running || resumeFromInstructionLoopExit) {
memcpy(pdis_paint, pdis_update, sizeof(struct display));
}
}
//// mount_usb_stick_file //////////////////////////////////////////////
// Search for a PDP-8 media image on a USB device mounted under /media
// and attempt to ATTACH it to the simulator.
static void mount_usb_stick_file (int devNo, char *devCode)
{
char sFoundFile[CBUFSIZE] = { '\0' };
char sDirName[CBUFSIZE]; // will be "/media/DIRNAME" etc
char fileExtension[4]; // will be ".RX" etc
int i, j;
// Build expected file name extension from the first two characters of
// the passed-in device code.
fileExtension[0] = '.'; // extension starts with a .
strncpy (fileExtension + 1, devCode, 2); // extension is PT, RX, RL etc
fileExtension[3] = '\0'; // chop off device number
#if 0 // debugging
printf("\r\nMOUNT USB: [DEV:%d] [CODE:%s], [EXT:%s]",
devNo, devCode, fileExtension);
#endif
// Forget the prior file attached to this PDP-8 device. The only reason
// we keep track is so we don't have the same media image file attached
// to both devices of a given type we support. That is, you can't have
// a given floppy image file attached to both RX01 drives, but you *can*
// repeatedly re-ATTACH the same floppy image to the first RX01 drive.
static char mountedFiles[8][CBUFSIZE];
mountedFiles[devNo][0] = '\0';
// Search all directories under /media
DIR *pDir1 = opendir ("/media");
if (pDir1) {
struct dirent* pDE1;
while ((pDE1 = readdir (pDir1)) != 0) {
if (pDE1->d_type != DT_DIR) continue;
// Found a directory under /media. Search it for plausibly
// named files given devCode.
snprintf (sDirName, sizeof(sDirName), "/media/%s", pDE1->d_name);
DIR *pDir2 = opendir (sDirName);
if (pDir2) {
struct dirent* pDE2;
while ((pDE2 = readdir (pDir2)) != 0) { // search all files in directory
if (pDE2->d_name[0] == '.') continue; // dotfiles clutter debug output
char* pext = strstr (pDE2->d_name, fileExtension);
if (pext && (pext == (pDE2->d_name + strlen (pDE2->d_name) - 3))) {
snprintf (sFoundFile, sizeof (sFoundFile), "%s/%s",
sDirName, pDE2->d_name);
#if 0 // debugging
printf("\r\nFound candidate file %s for dev %s, ext *%s...",
sFoundFile, devCode, fileExtension);
#endif
for (j = 0; j < 7; ++j) {
if (strncmp (mountedFiles[j], sFoundFile, CBUFSIZE) == 0) {
#if 0 // debugging
printf("\r\nAlready have %s mounted, slot %d; will not remount.",
sFoundFile, j);
#endif
sFoundFile[0] = '\0'; // don't leave outer loop; keep looking
break;
}
}
if (j == 7) {
// Media image file is not already mounted, so leave while
// loop with path set to mount it
break;
}
}
#if 0 // debugging
else {
printf("\r\nFile %s on %s doesn't match *%s...",
pDE2->d_name, sDirName, fileExtension);
}
#endif
} // end while (pDE2...)
closedir (pDir2);
} // end if (pDir2)
else {
// USB auto-mounting either doesn't work here or uses
// something other than the /media/DIR/FILE.EXT scheme
// we expect.
printf ("\r\nCannot open %s: %s\r\n", sDirName, strerror (errno));
return;
}
} // end while (pDE1...)
closedir(pDir1);
} // end if (pDir1)
if (sFoundFile[0]) { // no file found, exit
if (access (sFoundFile, R_OK) == 0) {
char sAttachCmd[CBUFSIZE] = { '\0' };
snprintf (sAttachCmd, sizeof(sAttachCmd), "%s %s",
devCode, sFoundFile);
t_stat scpCode = attach_cmd ((int32) 0, sAttachCmd);
if (scpCode == SCPE_OK) {
// add file to mount list
strncpy (mountedFiles[devNo], sFoundFile, CBUFSIZE);
printf ("\r\nMounted %s %s\r\n", devCode, mountedFiles[devNo]);
}
else {
// SIMH ATTACH command failed
printf ("\r\nSIMH error mounting %s on %s: %s\r\n",
sFoundFile, devCode, sim_error_text (scpCode));
}
}
else {
printf ("\r\nCannot read medium image %s from USB: %s\r\n",
sFoundFile, strerror (errno));
}
}
else {
printf ("\r\nNo unmounted %s file found\r\n", devCode);
}
}
//// handle_sing_step //////////////////////////////////////////////////
// Handle SING_STEP combinations as nonstandard functions with respect
// to a real PDP-8, since SIMH doesn't try to emulate the PDP-8's
// single-stepping mode — not to be confused with single-instruction
// mode, which SIMH *does* emulate — so the SING_STEP switch is free
// for our nonstandard uses.
//
// This is separate from handle_flow_control_switches only because
// there are so many cases here that it would obscure the overall flow
// of our calling function to do all this there.
static pidp8i_flow_t handle_sing_step (int closed)
{
// If SING_STEP is open, we do nothing here except reset the single-shot
// flag if it was set.
static int single_shot = 0;
if (!closed) {
single_shot = 0;
return pft_normal;
}
// There are two sets of SING_STEP combos: first up are those where the
// other switches involved have to be set already, and the function is
// triggered as soon as SING_STEP closes. These are functions we don't
// want re-executing repeatedly while SING_STEP remains closed.
if (single_shot == 0) {
// SING_STEP switch was open last we knew, and now it's closed, so
// set the single-shot flag.
single_shot = 1;
// 1. Convert DF switch values to a device number, which
// we will map to a PDP-8 device type, then attempt to
// ATTACH some unmounted medium from USB to that device
//
// We treat DF == 0 as nothing to mount, since we use
// SING_STEP for other things, so we need a way to
// decide which meaning of SING_STEP to take here.
//
// The shift by 9 is how many non-DF bits are below
// DF in switchstatus[1]
//
// The bit complement is because closed DF switches show
// as 0, because they're dragging the pull-up down, but
// we want those treated as 1s, and vice versa.
uint16_t css1 = ~switchstatus[1];
int swDevice = (css1 & SS1_DF_ALL) >> 9;
if (swDevice) {
char swDevCode[4] = { '\0' };
switch (swDevice) {
case 1: strcpy (swDevCode, "ptr"); break; // PTR paper tape reader
case 2: strcpy (swDevCode, "ptp"); break; // High speed paper tape punch
case 3: strcpy (swDevCode, "dt0"); break; // TC08 DECtape (#8 is first!)
case 4: strcpy (swDevCode, "dt1"); break;
case 5: strcpy (swDevCode, "rx0"); break; // RX8E (8/e peripheral!)
case 6: strcpy (swDevCode, "rx1"); break;
case 7: strcpy (swDevCode, "rk1"); break; // second RK05 disk pack
}
if (swDevCode[0]) mount_usb_stick_file (swDevice, swDevCode);
}
// 2. Do the same with IF, except that the switch value
// is used to decide which boot script to restart with via
// SIMH's DO command.
//
// The shift value of 6 is because the IF switches are 3
// down from the DF switches above.
int swScript = (css1 & SS1_IF_ALL) >> 6;
if (swScript) {
printf ("\r\n\nRestarting with IF == %d...\r\n\r\n", swScript);
insert_scp_cmd = swScript;
return pft_halt;
}
} // end if single-shot flag clear
else {
// Now handle the second set of SING_STEP special-function
// combos, being those where the switches can be pressed in any
// order, so that we take action when the last one of the set
// closes, no matter which one that is. These immediately exit
// the SIMH instruction interpreter, so they won't re-execute
// merely because the human isn't fast enough to lift his finger
// by the time the next iteration of that loop starts.
// 3. Scan for host poweroff command (Sing_Step + Sing_Inst + Stop)
if ((switchstatus[2] & (SS2_S_INST | SS2_STOP)) == 0) {
printf ("\r\nShutdown\r\n\r\n");
insert_scp_cmd = CMD_EXIT;
if (spawn_cmd (0, "sudo /bin/systemctl poweroff") != SCPE_OK) {
printf ("\r\n\r\npoweroff failed\r\n\r\n");
}
return pft_halt;
}
// 4. Scan for host reboot command (Sing_Step + Sing_Inst + Start)
if ((switchstatus[2] & (SS2_S_INST | SS2_START)) == 0) {
printf ("\r\nReboot\r\n\r\n");
insert_scp_cmd = CMD_EXIT;
if (spawn_cmd (0, "sudo /bin/systemctl reboot") != SCPE_OK) {
printf ("\r\n\r\nreboot failed\r\n\r\n");
}
return pft_halt;
}
#if 0
// These combos once meant something, but no longer do. If you
// reassign them, think carefully whether they should continue to
// be handled here and not above in the "if" branch. If nothing
// prevents your function from being re-executed while SING_STEP
// remains closed and re-execution would be bad, move the test
// under the aegis of the single_shot flag.
// 5. Sing_Step + Sing_Inst + Load Add
if ((switchstatus[2] & (SS2_S_INST | SS2_L_ADD)) == 0) { }
// 6. Sing_Step + Sing_Inst + Deposit
if ((switchstatus[2] & (SS2_S_INST | SS2_DEP)) == 0) { }
#endif
}
return pft_normal;
}
//// handle_flow_control_switches //////////////////////////////////////
// Process all of the PiDP-8/I front panel switches that can affect the
// flow path of the PDP-8 simulator's instruction interpretation loop,
// returning a code telling the simulator our decision.
//
// The simulator passes in pointers to PDP-8 registers we may modify as
// a side effect of handling these switches.
pidp8i_flow_t handle_flow_control_switches (uint16* pM,
uint32 *pPC, uint32 *pMA, int32 *pMB, int32 *pLAC, int32 *pIF,
int32 *pDF, int32* pint_req)
{
// Exit early if the blink thread has not attached itself to the GPIO
// peripheral in the Pi, since that means we cannot safely interpret the
// data in the switchstatus array. This is especially important on
// non-Pi hosts, since switchstatus will remain zeroed, which we would
// interpret as "all switches are pressed!", causing havoc.
//
// It would be cheaper for our caller to check this for us and skip the
// call, but there's no good reason to expose such implementations
// details to it. We're trying to keep the PDP-8 simulator's CPU core
// as free of PiDP-8/I details as is practical.
if (!pidp8i_gpio_present) return pft_normal;
// Handle the nonstandard SING_STEP + X combos, some of which halt
// the processor.
if (handle_sing_step ((switchstatus[2] & SS2_S_STEP) == 0) == pft_halt) {
return pft_halt;
}
// Check for SING_INST switch close...
extern int swSingInst;
if (((switchstatus[2] & SS2_S_INST) == 0) && (swSingInst == 0)) {
// Put the processor in single-instruction mode until we get a
// CONT or START switch closure. Technically this is wrong
// according to DEC's docs: we're supposed to finish executing
// the next instruction before we "clear the RUN flip-flop" in
// DEC terms, whereas we're testing these switches before we
// fetch the next instruction. Show me how it matters, and
// I'll fix it. :)
swSingInst = 1;
}
// ...and SING_INST switch open
extern int swStop;
if (swSingInst && (switchstatus[2] & SS2_S_INST)) {
swSingInst = 0;
swStop = 1; // still stopped on leaving SING_INST mode
}
// Check for START switch press...
static int swStart = 0;
if (((switchstatus[2] & SS2_START) == 0) && (swStart == 0)) {
// Reset the CPU.
extern DEVICE cpu_dev;
extern t_stat cpu_reset (DEVICE *);
cpu_reset (&cpu_dev);
// DEC's docs say there are a few additional things START does
// that cpu_reset() doesn't do for us.
//
// Don't need to do anything with MA and IR, as SIMH does that
// shortly after this function returns.
*pLAC = *pMB = 0;
// cpu_reset() does its thing to the saved_* register copies
// in a few cases, but we need it to happen to the "real"
// registers instead, since our STOP/START behavior doesn't
// make use of saved_*.
REG* pibr = find_reg ("IB", NULL, &cpu_dev);
int32* pIB = pibr ? pibr->loc : 0 /* force segfault on err */ ;
*pIB = *pIF;
// Reset our switch flags, too
swStop = 0; // START cancels STOP mode
swSingInst = 0; // allow SING INST mode re-entry
swStart = 1; // make it single-shot
#if 0 // debugging
printf("\r\nSTART: [DF:%o] [IF:%o] [IB:%o] [PC:%04o] "
"[MA:%04o] [MB:%04o] [L:%d] [AC:%04o]",
(*pDF >> 12), (*pIF >> 12), (*pIB >> 12), (*pPC & 07777),
*pMA, *pMB, !!(*pLAC & 010000), *pLAC & 07777);
#endif
}
// ...and START switch release
if (swStart && (switchstatus[2] & SS2_START)) {
swStart = 0;
}
// Check for CONT switch press...
static int swCont = 0;
extern int resumeFromInstructionLoopExit;
if ((((switchstatus[2] & SS2_CONT) == 0) && (swCont == 0)) ||
resumeFromInstructionLoopExit) {
// The initial CONT press is special: how we handle it
// depends on the processor's state.
//
// FIXME: Are we handling MB correctly? [973271ae36]
swCont = 1; // make it single-shot
resumeFromInstructionLoopExit = 0;
if (swSingInst) {
// On the initial CONT press while in SING_INST mode, run
// one instruction only.
return pft_normal;
}
else if (swStop) {
// We were HLTed or STOPped, so CONT returns us to
// free-running mode.
swStop = 0;
#if 0 // debugging
printf("\r\nCONT: [DF:%o] [IF:%o] [PC:%04o] "
"[MA:%04o] [MB:%04o] [L:%d] [AC:%04o]",
(*pDF >> 12), (*pIF >> 12), (*pPC & 07777),
*pMA, *pMB, !!(*pLAC & 010000), *pLAC & 07777);
#endif
}
// else, CONT has no effect in this state
}
// ...and CONT switch release
if (swCont && (switchstatus[2] & SS2_CONT)) {
swCont = 0;
}
// Check for LOAD_ADD switch press. The only reason we bother
// making it single-shot is in case debugging is enabled.
// Otherwise, it matters not how long the slow human holds this
// swithc down, and thus how often we apply the values: all else
// but our printf() here is idempotent.
static int swLAdd = 0;
if ((swLAdd == 0) && (switchstatus[2] & SS2_L_ADD) == 0) {
// Copy SR into PC. Have to flip the bits because GPIO gives
// 0 for a closed switch and 1 for open, opposite what we want.
*pPC = (~switchstatus[0]) & 07777;
// Copy DF switch settings to DF register
//
// The shift is because the DF positions inside the switchstatus[1]
// register happen to be 3 bit positions off of where we want them
// in DF here: we want to be able to logically OR PC and DF to make
// 15-bit data access addresses.
//
// We complement the bits here for the same reason we did above
uint16_t css1 = ~switchstatus[1];
*pDF = (css1 & SS1_DF_ALL) << 3;
// Do the same for IF. The only difference comes from the fact
// that IF is the next 3 bits down in switchstatus[1].
*pIF = (css1 & SS1_IF_ALL) << 6;
#if 0 // debugging
printf("\r\nL_ADD: [DF:%o] [IF:%o] [PC:%04o] "
"[MA:%04o] [MB:%04o] [L:%d] [AC:%04o]",
(*pDF >> 12), (*pIF >> 12), (*pPC & 07777),
*pMA, *pMB, !!(*pLAC & 010000), *pLAC & 07777);
#endif
swLAdd = 1; // make it single-shot
}
// ...and L_ADD switch release
if (swLAdd && (switchstatus[2] & SS2_L_ADD)) {
swLAdd = 0;
}
// Check for DEP switch press...
static int swDep = 0;
if (((switchstatus[2] & SS2_DEP) == 0) && (swDep == 0)) {
uint16 sSR = (~switchstatus[0]) & 07777; // bit flip justified above
*pPC = *pPC & 07777; // sometimes high bits get set; squish 'em
#if 0 // debugging
printf("\r\nDEP: [IF:%o] [PC:%04o] [SR:%04o]",
(*pIF >> 12), *pPC, sSR);
#endif
/* ??? in 66 handbook: strictly speaking, SR goes into AC,
then AC into MB. Does it clear AC afterwards? If not, needs fix */
pM[*pPC] = sSR; // FIXME: shouldn't we use IF/DF here?
*pMB = sSR;
*pMA = *pPC & 07777; // MA trails PC on FP; FIXME: OR in IF?
*pPC = (*pPC + 1) & 07777; // increment PC
swDep = 1; // make it single-shot
}
// ...and DEP switch release
if (swDep && (switchstatus[2] & SS2_DEP)) {
swDep = 0;
}
// Check for EXAM switch press...
static int swExam = 0;
if (((switchstatus[2] & SS2_EXAM) == 0) && (swExam == 0)) {
*pMB = pM[*pPC];
*pMA = *pPC & 07777; // MA trails PC on FP
*pPC = (*pPC + 1) & 07777; // increment PC
swExam = 1; // make it single-shot
}
// ...and EXAM switch release
if (swExam && (switchstatus[2] & SS2_EXAM)) {
swExam = 0;
}
// Check for STOP switch press. No "and release" because we get out of
// STOP mode with START or CONT, not by releasing STOP, and while in
// STOP mode, this switch's function is idempotent.
if (!swStop && ((switchstatus[2] & SS2_STOP) == 0)) {
swStop = 1;
#if 0 // debugging
printf("\r\nSTOP: [DF:%o] [IF:%o] [PC:%04o] "
"[MA:%04o] [MB:%04o] [L:%d] [AC:%04o]",
(*pDF >> 12), (*pIF >> 12), (*pPC & 07777),
*pMA, *pMB, !!(*pLAC & 010000), *pLAC & 07777);
#endif
}
// If any of the above put us into STOP or SING_INST mode, go no
// further. In particular, fetch no more instructions, and do not
// touch PC! The only way to get un-stuck is CONT or STOP.
return (swStop || swSingInst) ? pft_stop : pft_normal;
}
//// get_switch_register ///////////////////////////////////////////////
// Return the current contents of the switch register.
//
// The sensed values are backwards due to the GPIO pull-ups, with 1=open
// rather than closed, so we must flip the bits before returning it. We
// also must mask off the non-SR bits because our caller takes this
// value and ORs it with its LAC register, which combines L and AC, and
// we don't want to set L just because the next GPIO pin up past those
// used for the SR happens to be set at the moment this is called.
int32 get_switch_register (void)
{
return ~switchstatus[0] & 07777;
}
|