PiDP-8/I Software

Artifact [e0f75063c3]
Log In

Artifact e0f75063c36d20c16e09c46cdc7e8e99ce30f2d6e2f65e67c5c3642e4d029f81:


     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
   100
   101
   102
   103
   104
   105
   106
   107
   108
   109
   110
   111
   112
   113
   114
   115
   116
   117
   118
   119
   120
   121
   122
   123
   124
   125
   126
   127
   128
   129
   130
   131
   132
   133
   134
   135
   136
   137
   138
   139
   140
   141
   142
   143
   144
   145
   146
   147
   148
   149
   150
   151
   152
   153
   154
   155
   156
   157
   158
   159
   160
   161
   162
   163
   164
   165
   166
   167
   168
   169
   170
   171
   172
   173
   174
   175
   176
   177
   178
   179
   180
   181
   182
   183
   184
   185
   186
   187
   188
   189
   190
   191
   192
   193
   194
   195
   196
   197
   198
   199
   200
   201
   202
   203
   204
   205
   206
   207
   208
   209
   210
   211
   212
   213
   214
   215
   216
   217
   218
   219
   220
   221
   222
   223
   224
   225
   226
   227
   228
   229
   230
   231
   232
   233
   234
   235
   236
   237
   238
   239
   240
   241
   242
   243
   244
   245
   246
   247
   248
   249
   250
   251
   252
   253
   254
   255
   256
   257
   258
   259
   260
   261
   262
   263
   264
   265
   266
   267
   268
   269
   270
   271
   272
   273
   274
   275
   276
   277
   278
   279
   280
   281
   282
   283
   284
   285
   286
   287
   288
   289
   290
   291
   292
   293
   294
   295
   296
   297
   298
   299
   300
   301
   302
   303
   304
   305
   306
   307
   308
   309
   310
   311
   312
   313
   314
   315
   316
   317
   318
   319
   320
   321
   322
   323
   324
   325
   326
   327
   328
   329
   330
   331
   332
   333
   334
   335
   336
   337
   338
   339
   340
   341
   342
   343
   344
   345
   346
   347
   348
   349
   350
   351
   352
   353
   354
   355
   356
   357
   358
   359
   360
   361
   362
   363
   364
   365
   366
   367
   368
   369
   370
   371
   372
   373
   374
   375
   376
   377
   378
   379
   380
   381
   382
   383
   384
   385
   386
   387
   388
   389
   390
   391
   392
   393
   394
   395
   396
   397
   398
   399
   400
   401
   402
   403
   404
   405
   406
   407
   408
   409
   410
   411
   412
   413
   414
   415
   416
   417
   418
   419
   420
   421
   422
   423
   424
   425
   426
   427
   428
   429
   430
   431
   432
   433
   434
   435
   436
   437
   438
   439
   440
   441
   442
   443
   444
   445
   446
   447
   448
   449
   450
   451
   452
   453
   454
   455
   456
   457
   458
   459
   460
   461
   462
   463
   464
   465
   466
   467
   468
   469
   470
   471
   472
   473
   474
   475
   476
   477
   478
   479
   480
   481
   482
   483
   484
   485
   486
   487
   488
   489
   490
   491
   492
   493
   494
   495
   496
   497
   498
   499
   500
   501
   502
   503
   504
   505
   506
   507
   508
   509
   510
   511
   512
   513
   514
   515
   516
   517
   518
   519
   520
   521
   522
   523
   524
   525
   526
   527
   528
   529
   530
   531
   532
   533
   534
   535
   536
   537
   538
   539
   540
   541
   542
   543
   544
   545
   546
   547
   548
   549
   550
   551
   552
   553
   554
   555
   556
   557
   558
   559
   560
   561
   562
   563
   564
   565
   566
   567
   568
   569
   570
   571
   572
   573
   574
   575
   576
   577
   578
   579
   580
   581
   582
   583
   584
   585
   586
   587
   588
   589
   590
   591
   592
   593
   594
   595
   596
   597
   598
   599
   600
   601
   602
   603
   604
   605
   606
   607
   608
   609
   610
   611
   612
   613
   614
   615
   616
   617
   618
   619
   620
   621
   622
   623
   624
   625
   626
   627
   628
   629
   630
   631
   632
   633
   634
   635
   636
   637
   638
   639
   640
   641
   642
   643
   644
   645
   646
   647
   648
   649
   650
   651
   652
   653
   654
   655
   656
   657
   658
   659
   660
   661
   662
   663
   664
   665
   666
   667
   668
   669
   670
   671
   672
   673
   674
   675
   676
   677
   678
   679
   680
   681
   682
   683
   684
   685
   686
   687
   688
   689
   690
   691
   692
   693
   694
   695
   696
   697
   698
   699
   700
   701
   702
   703
   704
   705
   706
   707
   708
   709
   710
   711
   712
   713
   714
   715
   716
   717
   718
   719
   720
   721
   722
   723
   724
   725
   726
   727
   728
   729
   730
   731
   732
   733
   734
   735
   736
   737
   738
   739
   740
   741
   742
   743
   744
   745
   746
   747
   748
   749
   750
   751
   752
   753
   754
   755
   756
   757
   758
   759
   760
   761
   762
   763
   764
   765
   766
   767
   768
   769
   770
   771
   772
   773
   774
   775
   776
   777
   778
   779
   780
   781
   782
   783
   784
   785
   786
   787
   788
   789
   790
   791
   792
   793
   794
   795
   796
   797
   798
   799
   800
   801
   802
   803
   804
   805
   806
   807
   808
   809
   810
   811
   812
   813
   814
   815
   816
   817
   818
   819
   820
   821
   822
   823
   824
   825
   826
   827
   828
   829
   830
   831
   832
   833
   834
   835
   836
   837
   838
   839
   840
   841
   842
   843
   844
   845
   846
   847
/*
 * gpio-common.c: functions common to both gpio.c and gpio-nls.c
 *
 * Copyright © 2015 Oscar Vermeulen, © 2016-2018 by Warren Young
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS LISTED ABOVE BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Except as contained in this notice, the names of the authors above shall
 * not be used in advertising or otherwise to promote the sale, use or other
 * dealings in this Software without prior written authorization from those
 * authors.
 *
 * www.obsolescenceguaranteed.blogspot.com
 * 
 * This is part of the GPIO thread, which communicates with the
 * simulator's main thread via *pdis_update and switchstatus[].
 * All of this module's other external interfaces are only called
 * by the other gpio-* modules, from the GPIO thread.
*/

#include "pidp8i.h"

#include <config.h>

#include <pthread.h>
#include <sys/file.h>
#include <sys/time.h>

#include <ctype.h>
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_TIME_H
#   include <time.h>
#endif

#define BLOCK_SIZE (4*1024)


//// GLOBALS ///////////////////////////////////////////////////////////

// Flag set after we successfully init the GPIO mechanism.  While this
// is false, the rest of the code knows not to expect useful values for
// LED and switch states.  It is also useful as a cross-thread signal,
// since merely starting the blink() thread doesn't tell you whether it
// managed to lock the GPIO device.
uint8_t pidp8i_gpio_present;

// Flag external programs can set to make us use the old-style (and
// simpler, hence still supported) ledstatus[] interface for updating
// the LED values when swapping displays internally.  The external
// program doesn't need to know anything about struct display.
int pidp8i_simple_gpio_mode = 0;

// GPIO peripheral info, initted in start_pidp8i_gpio_thread()
struct bcm2835_peripheral gpio;
#define pgpio (&gpio)
#ifdef PCB_SERIAL_MOD_JLW
struct bcm2835_peripheral gpio2;
#endif


// A constant meaning "indeterminate milliseconds", used for error
// returns from ms_time() and for the case where the switch is in the
// stable state in the switch_state array.
static const ms_time_t na_ms = (ms_time_t)-1;


// Adjust columns to scan based on whether the Oscar Vermeulen or James L-W
// serial mods were done, as that affects the free GPIOs for our use, and how
// the PCB connects them to the LED matrix.
#if defined(PCB_SERIAL_MOD_OV) || defined(PCB_SERIAL_MOD_JLW)
uint8_t cols[NCOLS] = {13, 12, 11,    10, 9, 8,    7, 6, 5,    4, 3, 2};
#else
uint8_t cols[NCOLS] = {13, 12, 11,    10, 9, 8,    7, 6, 5,    4, 15, 14};
#endif

uint8_t ledrows[NLEDROWS] = {20, 21, 22, 23, 24, 25, 26, 27};

uint8_t rows[NROWS] = {16, 17, 18};


// Current switch states, as reported by the debouncing algorithm.  Set
// from the GPIO thread to control the SIMH CPU thread.
uint16_t switchstatus[NROWS];

// Double-buffered LED display brightness values.  The update-to copy is
// modified by the SIMH CPU thread as it executes instructions, and the
// paint-from copy is read by the gpio-*.c module in its "set LEDs"
// loop.  When the GPIO thread is finished with the paint-from copy, it
// zeroes it and swaps it for the current "update-to" copy, giving the
// CPU thread a blank slate, and giving the GPIO thread a stable set of
// LED "on" time values to work with.
display display_bufs[2];
display* pdis_update = display_bufs + 0;    // exported to SIMH CPU thread
display* pdis_paint  = display_bufs + 1;    // exported to gpio-*.c

// Pi Zero ILS counter
static int gpio_pwm_cnt = 0;

// GPIO thread control variables manipulated by start/stop_*() below
static pthread_t gpio_thread_info;
static int terminate_gpio_thread = 0;
static pthread_mutex_t gpio_start_mutex;


// Time-delayed reaction to switch changes to debounce the contacts.
// This is especially important with the incandescent lamp simulation
// feature enabled since that speeds up the GPIO scanning loop, making
// it more susceptible to contact bounce.
struct switch_state {
    // switch state currently reported via switchstatus[]
    int stable_state;

    // ms the switch state has been != stable_state, or na_ms
    // if it is currently in that same state
    ms_time_t last_change;      
};
static struct switch_state gss[NROWS][NCOLS];
static int gss_initted = 0;
static const ms_time_t debounce_ms = 50;    // time switch state must remain stable


// Flow-control switch states which are owned by -- that is, primarily
// modified by -- the PDP8/pidp8i module, but we can't define these
// there because we refer to them below, and not all programs that link
// to us link to that module as well.  For such programs, it's fine if
// these two flags stay 0.
int swStop = 0, swSingInst = 0;

// Flag to override ILS mode, forcing fallback to NLS mode.  Set when
// the PDP-8 instruction decoding loop detects that we're using the
// ratio form of SET THROTTLE, which prevents the use of ILS due to the
// way instructions are executed in that mode.  Defined here rather than
// in gpio-ils.c because we don't want to make code that sets this
// conditional based on whether ILS is in fact actually enabled.
int suppressILS = 0;

// Flag set when sim_instr() exits due to some SIMH event like Ctrl-E,
// which lets us resume from our imposed "pause" display state.
int resumeFromInstructionLoopExit = 0;


// SCP's signal handlers, which we extend.
#if !defined(HAVE_SIGHANDLER_T) && defined(HAVE_SIG_T)
typedef sig_t sighandler_t;
#endif
static sighandler_t scp_term_handler = 0;


//// MEMORY MAPPED GPIO FUNCTIONS //////////////////////////////////////

//// map_peripheral ////////////////////////////////////////////////////
// Exposes the physical address defined in the passed structure

static int map_peripheral(struct bcm2835_peripheral *p, int exclusive)
{
    // Name of GPIO memory-mapped device
    static const char* gpio_mem_dev = "/dev/gpiomem";

    if (access(gpio_mem_dev, F_OK) < 0) {
        // That dev node isn't even present, so it's probably not a Pi
        return -1;
    }

    // Open the GPIO device
    if ((p->mem_fd = open(gpio_mem_dev, O_RDWR|O_SYNC)) < 0) {
#ifdef DEBUG
        printf("Failed to open %s: %s\n", gpio_mem_dev, strerror(errno));
        puts("Disabling PiDP-8/I front panel functionality.");
#endif
        return -1;
    }

    // Attempt to lock it.  If we can't, another program has it locked,
    // so we shouldn't keep running; it'll just end in tears.
    if (exclusive && (flock(p->mem_fd, LOCK_EX | LOCK_NB) < 0)) {
        if (errno == EWOULDBLOCK) {
            printf("Failed to lock %s.  Only one PiDP-8/I\n", gpio_mem_dev);
            puts("program can be running at a given time.");
        }
        else {
            printf("Failed to lock %s: %s\n", gpio_mem_dev, strerror(errno));
            puts("Only one PiDP-8/I program can be running at a given time.");
        }
        return -1;
    }

    // Map the GPIO peripheral into our address space
    if ((p->map = mmap(
            NULL, BLOCK_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED,
            p->mem_fd,
            p->addr_p)) == MAP_FAILED) {
        perror("mmap");
        return -1;
    }

    // Success!
    p->addr = (volatile unsigned int *)p->map;
    pidp8i_gpio_present = 1;
    return 0;
}


//// unmap_peripheral //////////////////////////////////////////////////
// Unwind the map_peripheral() steps in reverse order

void unmap_peripheral(struct bcm2835_peripheral *p)
{
    if (pidp8i_gpio_present) {
        if (p->mem_fd > 0) {
            if (p->map) munmap(p->map, BLOCK_SIZE);
            flock(p->mem_fd, LOCK_UN);
            close(p->mem_fd);
        }
        pidp8i_gpio_present = 0;
    }
}


//// bcm_host_get_peripheral_address ///////////////////////////////////
// Find Pi's GPIO base address

static unsigned bcm_host_get_peripheral_address(void)
{
    unsigned address = ~0;
    FILE *fp = fopen("/proc/device-tree/soc/ranges", "rb");
    if (fp)
    {   unsigned char buf[4];
        fseek(fp, 4, SEEK_SET);
        if (fread(buf, 1, sizeof buf, fp) == sizeof buf)
            address = buf[0] << 24 | buf[1] << 16 | buf[2] << 8 | buf[3] << 0;
        fclose(fp);
    }

    return address == ~0 ? 0x20000000 : address;
}


//// DOUBLE BUFFERED DISPLAY MANIPULATION FUNCTIONS ////////////////////

//// swap_displays ////////////////////////////////////////////////////
// Clear the current "paint-from" display, then exchange the double-
// buffered display pointers atomically, saving the current update-to
// display pointer as our paint-from display pointer and re-pointing
// the update-to pointer at the now-zeroed paint-from values.  This
// gives the CPU thread a blank slate to begin modifying while the GPIO
// thread consumes the values provided by the CPU thread.

#define SWAP(dir) \
    __atomic_exchange_n (&pdis_update, display_bufs + dir, __ATOMIC_SEQ_CST)

void swap_displays ()
{
    if (!swStop && !swSingInst) {
        if (pidp8i_simple_gpio_mode) {
            // We're linked to a program that wants to use the old
            // ledstatus[] interface for updating the display, so copy
            // its values into the paint-from display structure and
            // return.  We don't need to touch the update-to display or
            // swap anything, because set_pidp8i_leds won't be called.
            static const int levels = 32;
            memcpy (pdis_paint->curr, ledstatus, 
                    sizeof (pdis_paint->curr));
            pdis_paint->inst_count = levels;

            for (size_t row = 0; row < NLEDROWS; ++row) {
                size_t *prow = pdis_paint->on[row];
                for (size_t col = 0, mask = 1; col < NCOLS;
                        ++col, mask <<= 1) {
                    prow[col] = !!(ledstatus[row] & mask) * levels;
                }
            }
        }
        else {
            // Clear old paint-from display
            memset (pdis_paint, 0, sizeof(display));

            // Send old paint-from display to CPU as new update-to
            // display, and overwrite paint-from pointer with prior
            // update-to pointer.
            pdis_paint = pdis_update == display_bufs + 0 ?
                    SWAP(1) :
                    SWAP(0);
        }
    }
    // else, leave current LED values as-is so we don't go to a black
    // screen while in STOP mode, either from front panel or HLT
}


//// FINE GRAINED SLEEP FUNCTIONS //////////////////////////////////////

//// sleep_ns //////////////////////////////////////////////////////////
// Like sleep(2) except that it takes nanoseconds instead of seconds

void sleep_ns(ns_time_t ns)
{
    struct timespec ts = { 0, ns };
#if defined(HAVE_CLOCK_NANOSLEEP)
    clock_nanosleep(CLOCK_REALTIME, 0, &ts, NULL);
#elif defined(HAVE_NANOSLEEP)
    nanosleep(&ts, NULL);
#elif defined(HAVE_USLEEP)
    usleep(ns / 1000);
#else
#   error Cannot build GPIO controller without high-res "sleep" function!
#endif
}


//// ms_time ///////////////////////////////////////////////////////////
// Like time(2) except that it returns milliseconds since the Unix epoch

ms_time_t ms_time(ms_time_t* pt)
{
    struct timeval tv;
    if (gettimeofday(&tv, 0) == 0) {
        ms_time_t t =
                tv.tv_sec  * 1000.0 +
                tv.tv_usec / 1000.0;
        if (pt) *pt = t;
        return t;
    }
    else {
        return na_ms;
    }
}


//// SWITCH DEBOUNCING and READING FUNCTIONS ///////////////////////////

//// report_ss /////////////////////////////////////////////////////////
// Save given switch state ss into the exported switchstatus bitfield
// so the simulator core will see it.  (Constrast the gss matrix,
// which holds our internal view of the unstable truth.)

static void report_ss(int row, int col, int ss,
        struct switch_state* pss)
{
    pss->stable_state = ss;
    pss->last_change = na_ms;

    int mask = 1 << col;
    if (ss) switchstatus[row] |=  mask;
    else    switchstatus[row] &= ~mask;

    #ifdef DEBUG
        printf("%cSS[%d][%02d] = %d  ", gss_initted ? 'N' : 'I', row, col, ss);
    #endif
}


//// debounce_switch ///////////////////////////////////////////////////
// Given the state of the switch at (row,col), work out if this requires
// a change in our exported switch state.

static void debounce_switch(int row, int col, int ss, ms_time_t now_ms)
{
    struct switch_state* pss = &gss[row][col];

    if (!gss_initted) {
        // First time thru, so set this switch's module-global and
        // exported state to its defaults now that we know the switch's
        // initial state.
        report_ss(row, col, ss, pss);
    }
    else if (ss == pss->stable_state) {
        // This switch is still/again in the state we consider "stable",
        // which we are reporting in our switchstatus bitfield.  Reset
        // the debounce timer in case it is returning to its stable
        // state from a brief blip into the other state.
        pss->last_change = na_ms;
    }
    else if (pss->last_change == na_ms) {
        // This switch just left what we consider the "stable" state, so
        // start the debounce timer.
        pss->last_change = now_ms;
    }
    else if ((now_ms - pss->last_change) > debounce_ms) {
        // Switch has been in the new state long enough for the contacts
        // to have stopped bouncing: report its state change to outsiders.
        report_ss(row, col, ss, pss);
    }
    // else, switch was in the new state both this time and the one prior,
    // but it hasn't been there long enough to report it
}


//// read_switches /////////////////////////////////////////////////////
// Iterate through the switch GPIO pins, passing them to the debouncing
// mechanism above for eventual reporting to the PDP-8 CPU thread.

void read_switches (ns_time_t delay)
{
    // Save current ms-since-epoch for debouncer.  No point making it
    // retrieve this value for each switch.
    ms_time_t now_ms;
    ms_time(&now_ms);

    // Flip columns to input.  Since the internal pull-ups are enabled,
    // this pulls all switch GPIO pins high that aren't shorted to the
    // row line by the switch.
    for (size_t i = 0; i < NCOLS; ++i) {
        INP_GPIO(cols[i]);
    }

    // Read the switch rows
    for (size_t i = 0; i < NROWS; ++i) {
        // Put 0V out on the switch row so that closed switches will
        // drag its column line down; give it time to settle.
        OUT_GPIO(rows[i]);
        GPIO_CLR = 1 << rows[i];
        sleep_ns (delay);

        // Read all the switches in this row
        for (size_t j = 0; j < NCOLS; ++j) {
            int ss = GPIO_READ(cols[j]);
            debounce_switch(i, j, !!ss, now_ms);
        }

        // Stop sinking current from this row of switches
        INP_GPIO(rows[i]);
    }

    fflush(stdout);
    gss_initted = 1;
}


//// UNGROUPED FUNCTIONS ///////////////////////////////////////////////

//// pi_type ///////////////////////////////////////////////////////////
// Return a short string succinctly describing the type of Raspberry Pi
// we're running on, or "cake" if it's not a pi.

static const char* pi_type()
{
    static char ac[60] = { '\0' };
    static const char* prefix = "Raspberry Pi ";

    FILE* fp = fopen("/proc/device-tree/model", "r");
    if (fp &&
            fgets(ac, sizeof(ac), fp) &&
            (strlen(ac) > 20) &&
            (strstr(ac, prefix) == ac)) {
        const char* kind = ac + strlen(prefix);
        int series = 1;
        if (kind[0] == 'M') {
            // It's one of the "plus" models.
            const char* pm = kind + strlen("Model ");
            char model = *pm;
            model = (isalpha(model) && isupper(model)) ?
                    tolower(model) : 'x';
            snprintf(ac, sizeof(ac), "pi%d%c", series, model);
        }
        else if (kind[0] == 'C') {
            // It's one of the compute modules.  We don't actually
            // support these, but we need to report them in case
            // someone tries it.
            const char* ps = kind + strlen("Compute Module");
            char series = *ps;
            if (series) {
                // It's should be one of the later Compute Module series.
                series = isdigit(ps[1]) ? ps[1] : 'x';
                snprintf(ac, sizeof(ac), "picm%c", series);
            }
            else {
                // We're at the end of the string, so it's the original
                // Compute Module.
                return "picm1";
            }
        }
        else if (kind[0] == 'Z') {
            // It's a Pi Zero
            return "pi0";
        }
        else if ((series = atoi(kind)) > 1) {
            // Pi 2 and newer have a number after the "Pi"
            char* pm = strstr(kind, " Model ");
            snprintf(ac, sizeof(ac), "pi%d%c", series,
                    pm ? tolower(pm[7]) : 'x');
        }
        else {
            // Not a model string we can parse, but it's some kind of
            // RPi.  Two 'x's stand for unknown series and model.
            return "pixx";
        }
    }
    else {
        return "cake";      // not pi
    }

    return ac;
}


//// update_led_states /////////////////////////////////////////////////
// Unlike the trunk version, this function generates a PWM sequence for
// the LEDs according to the count value in pdis_paint->on. This array
// contains 'on' counts betqeen 0 (off) and 9 (fully on).  This data is
// compared with a cycle 10 counter (gpio_pwm_cnt) and each led in a
// row/col is turned between 0 and 9 out of 80 calls to this function.
// This 10 level PWM is sufficient to give an impression of varying
// brightness although not quite as good as the trunk's ILS mode.  The
// advantage is that it uses far less host CPU power, so that it will
// run on a Pi Zero.  Another virtue of this scheme is that if this
// function is called synchronously from the CPU instruction decoding
// loop (pdp8_cpu.c), the LEDs will not flicker even if the primary CPU
// loop varies in speed.

void update_led_states (const us_time_t delay)
{
    size_t *prow = pdis_paint->on[0];

#if 0   // debugging
    static time_t last = 0, now;
    if (time(&now) != last) {
        printf("\r\nLED: [PC:%04o] [MA:%04o] [MB:%04o] [AC:%04o] [MQ:%04o]",
                pcurr[0], pcurr[1], pcurr[2], pcurr[3], pcurr[4]);
        last = now;
    }
#endif
    
    // Override Execute and Run LEDs if the CPU is currently stopped,
    // since we only get set_pidp8i_leds calls while the CPU's running.
    if (swStop || swSingInst) {
        pdis_paint->curr[5] &= ~(1 << 2);
        pdis_paint->curr[6] &= ~(1 << 7);
    }

    if (++gpio_pwm_cnt >= 10) gpio_pwm_cnt = 0;

    for (size_t row = 0; row < NLEDROWS; ++row) {
        for (size_t col = 0; col < NCOLS; ++col, ++prow) {
            if (gpio_pwm_cnt >= *prow) {
                GPIO_SET = 1 << cols[col];
            }
            else {
                GPIO_CLR = 1 << cols[col];
            }
        }

        // Toggle this LED row on
        INP_GPIO (ledrows[row]);
        GPIO_SET = 1 << ledrows[row];
        OUT_GPIO (ledrows[row]);

        sleep_us (delay);

        // Toggle this LED row off
        GPIO_CLR = 1 << ledrows[row]; // superstition
        INP_GPIO (ledrows[row]);

        // Small delay to reduce UDN2981 ghosting
        for (int i = 0; i < 2000; ++i)
            __asm__ ("nop");
    }
}


//// turn_on/off_pidp8i_leds ///////////////////////////////////////////
// Set GPIO pins into a state that [dis]connects power to/from the LEDs.
// Doesn't pay any attention to the panel values.

void turn_on_pidp8i_leds ()
{
    for (size_t row = 0; row < NLEDROWS; ++row) {
        INP_GPIO (ledrows[row]);
        GPIO_CLR = 1 << ledrows[row];
    }
    for (size_t col = 0; col < NCOLS; ++col) {
        INP_GPIO (cols[col]);
    }
}

void turn_off_pidp8i_leds ()
{
    for (size_t col = 0; col < NCOLS; ++col) {
        OUT_GPIO (cols[col]);
    }
    for (size_t row = 0; row < NLEDROWS; ++row) {
        INP_GPIO (ledrows[row]);
    }
}


//// init_pidp8i_gpio //////////////////////////////////////////////////
// Initialize the GPIO pins to the initial states required by
// gpio_thread().   It's a separate exported function so that scanswitch
// can also use it.

void init_pidp8i_gpio (void)
{
    // Set GPIO pins to their starting state
    turn_on_pidp8i_leds ();
    for (size_t i = 0; i < NROWS; i++) {       // Define rows as input
        INP_GPIO (rows[i]);
    }

    // BCM2835 ARM Peripherals PDF p 101 & elinux.org/RPi_Low-level_peripherals#Internal_Pull-Ups_.26_Pull-Downs
    GPIO_PULL = 2;  // pull-up
    usleep(1);  // must wait 150 cycles
#if defined(PCB_SERIAL_MOD_OV) || defined(PCB_SERIAL_MOD_JLW)
    // The Oscar Vermeulen and James L-W serial mods rearrange the PiDP-8/I
    // GPIO matrix to use Pi GPIO pins 2..13, freeing up the hardware
    // serial port on GPIO pins 14 & 15.
    GPIO_PULLCLK0 = 0x03ffc;
#else
    // The standard PiDP-8/I board drive scheme uses Pi GPIO pins 4..15.
    GPIO_PULLCLK0 = 0x0fff0;
#endif
    usleep(1);
    GPIO_PULL = 0; // reset GPPUD register
    usleep(1);
    GPIO_PULLCLK0 = 0; // remove clock
    usleep(1); // probably unnecessary

    // BCM2835 ARM Peripherals PDF p 101 & elinux.org/RPi_Low-level_peripherals#Internal_Pull-Ups_.26_Pull-Downs
    GPIO_PULL = 1;  // pull-down to avoid ghosting (dec2015)
    usleep(1);  // must wait 150 cycles
    GPIO_PULLCLK0 = 0x0ff00000; // selects GPIO pins 20..27
    usleep(1);
    GPIO_PULL = 0; // reset GPPUD register
    usleep(1);
    GPIO_PULLCLK0 = 0; // remove clock
    usleep(1); // probably unnecessary

    // BCM2835 ARM Peripherals PDF p 101 & elinux.org/RPi_Low-level_peripherals#Internal_Pull-Ups_.26_Pull-Downs
    GPIO_PULL = 0;  // no pull-up no pull down just float
    usleep(1);  // must wait 150 cycles
    GPIO_PULLCLK0 = 0x070000; // selects GPIO pins 16..18
    usleep(1);
    GPIO_PULL = 0; // reset GPPUD register
    usleep(1);
    GPIO_PULLCLK0 = 0; // remove clock
    usleep(1); // probably unnecessary
}


//// gpio_thread ///////////////////////////////////////////////////////
// The GPIO thread entry point: initializes GPIO and then calls
// the gpio_core () implementation linked to this program.

static void *gpio_thread (void *terminate)
{
    // Set thread to real time priority
    struct sched_param sp;
    sp.sched_priority = 4;  // not high, just above the minimum of 1
    int rt = pthread_setschedparam(pthread_self(), SCHED_FIFO, &sp) == 0;

    // Tell the user about our configuration, succinctly
    const char* pt = pi_type();
    printf(
        "PiDP-8/I @VERSION@ [%s] [%cls] [%spcb] [%sgpio]"
#ifdef DEBUG
        " [debug]"
#endif
        "%s",
        pt,
        ILS_MODE ? 'i' : 'n',
        pt[0] == 'p' ? 
#ifdef PCB_SERIAL_MOD_OV
            "sermod" : 
#elif PCB_SERIAL_MOD_JLW
            "altser" : 
#else
            "std" : 
#endif
            "no",
        (pidp8i_gpio_present ? "" : "no"),
        (rt ? " [rt]" : "")
    );

    // It's okay for our caller to resume executing, if it's locked
    // waiting for us to finish the initialization bits that can only
    // happen in this thread.
    pthread_mutex_unlock (&gpio_start_mutex);

    // If we didn't map the GPIO peripheral and get here, it was
    // optional, and we've done all we can without it.
    if (!pidp8i_gpio_present) return (void*)-1;

    // Set GPIO pins to initial states
    init_pidp8i_gpio ();

    // Hand off control to the gpio_core () variant linked to this
    // program: either the new incandescent lamp simulator or the old
    // stock version.
    extern void gpio_core (struct bcm2835_peripheral*, int* terminate);
    gpio_core (&gpio, (int*)terminate);

    // gpio_core () leaves all cols, rows, ledrows are set to input, and
    // it's safe to leave them in that state.  No need to de-init GPIO.
    gss_initted = 0;
    return 0;
}


//// map_gpio_for_pidp8i ///////////////////////////////////////////////
// Wrapper around map_peripheral() taking care of some higher level
// details.  This is the interface we expose to outsiders.

int map_gpio_for_pidp8i (int must_map)
{
    // Find GPIO address (it varies by Pi model)
    unsigned int gpio_base_addr = bcm_host_get_peripheral_address();
    gpio.addr_p = gpio_base_addr + 0x200000;

    // Attempt to map the GPIO peripheral for our exclusive use.  Some
    // callers care if this fails, and some don't.
    map_peripheral (&gpio, 1);
    if (must_map && !pidp8i_gpio_present) return EFAULT;

#ifdef PCB_SERIAL_MOD_JLW
    // James L-W's alternative serial mods were declared to be done here
    // at configure time, so disable the hysteresis on the GPIO inputs.
    gpio2.addr_p = gpio_base_addr + 0x100000;
    map_peripheral (&gpio2, 0);  // assume success since prior mapping worked
    gpio2.addr[0x0B] = (gpio2.addr[0x0B] & 0xF7) | (0x5A << 24);
#endif

    return 0;
}


//// pidp8i_term_handler ///////////////////////////////////////////////
// Handle SIGTERM by shutting down our GPIO thread, then pass it on to
// SCP's handler, if one is registered.
//
// We don't do this with SIGINT instead because that's basically an
// alias for SCP's Ctrl-E handler.  We don't want to do this every time
// someone pulls up the SCP command console.

static void
pidp8i_term_handler (int sig)
{
    if (scp_term_handler) scp_term_handler (sig);

    if (pidp8i_gpio_present) {
        turn_off_pidp8i_leds ();
        stop_pidp8i_gpio_thread ();
    }
}


//// start/stop_pidp8i_gpio_thread /////////////////////////////////////
// Start and stop gpio_thread().  We export these functions rather than
// export gpio_thread() directly so this module's users don't have to
// know anything about pthreads and such.

int start_pidp8i_gpio_thread (const char* must_map)
{
    char errs[100];
    
    if (map_gpio_for_pidp8i (must_map != 0) != 0) {
        return EFAULT;
    }

    // Until gpio_core () reads the switches for the first time, we need
    // to mark them as all-open, lest we have a race condition with the
    // simulator where it interprets the all-0 initial switchstatus[]
    // value as "all switches closed," which includes the shutdown seq!
    memset (switchstatus, 0xFF, sizeof (switchstatus));

    // Create the startup sequencing mutex and lock it once to block the
    // GPIO thread after it's sufficiently initialized.
    int pcerr;
    if (    ((pcerr = pthread_mutex_init (&gpio_start_mutex, NULL)) != 0) ||
            ((pcerr = pthread_mutex_lock (&gpio_start_mutex)) != 0)) {
        perror ("GPIO startup sequence mutex creation failed");
        return errno;
    }

    // Create the actual GPIO handler thread
    pcerr = pthread_create (&gpio_thread_info, NULL, gpio_thread,
                            &terminate_gpio_thread);
    if (pcerr != 0) {
        int errlen = snprintf (errs, sizeof(errs), "Error creating "
                "PiDP-8/I GPIO thread: %s\n", strerror (pcerr));
        if (errlen > 0 && errlen < sizeof(errs)) write (2, errs, errlen);
    }
    else if (must_map && !pidp8i_gpio_present) {
        int errlen = snprintf (errs, sizeof(errs), "Cannot run the %s "
                "while another PiDP-8/I program runs.\r\n", must_map);
        if (errlen > 0 && errlen < sizeof(errs)) write (2, errs, errlen);
        pcerr = EACCES;
    }
    else {
        // Shut the GPIO thread down gracefully on fatal signals.
        scp_term_handler = signal (SIGTERM, pidp8i_term_handler);

        // Don't return until GPIO thread is sufficiently initted.
        //
        // There are two possible sequences:
        //
        // 1. We get here before the GPIO thread gets to its "unlock"
        //    call, so our back-to-back locks in this thread stall this
        //    thread until the GPIO thread gets to its unlock condition,
        //    which removes the first lock taken above, and our second
        //    unlock call below removes the second lock.
        //
        // 2. The GPIO thread hits its "unlock" call before we get here,
        //    so it unlocks the lock we made above, so that these two
        //    calls happen back to back, with no real effect.  We got
        //    here too late to cause any problem that this interlock
        //    solves, so it just locks and immediately unlocks.
        pthread_mutex_lock   (&gpio_start_mutex);
        pthread_mutex_unlock (&gpio_start_mutex);
    }

    return pcerr;
}

void stop_pidp8i_gpio_thread ()
{
    terminate_gpio_thread = 1;
    if (pthread_join (gpio_thread_info, NULL) && pidp8i_gpio_present) {
        // Warn only if we think it should succeed.  If we die due to a
        // signal, we'll be called twice and this'll fail the second
        // time, but the flag will be cleared, so we shouldn't complain.
        printf("\r\nError joining multiplex thread\r\n");
    }
    unmap_peripheral (&gpio);
#ifdef PCB_SERIAL_MOD_JLW
    unmap_peripheral (&gpio2);
#endif
    pthread_mutex_destroy (&gpio_start_mutex);
}