
E8 Manual

E8 is an Emacs-like text editor for PDP-8 family computers. It runs under

OS/8 and communicates with the user via character I/O on the console

terminal. e console is expected to be, or behave like, a simple �xed-size

character-oriented display terminal, able to process a few basic ANSI escape

sequences. is document assumes some familiarity with the PDP-8, OS/8,

and Emacs.

Copyright and License

e source code described here is copyright © 2020 by Bill Silver and is

distributed under the terms of the SIMH license, which grants you certain

rights to copy, modify, and redistribute. ere is no express or implied

warranty, including merchantability or �tness for a particular purpose. You

assume full liability for the use of this code.

Cautions

I’ve been using E8 to further its own development with no trouble, but it has

not yet been tested extensively. Save often and make backups. Note that OS/8

provides almost no protection for its �le system from errant application code.

E8 has some fail-safes to prevent bugs from overwriting other �les, and there

are no known bugs, but still, this is software. Until community use is further

along, I recommend editing �les on some removable media that doesn’t

contain stuff you can’t afford to lose.

“Hardware” Requirements

E8 runs on any PDP-8 family computer with at least three �elds of memory

(12K). e maximum �le size (characters) that can be edited is simply the

https://tangentsoft.com/e8/doc/trunk/COPYING.md

number of words of memory minus �elds 0 and 1. So if you have all eight

�elds, you get a max size of 24K characters. E8 can display, but not properly

edit, larger �les.

Terminal Requirements and Processing

Display

e terminal must be able to process the following ANSI escape sequences:

Sequence Action To change, search for

ESC [row;col H set cursor position SETCUR,

ESC [2 J clear screen CLRSC,

ESC [K clear to end of line CLREOL,

E8 sends the BELL code (0078) if you try to do something that can’t be done,

like entering an unimplemented command character, moving the cursor past

the ends of the buffer, or entering a bad �lename character. If your terminal

doesn’t beep or �ash the screen, you’ll miss these.

e Linux console (e.g. CTRL-ALT-F1) and MobaXterm are �ne.

Keyboard

Many E8 commands are intended for use with the ALT key. E8 recognizes the

sequence

ESC char

to mean ALT-char. Many terminals and terminal emulators that have an ALT

key will send that sequence when the ALT key is pressed. If yours doesn’t, just

type the ESC.

Some control characters that Emacs has traditionally used may be captured by

a screen manager (e.g. ^A for GNU screen or ^B for tmux) or SimH (^E) and

not sent along to the terminal. e serial �ow control characters ^Q and ^S

may also be captured, but if you are not using serial communication you can

stop that with the command stty -ixon (SSH and VNC are not serial and

don’t need �ow control). ALT alternatives are provided in each case, but it takes

a little getting used to if you have Emacs muscle memory.

ere is some ambiguity about whether the modern Backspace key should

send the backspace code (^H, 0108) or the delete code (1778). E8 considers

them the same and converts 177 to 010.

E8 responds to escape sequences that are sent by certain special keys on

modern keyboards:

Sequence Key Action

ESC [A ↑ beginning of previous line

ESC [B ↓ beginning of next line

ESC [C → forward one character

ESC [D ← back one character

ESC [1 ~ HOME beginning of line

ESC [3 ~ DEL delete forward one character

ESC [4 ~ END end of line

ESC [5 ~ PAGE UP back one screen

ESC [6 ~ PAGE DOWN forward one screen

Installation

Source Files

ere are three equivalent con�gurations of source �les, depending on whether

you use PIP, or something that can handle larger �les, to transfer to OS/8, and

depending on whether you want �les smaller than 24K characters so E8 can

edit them (assuming 8 �elds of memory).

Use

PIP

E8 can

edit
Files

Use

PIP

E8 can

edit
Files

yes yes
E8.PA, EA.PA, EB.PA, EC.PA, ED.PA, EE.PA, EF.PA,
EG.PA

no yes E8BASE.PA, E8FILE.PA, E8SRCH.PA

no no E8ALL.PA

Setting Screen and Memory Size

e default screen size is 42 lines of 80 characters, and the default number of

�elds is 8. If your setup is different, make a Pal8 source �le (e.g. E8DEFS.PA)

to de�ne your values. For example:

DECIMAL

SCRWD=120

SCRHT=24

MEMSIZ=6

OCTAL

e symbols SCRWD and SCRHT de�ne your screen size. Make them

whatever you like, as long as

SCRWD * (SCRHT + 1) <= 3968

e symbol MEMSIZ speci�es the number of �elds installed. 3 ≤ MEMSIZ ≤ 8

Lines Longer than the Screen Width

ere is no limit on the size of lines that can be in �les and edited, but you can

only see the �rst SCRWD-1 characters of each line. What you can’t see is there

and not lost. If the length of any line is >= SCRWD, E8 will display a > in the

last column to let you know that there are more characters that you can't see.

Likewise, you can place the edit cursor (where you insert and delete characters)

anywhere in the �le, even at invisible positions. If the edit cursor is at an

invisible position the screen cursor is placed on the > to let you know.

If you want to see the invisible text, put the cursor just before the > and insert

a newline (CR) to break the line in two. You can always delete the CR when

you're done looking.

Getting the Code Onto OS/8

Choose an OS/8 device to hold the E8 source and the �les you want to edit,

and assign it to DSK:

.AS <physical device> DSK

My method is to copy/paste the source code into a MobaXterm session

connected to OS/8, while PIP on the OS/8 receives it, like this:

.R PIP

*E8.PA<TTY:

After each �le is copied this way, type ^Z to PIP to signify end of �le, and then

you’re back at the PIP command prompt ready to do the next �le. I have found

that PIP can’t handle �les longer than 549 lines, so use the eight small �les.

Often my MobaXterm stops sending characters for a few seconds and then

resumes, so make sure to wait until the last line is sent. is also can happen

during an E8 screen update, so beware.

is link has other and probably better ways to do it. If your method can

handle arbitrarily large �les, you can use the other source con�gurations.

Build and Run

.R PAL8

*E8<E8DEFS,E8,EA,EB,EC,ED,EE,EF,EG/L ⇠ either

this...

*E8<E8DEFS,E8BASE,E8FILE,E8SRCH/L ⇠ or this...

*E8<E8DEFS,E8ALL/L ⇠ or this, not

all 3.

*^C

.SA SYS E8;200=1000

.R E8

https://tangentsoft.com/pidp8i/wiki?name=Getting+Text+In

If you are using the default setup, omit E8DEFS. e screen will start cleared

expect for the mode lines showing an empty text buffer.

Files

E8 can display and edit OS/8 text �les, which contain 7-bit ASCII codes

that include lowercase.

e character parity bit is cleared on input. If your �le has the parity bits

set, E8 will clear them. Usually this is not a problem, but it could be �xed

if it is.

On input the CR code (^M, 0158) is considered new line, and the LF code

(^J, 0128) is discarded. On output, CR is written as CR, LF.

I/O to �les is one OS/8 block per transfer, sequential over the �le, and

therefore may be inefficient on real DECtape, if anyone still has such a

thing.

Internal Errors

Certain internal errors will print ASSERT: xxxx and exit to OS/8. Edits since

the last save are lost. Report the address to me. I have never seen this happen,

but just in case.

Mode Lines

e E8 mode lines look like this:

-**- EFBASE.PA 5123

SEARCH: TOP,

e -**- on the �rst line means the buffer has been changed.

Following this (E8BASE.PA in this example) is the current �le name, if any.

e number after that is the count of characters in the buffer (decimal).

e line below shows occasional status or state displays, and accepts your input

for certain commands. In the example shown, the incremental search

command prompts with SEARCH: and you enter a search string, here TOP,.

Entering Filenames

In a single edit session you can create new �les and view or edit as many �les as

you like. When prompted for a �lename:

Names must be alphanumeric, no more than six characters, with an

optional extension of up to two characters.

Lowercase letters are made uppercase.

Any character that would not result in a legal �lename will be rejected.

e CR code (Enter on modern keyboards) terminates and accepts the

entry.

Backspace clears the �lename so you can start over.

^G aborts the operation.

You cannot enter an OS/8 device name. E8 can currently only access �les

on DSK:.

Incremental Search (^S)

Enter the search string at the mode-line prompt. After each character the

cursor will advance to matching text if any, or ring the console bell and reject

the character if not. You may enter:

Key Action

Key Action

CR terminate search with mark set to starting point

^S or ^F �nd the next occurrence of the search string

BS erase last search character and back up

^N match CR (newline) in search text

Query-Replace (ALT-%)

When entering strings at the REPLACE and WITH prompts:

Key Meaning

CR Accept string

BS Delete last character entered

^G Abort query-replace

^N Put CR (newline) in string

If REPLACE is null you’ll be asked again. WITH can be null. You will be shown

successive instances of the replace string, and you can:

Key Meaning

SP Replace and continue

n or N Don’t replace and continue

. Replace and quit

CR Quit

! Replace all without asking

Change Protection

If there are unsaved changes in the buffer and you try to exit E8, create a new

�le, or read in an existing �le, you will be offered the opportunity to save the

changes. e responses are Y (yes), N (no), or ^G (abort). If you select Y and

there is no �lename, you will be asked for one. Only uppercase Y and N are

accepted.

Editing

Like Emacs, E8 is a character editor. All characters are traversed and edited the

same way, including TAB and CR. e other control characters are displayed

with the customary ^ pre�x, but remember that they are just one character in

the buffer.

Limited Undo

If you accidentally delete characters with any sequence of character-deleting

commands, you can recover them if you act right away. e deleted characters

are lost if you insert any characters or move the cursor. See ALT-R.

Commands

Most commands are equivalent or nearly so to Emacs, but some are not, so

beware. e ALT commands are case-insensitive. e ^X commands consider

control, uppercase, and lowercase letters to be all the same. For example,

^X ^S, ^X S, and ^X s are all the same.

Key/Sequence Meaning

^@ or ^SP Set the mark to the current position (cursor)

^A or ALT-A Beginning of line

^B Back one character

^D Delete forward one character

^E or ALT-E End of line

^F Forward one character

^H (BS) Delete backward one character

^I (TAB) Insert TAB

Key/Sequence Meaning

^J (LF) Insert CR, TAB

^K Kill (delete) to end of line; if at end, delete CR

^L Erase and redraw screen with cursor at the middle line

^M (CR) Insert CR

^N Beginning of next line

^O Open new line (CR, ^B)

^P Beginning of previous line

^Q Insert next typed char as is

^S or ALT-S Incremental search (case sensitive)

^V Forward one screen

^W
Write region (text between cursor and mark) to the �le

CLIP.E8 and delete the text in the region.

^Y Insert the �le CLIP.E8 at the cursor

^Z Exit to OS/8

^\
Scroll up one line, keeping cursor in same position on

screen

ALT-% Query-replace (case sensitive)

ALT-< Beginning of buffer

ALT-> End of buffer

ALT-B Back one word

ALT-D Delete forward one word

ALT-F Forward one word

ALT-H (BS) Delete backward one word

ALT-N Search for the last search or replace string

ALT-Q
Insert next typed character as a control character, e.g.

ALT-Q A inserts ^A.

ALT-R Recover deleted characters if possible

ALT-V Back one screen

Key/Sequence Meaning

ALT-W
Write region to the �le CLIP.E8; do not delete the

region.

ALT-\
Scroll down one line, keeping cursor in same position

on screen

^X ^F or ^X F Open existing �le or create new one

^X ^I or ^X I Insert �le at cursor

^X ^R or ^X R

If the previous �le read �lled the buffer before the end

of the �le, clear the buffer and read more text from the

�le starting at some point up to 384 characters before

the last one read.

^X ^S or ^X S Save buffer to current �le, prompt for �lename if none

^X ^W or ^X W Write buffer to new �lename.

^X ^X or ^X X Exchange cursor and mark.

Scrolling

By default the scrolling commands ^\ and ALT-\ operate by redrawing the

entire screen. With a fast simulator, high-speed communications, and a

modern graphics engine the redraw is fast enough to not be noticeable. For

slower systems, there is an assembly-time option for using VT-100 scrolling

commands so that only one line need be redrawn. It is an option because it

may not interact properly with every terminal, and it’s usually not needed. It

also has to set a terminal scrolling window, which it has to undo by resetting

the terminal on exit. So there are opportunities for trouble. It’s been tested and

works with MobaXterm. If you're using SimH you can see the difference by

throttling the simulator down to 300K or so.

To enable VT-100 scrolling, put FSCROL=0 in an E8DEFS.PA �le. e terminal

must implement the following escape sequences:

Sequence Action

Sequence Action

ESC [top;bot r set scrolling window

ESC D if cursor is at window bottom scroll window up

ESC M if cursor is at window top scroll window down

ESC c reset terminal

Theory of Operation

Storing and Editing Text

Text is conceptually just a list of character codes. For editing purposes, there

are no special characters: newline (CR), TAB, and other control characters are

treated like any other (they are displayed differently, of course).

Inserting and deleting occurs at a place in the text called the point. e point

is conceptually between two characters, before the �rst one, or after the last

one. e screen cursor is on the character just ahead of the point. All editing

operations are built from three fundamentals:

insert characters at the point;

delete characters in front of or behind the point; and

move the point somewhere.

Characters are stored in a text buffer comprising one or more complete �elds

starting at �eld 2, one character per word of memory. e �elds are considered

contiguous—there is no signi�cance to �eld boundaries. Every word in the

buffer can hold a character—there are no special codes, link pointers, or the

like.

Inserting and deleting are fast, O(1) operations (independent of the number of

characters in the buffer). Moving the point is O(n), where n is the distance to

be moved. On a real 8/I, moving forward takes 20 cycles (30 μs) per character

and backward 29 cycles (43.5 μs) per character (plus some small constant

overhead). Typical operations move the point small distances (one character,

line, or screen) and are fast. e worst case is moving from the end of a full

buffer (24K characters) to the beginning, which takes slightly over 1 second.

Text buffer memory looks like this:

text before
point

text after
point

point

gap

beginning of buffer

end of buffer

Almost all actions operate on text that is exclusively either ahead of or behind

the point, the characters of which are always contiguous in memory. Only rare

actions cross the gap (e.g. writing the text to a �le). e gap structure makes

everything simple and fast.

Display

Display is completely separate from and independent of editing. e editing

commands know nothing about the display and contribute no information to

it. e display code does not know what editing commands have been issued

since the last display. Its job is to make the display match the current contents

of the text buffer, with few unnecessary characters transmitted to the console

terminal. is complete separation simpli�es the code and avoids all manner of

potential bugs that would arise from editing and display miscommunication—

no communication, no communication bugs.

A complete copy of the screen is kept in �eld 1. e �rst step in a screen

update is to determine what character in the text buffer should be top of screen

(TOS), so that the point is visible. TOS is always either at the beginning of the

buffer, or just after a newline. If the point is visible with the current TOS, it is

kept. Otherwise it is chosen to place the point somewhere on the screen’s

middle line if possible.

Once TOS is established, text lines are processed one at a time and

independently. Each line is �rst rendered to a one-line buffer in �eld 1, whose

size is the width of the screen (SCRWD). Rendering converts tabs to spaces, adds

the ^ pre�x to control characters, and enforces the SCRWD-1 limit on visible

text. e rendered characters are terminated with one of two codes, both

negative, indicating that the line does or does not extend beyond the limit.

Rendering is the most time-consuming part of screen update, so the inner loop

is carefully crafted for speed.

Each rendered line is then compared to the appropriate line of the screen copy.

If a mismatch is found at some position, the screen cursor is set to that

position and the rest of the characters from the render buffer are sent to TTY

and replace the screen copy. After all those characters have been sent and

copied, if the screen copy shows that the rest of the screen line is not blank, an

escape sequence is sent to clear to end of line.

Each line of the screen copy also has two negative termination codes, different

from the render codes, that indicate whether a > does or does not appear in the

last column. e render and screen termination codes tell whether > needs to

be added, removed, or left alone.

e inner loop is optimized for characters comparing equal and is only nine

memory cycles on an 8/I. e use of distinct termination codes avoids having

to also test for end of render or screen line in the inner loop.

After the text buffer has been processed, the two mode lines at the bottom of

the screen are rendered and updated in the same way. Finally, the screen cursor

is set to the point position.

Screen update can be aborted safely after each line. If a character is received on

the console terminal during an update, it is aborted. e screen will settle on

the correct display as soon as update catches up with character input.

Every character written to the screen goes through this update process.

Nowhere is a character written directly. e only direct write to TTY other

than screen update is the BELL code.

Code Organization

All executable code is in �eld 0. e last page of �elds 0 and 1 holds core-

resident OS/8. e two pages just below that in �eld 0 hold the DSK: device

handler. e screen copy and render buffer can use the entire rest of �eld 1 (31

pages, 3968 words).

Every subroutine that implements an editor command skip-returns if

successful, even if failure is impossible (e.g. move to end of buffer can’t fail).

Many other utility subroutines also skip-return on success. is allows what in

modern high-level languages would be a catch-throw mechanism—failures can

unwind up to whatever code can deal with them, and unwinding all the way to

top level just rings the console bell. If a subroutine that logically can’t fail takes

the non-skip return, a fatal assertion failure is reported.

15-bit addresses and 24-bit integers are always stored little-endian. e high-

order word of a 15-bit address is a CDF instruction.

File Output Size

OS/8 does not protect the �le system from an application writing beyond the

end of the allocated blocks for an output �le. When writing a �le, E8

calculates the number of OS/8 blocks needed and asks for one more than that

number. Bugs may cause the calculation to be inconsistent with the number

actually needed. E8 counts written blocks and aborts the �le write if there is an

attempt to write more than OS/8 allocated (which should be the number

asked for). After a write the calculated and actual values are displayed in the

mode line. ey should always be equal. e one extra asked for allows some

overwrite to be tolerated without harm, and the calculated/actual values will be

off by one to show what happened. I have never seen any errors in calculating

�le size, but be aware and report inconsistencies.

License

is document is © 2020 by Bill Silver and Warren Young. It is licensed under

the SIMH licnese.

PDF Version

is document is also available in PDF format, ~151 kiB.

https://tangentsoft.com/e8/doc/trunk/COPYING.md
https://tangentsoft.com/e8/uv/doc/manual.pdf

