E8 Manual

E8 is an Emacs-like text editor for PDP-8 family computers. It runs under
OS/8 and communicates with the user via character I/O on the console
terminal. The console is expected to be, or behave like, a simple fixed-size
character-oriented display terminal, able to process a few basic ANSI escape
sequences. This document assumes some familiarity with the PDP-8, OS/8,
and Emacs.

Copyright and License

The source code described here is copyright © 2020 by Bill Silver and is
distributed under the terms of the SIMH license, which grants you certain

rights to copy, modify, and redistribute. There is no express or implied
warranty, including merchantability or fitness for a particular purpose. You
assume full liability for the use of this code.

Cautions

I've been using E8 to further its own development with no trouble, but it has
not yet been tested extensively. Save often and make backups. Note that OS/8
provides almost no protection for its file system from errant application code.
E8 has some fail-safes to prevent bugs from overwriting other files, and there
are no known bugs, but still, this is software. Until community use is further
along, I recommend editing files on some removable media that doesn’t
contain stuff you can’t afford to lose.

“Hardware” Requirements

E8 runs on any PDP-8 family computer with at least three fields of memory
(12K). The maximum file size (characters) that can be edited is simply the

https://tangentsoft.com/e8/doc/trunk/COPYING.md

number of words of memory minus fields 0 and 1. So if you have all eight
fields, you get a max size of 24K characters. E8 can display, but not properly
edit, larger files.

Terminal Requirements and Processing
Display

The terminal must be able to process the following ANSI escape sequences:

Sequence Action To change, search for
ESC [row;col H set cursor position SETCUR,

ESC[23 clear screen CLRSC,

ESC [K clear to end of line CLREOL,

E8 sends the BELL code (007) if you try to do something that can’t be done,

like entering an unimplemented command character, moving the cursor past
the ends of the buffer, or entering a bad filename character. If your terminal
doesn’t beep or flash the screen, you'll miss these.

The Linux console (e.g. CTRL-ALT-F1) and MobaXterm are fine.
Keyboard

Many E8 commands are intended for use with the ALT key. E8 recognizes the
sequence

ESC char

to mean ALT-char. Many terminals and terminal emulators that have an ALT
key will send that sequence when the ALT key is pressed. If yours doesn', just
type the ESC.

Some control characters that Emacs has traditionally used may be captured by
a screen manager (e.g. "A for GNU screen or B for tmux) or SimH (*E) and

not sent along to the terminal. The serial flow control characters #Q and #sS
may also be captured, but if you are not using serial communication you can
stop that with the command stty -ixon (SSH and VNC are not serial and
don’t need flow control). ALT alternatives are provided in each case, but it takes
a little getting used to if you have Emacs muscle memory.

There is some ambiguity about whether the modern Backspace key should
send the backspace code (*"H, 010g) or the delete code (1775). E8 considers

them the same and converts 177 to 010.

E8 responds to escape sequences that are sent by certain special keys on
modern keyboards:

Sequence Key Action

Escfa 1 beginning of previous line
ESC[B 1 beginning of next line
ESC[C — forward one character

ESC [D — back one character
ESC[1~ HOME beginning of line

Esc [3~ DEL delete forward one character
ESC[4~ END end of line

ESC [5~ PAGE UP back one screen
EsC [6 ~ PAGE DOWN forward one screen

Installation

Source Files

There are three equivalent configurations of source files, depending on whether
you use PIP, or something that can handle larger files, to transfer to OS/8, and
depending on whether you want files smaller than 24K characters so E8 can
edit them (assuming 8 fields of memory).

Use E8can

. Files
PIP edit
ES8.PA, EA.PA, EB.PA, EC.PA, ED.PA, EE.PA, EF.PA,
yes yes
EG.PA
no yes ESBASE.PA, ESFILE.PA, ESSRCH.PA
no no ESALL.PA

Setting Screen and Memory Size

The default screen size is 42 lines of 80 characters, and the default number of
fields is 8. If your setup is different, make a Pal8 source file (e.g. ESDEFS.PA)
to define your values. For example:

DECIMAL
SCRWD=120
SCRHT=24
MEMSIZ=6
OCTAL

The symbols SCRWD and SCRHT define your screen size. Make them

whatever you like, as long as

SCRWD * (SCRHT + 1) <= 3968

The symbol MEMSIZ specifies the number of fields installed. 3 < MEMSIZ < 8
Lines Longer than the Screen Width

There is no limit on the size of lines that can be in files and edited, but you can
only see the first SCRWD-1 characters of each line. What you can't see is there
and not lost. If the length of any line is >= SCRWD, E8 will display a > in the
last column to let you know that there are more characters that you can't see.

Likewise, you can place the edit cursor (where you insert and delete characters)
anywhere in the file, even at invisible positions. If the edit cursor is at an
invisible position the screen cursor is placed on the > to let you know.

If you want to see the invisible text, put the cursor just before the > and insert
a newline (CR) to break the line in two. You can always delete the CR when
you're done looking.

Getting the Code Onto 0OS/8

Choose an OS/8 device to hold the E8 source and the files you want to edit,
and assign it to DSK:

.AS <physical device> DSK

My method is to copy/paste the source code into a MobaXterm session
connected to OS/8, while PIP on the OS/8 receives it, like this:

.R PIP
*E8.PALKTTY:

After each file is copied this way, type AZ to PIP to signify end of file, and then
you're back at the PIP command prompt ready to do the next file. I have found
that PIP can’t handle files longer than 549 lines, so use the eight small files.
Often my MobaXterm stops sending characters for a few seconds and then
resumes, so make sure to wait until the last line is sent. This also can happen
during an E8 screen update, so beware.

This link has other and probably better ways to do it. If your method can
handle arbitrarily large files, you can use the other source configurations.

Build and Run

.R PALS

*E8<EQDEFS,E8,EA,EB,EC,ED,EE,EF,EG/L « either
this...

*E8<E8DEFS,E8BASE,E8FILE,E8SRCH/L ¢ or this...
*E8<E8DEFS,E8ALL/L + or this, not
all 3.

*NC

.SA SYS E8;200=1000

.R ES8

https://tangentsoft.com/pidp8i/wiki?name=Getting+Text+In

If you are using the default setup, omit ES8DEFS. The screen will start cleared
expect for the mode lines showing an empty text buffer.

Files

o E8 can display and edit OS/8 text files, which contain 7-bit ASCII codes

that include lowercase.

o 'The character parity bit is cleared on input. If your file has the parity bits
set, E8 will clear them. Usually this is not a problem, but it could be fixed
if it is.

 On input the CR code (M, 015) is considered new line, and the LF code
(73, 012g) is discarded. On output, CR is written as CR, LF.

¢ 1/O to files is one OS/8 block per transfer, sequential over the file, and
therefore may be inefficient on real DECtape, if anyone still has such a

thing.
Internal Errors

Certain internal errors will print ASSERT: xxxx and exit to OS/8. Edits since
the last save are lost. Report the address to me. I have never seen this happen,
but just in case.

Mode Lines

The E8 mode lines look like this:

-x%x— EFBASE.PA 5123
SEARCH: TOP,

The —**~ on the first line means the buffer has been changed.

Following this (E8BASE.PA in this example) is the current file name, if any.

The number after that is the count of characters in the buffer (decimal).

The line below shows occasional status or state displays, and accepts your input
for certain commands. In the example shown, the incremental search
command prompts with SEARCH: and you enter a search string, here TOP, .

Entering Filenames

In a single edit session you can create new files and view or edit as many files as

you like. When prompted for a filename:

« Names must be alphanumeric, no more than six characters, with an
optional extension of up to two characters.

o Lowercase letters are made uppercase.
o Any character that would not result in a legal filename will be rejected.

o The CR code (Enter on modern keyboards) terminates and accepts the
entry.

 Backspace clears the filename so you can start over.
* AG aborts the operation.

 You cannot enter an OS/8 device name. E8 can currently only access files
on DSK:.

Incremental Search (AS)

Enter the search string at the mode-line prompt. After each character the
cursor will advance to matching text if any, or ring the console bell and reject
the character if not. You may enter:

Key Action

Key Action

CR terminate search with mark set to starting point
7S or AF find the next occurrence of the search string
BS erase last search character and back up

AN match CR (newline) in search text

Query-Replace (ALT-%)

When entering strings at the REPLACE and WITH prompts:

Key Meaning

CR Accept string

BS Delete last character entered
A6 Abort query-replace

AN Put CR (newline) in string

If REPLACE is null you’ll be asked again. WITH can be null. You will be shown
successive instances of the replace string, and you can:

Key Meaning

sP Replace and continue

n or N Don't replace and continue
Replace and quit

CR Quit

! Replace all without asking

Change Protection

If there are unsaved changes in the buffer and you try to exit E8, create a new
file, or read in an existing file, you will be offered the opportunity to save the
changes. The responses are Y (yes), N (no), or G (abort). If you select Y and

there is no filename, you will be asked for one. Only uppercase Y and N are
accepted.

Editing

Like Emacs, E8 is a character editor. All characters are traversed and edited the
same way, including TAB and CR. The other control characters are displayed
with the customary * prefix, but remember that they are just one character in

the buffer.

Limited Undo

If you accidentally delete characters with any sequence of character-deleting
commands, you can recover them if you act right away. The deleted characters
are lost if you insert any characters or move the cursor. See ALT-R.

Commands

Most commands are equivalent or nearly so to Emacs, but some are not, so
beware. The ALT commands are case-insensitive. The "X commands consider
control, uppercase, and lowercase letters to be all the same. For example,

AX 7S, AX' S, and AX s are all the same.

Key/Sequence Meaning

A@ or ASP Set the mark to the current position (cursor)
AA or ALT-A Beginning of line

AB Back one character

AD Delete forward one character

AE or ALT-E End of line

AF Forward one character

AH (BS) Delete backward one character

AT (TAB) Insert TAB

Key/Sequence Meaning

A3 (LF)

AK
AL

M (CR)

N
O
AP
"Q

AS or ALT-S

AV

AW

Y

NZ

M\

ALT-%
ALT-<
ALT->
ALT-B
ALT-D
ALT-F
ALT-H
ALT-N

ALT-Q

ALT-R
ALT-V

(BS)

Insert CR, TAB

Kill (delete) to end of line; if at end, delete CR

Erase and redraw screen with cursor at the middle line
Insert CR

Beginning of next line

Open new line (CR, *B)

Beginning of previous line

Insert next typed char as is

Incremental search (case sensitive)

Forward one screen

Write region (text between cursor and mark) to the file
CLIP.E8 and delete the text in the region.

Insert the file CLIP.ES8 at the cursor
Exit to OS/8

Scroll up one line, keeping cursor in same position on
screen

Query-replace (case sensitive)

Beginning of buffer

End of buffer

Back one word

Delete forward one word

Forward one word

Delete backward one word

Search for the last search or replace string

Insert next typed character as a control character, e.g.
ALT-Q A inserts "A.

Recover deleted characters if possible

Back one screen

Key/Sequence Meaning

Write region to the file CLIP.E8; do not delete the
region.

ALT-W

Scroll down one line, keeping cursor in same position
ALT-
\ on screen

AX AFor AX F Open existing file or create new one

AX AT or AX I Insert file at cursor

If the previous file read filled the buffer before the end

of the file, clear the buffer and read more text from the
AX AR or "X R))

file starting at some point up to 384 characters before

the last one read.
AX AS or AX'S Save buffer to current file, prompt for filename if none
AX AW or AX W Write buffer to new filename.

AX AX or AX X Exchange cursor and mark.

Scrolling

By default the scrolling commands #\ and ALT-\ operate by redrawing the
entire screen. With a fast simulator, high-speed communications, and a
modern graphics engine the redraw is fast enough to not be noticeable. For
slower systems, there is an assembly-time option for using VI-100 scrolling
commands so that only one line need be redrawn. It is an option because it
may not interact properly with every terminal, and it’s usually not needed. It
also has to set a terminal scrolling window, which it has to undo by resetting
the terminal on exit. So there are opportunities for trouble. It’s been tested and
works with MobaXterm. If you're using SimH you can see the difference by
throttling the simulator down to 300K or so.

To enable VI-100 scrolling, put FSCROL=0 in an E8DEFS. PA file. The terminal
must implement the following escape sequences:

Sequence Action

Sequence Action

ESC [top;bot r set scrolling window

ESCD if cursor is at window bottom scroll window up
ESCM if cursor is at window top scroll window down
ESC ¢ reset terminal

Theory of Operation

Storing and Editing Text

Text is conceptually just a list of character codes. For editing purposes, there
are no special characters: newline (CR), TAB, and other control characters are
treated like any other (they are displayed differently, of course).

Inserting and deleting occurs at a place in the text called the point. The point
is conceptually between two characters, before the first one, or after the last
one. The screen cursor is on the character just ahead of the point. All editing
operations are built from three fundamentals:

o insert characters at the point;
o delete characters in front of or behind the point; and
 move the point somewhere.

Characters are stored in a text buffer comprising one or more complete fields
starting at field 2, one character per word of memory. The fields are considered
contiguous—there is no significance to field boundaries. Every word in the
buffer can hold a character—there are no special codes, link pointers, or the

like.

Inserting and deleting are fast, O(1) operations (independent of the number of
characters in the buffer). Moving the point is O(n), where n is the distance to

be moved. On a real 8/I, moving forward takes 20 cycles (30 Us) per character

and backward 29 cycles (43.5 Ms) per character (plus some small constant
overhead). Typical operations move the point small distances (one character,
line, or screen) and are fast. The worst case is moving from the end of a full
buffer (24K characters) to the beginning, which takes slightly over 1 second.

Text buffer memory looks like this:

beginning of buffer —»

text before
point

gap—»

point—»

text after
point

end of buffer —p

Almost all actions operate on text that is exclusively either ahead of or behind
the point, the characters of which are always contiguous in memory. Only rare
actions cross the gap (e.g. writing the text to a file). The gap structure makes
everything simple and fast.

Display

Display is completely separate from and independent of editing. The editing
commands know nothing about the display and contribute no information to
it. The display code does not know what editing commands have been issued
since the last display. Its job is to make the display match the current contents
of the text buffer, with few unnecessary characters transmitted to the console
terminal. This complete separation simplifies the code and avoids all manner of
potential bugs that would arise from editing and display miscommunication—
no communication, no communication bugs.

A complete copy of the screen is kept in field 1. The first step in a screen
update is to determine what character in the text buffer should be top of screen
(TOS), so that the point is visible. TOS is always either at the beginning of the
buffer, or just after a newline. If the point is visible with the current TOS, it is
kept. Otherwise it is chosen to place the point somewhere on the screen’s

middle line if possible.

Once TOS is established, text lines are processed one at a time and
independently. Each line is first rendered to a one-line buffer in field 1, whose
size is the width of the screen (SCRWD). Rendering converts tabs to spaces, adds
the # prefix to control characters, and enforces the SCRWD-1 limit on visible
text. The rendered characters are terminated with one of two codes, both
negative, indicating that the line does or does not extend beyond the limit.
Rendering is the most time-consuming part of screen update, so the inner loop
is carefully crafted for speed.

Each rendered line is then compared to the appropriate line of the screen copy.
If a mismatch is found at some position, the screen cursor is set to that
position and the rest of the characters from the render buffer are sent to TTY
and replace the screen copy. After all those characters have been sent and
copied, if the screen copy shows that the rest of the screen line is not blank, an
escape sequence is sent to clear to end of line.

Each line of the screen copy also has two negative termination codes, different
from the render codes, that indicate whether a > does or does not appear in the
last column. The render and screen termination codes tell whether > needs to
be added, removed, or left alone.

The inner loop is optimized for characters comparing equal and is only nine
memory cycles on an 8/I. The use of distinct termination codes avoids having
to also test for end of render or screen line in the inner loop.

After the text buffer has been processed, the two mode lines at the bottom of
the screen are rendered and updated in the same way. Finally, the screen cursor
is set to the point position.

Screen update can be aborted safely after each line. If a character is received on
the console terminal during an update, it is aborted. The screen will settle on
the correct display as soon as update catches up with character input.

Every character written to the screen goes through this update process.
Nowhere is a character written directly. The only direct write to TTY other
than screen update is the BELL code.

Code Organization

All executable code is in field 0. The last page of fields 0 and 1 holds core-
resident OS/8. The two pages just below that in field 0 hold the DSK: device
handler. The screen copy and render buffer can use the entire rest of field 1 (31
pages, 3968 words).

Every subroutine that implements an editor command skip-returns if
successful, even if failure is impossible (e.g. move to end of buffer cant fail).
Many other utility subroutines also skip-return on success. This allows what in
modern high-level languages would be a catch-throw mechanism—failures can
unwind up to whatever code can deal with them, and unwinding all the way to
top level just rings the console bell. If a subroutine that logically can’t fail takes
the non-skip return, a fatal assertion failure is reported.

15-bit addresses and 24-bit integers are always stored little-endian. The high-
order word of a 15-bit address is a CDF instruction.

File Output Size

OS/8 does not protect the file system from an application writing beyond the
end of the allocated blocks for an output file. When writing a file, E8
calculates the number of OS/8 blocks needed and asks for one more than that
number. Bugs may cause the calculation to be inconsistent with the number
actually needed. E8 counts written blocks and aborts the file write if there is an
attempt to write more than OS/8 allocated (which should be the number
asked for). After a write the calculated and actual values are displayed in the

mode line. They should always be equal. The one extra asked for allows some
overwrite to be tolerated without harm, and the calculated/actual values will be
off by one to show what happened. I have never seen any errors in calculating
file size, but be aware and report inconsistencies.

License

This document is © 2020 by Bill Silver and Warren Young. It is licensed under
the SIMH licnese.

PDF Version

This document is also available in PDF format, ~151 kiB.

https://tangentsoft.com/e8/doc/trunk/COPYING.md
https://tangentsoft.com/e8/uv/doc/manual.pdf

