
MySQL++ Reference Manual
2.3.2

Generated by Doxygen 1.4.7

Tue Oct 10 15:50:34 2017

Contents

Chapter 1

MySQL++ Reference Manual

1.1 Getting Started

The best place to get started is the user manual. It provides a guide to the example
programs and more.

1.2 Major Classes

In MySQL++, the main user-facing classes are mysqlpp::Connection (p. ??),
mysqlpp::Query (p. ??), mysqlpp::Result (p. ??), and mysqlpp::Row (p. ??).

In addition, MySQL++ has a mechanism called Specialized SQL Structures (SSQLS),
which allow you to create C++ structures that parallel the definition of the tables in your
database schema. These let you manipulate the data in your database using native C++
data structures. Programs using this feature often include very little SQL code, because
MySQL++ can generate most of what you need automatically when using SSQLSes.
There is a whole chapter in the user manual on how to use this feature of the library,
plus a section in the user manual’s tutorial chapter to introduce it. It’s possible to use
MySQL++ effectively without using SSQLS, but it sure makes some things a lot easier.

1.3 Major Files

The only two header files your program ever needs to include are mysql++.h, and
optionally custom.h. (The latter implements the SSQLS mechanism.) All of the other
files are used within the library only.

2 MySQL++ Reference Manual

1.4 If You Have Questions...

If you want to email someone to ask questions about this library, we greatly prefer
that you send mail to the MySQL++ mailing list, which you can subscribe to here:
http://lists.mysql.com/plusplus

That mailing list is archived, so if you have questions,
do a search to see if the question has been asked before.

You may find people’s individual email addresses in
various files within the MySQL++ distribution. Please
do not send mail to them unless you are sending something
that is inherently personal. Questions that are about
MySQL++ usage may well be ignored if you send them to our
personal email accounts. Those of us still active in My-
SQL++ development monitor the mailing list, so you aren’t
getting any extra "coverage" by sending messages to those
addresses in addition to the mailing list.

1.5 Licensing

MySQL++ is licensed under the GNU Lesser General
Public License, which you should have received
with the distribution package in a file called
"LGPL" or "LICENSE". You can also view it here:
http://www.gnu.org/licenses/lgpl.html or receive a copy
by writing to Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

Chapter 2

MySQL++ Namespace Index

2.1 MySQL++ Namespace List

Here is a list of all documented namespaces with brief
descriptions:

mysqlpp . ??

4 MySQL++ Namespace Index

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

Chapter 3

MySQL++ Hierarchical Index

3.1 MySQL++ Class Hierarchy

This inheritance list is sorted roughly, but not
completely, alphabetically:

AutoFlag< T > . ??
std::basic_string< char >

std::string
mysqlpp::SQLString ??

mysqlpp::ColData_Tmpl< Str > ??
mysqlpp::const_string ??
mysqlpp::const_subscript_container< OnType, Value-

Type, ReturnType, SizeType, DiffType > . . . ??
mysqlpp::Fields ??
mysqlpp::Result ??
mysqlpp::Row . ??

mysqlpp::const_subscript_container<
mysqlpp::Fields, MYSQL_FIELD > ??

mysqlpp::const_subscript_container<
mysqlpp::Result, mysqlpp::Row, mysqlpp::Row > ??

mysqlpp::const_subscript_container< mysqlpp::Row,
mysqlpp::ColData_Tmpl< const_string >,
mysqlpp::ColData_Tmpl< const_string > > . . ??

mysqlpp::DTbase< T > ??
mysqlpp::Date ??
mysqlpp::DateTime ??
mysqlpp::Time ??

mysqlpp::DTbase< mysqlpp::Date > ??
mysqlpp::DTbase< mysqlpp::DateTime > ??

6 MySQL++ Hierarchical Index

mysqlpp::DTbase< mysqlpp::Time > ??
mysqlpp::equal_list_b< Seq1, Seq2, Manip > ??
mysqlpp::equal_list_ba< Seq1, Seq2, Manip > ??
std::exception

mysqlpp::Exception ??
mysqlpp::BadConversion ??
mysqlpp::BadFieldName ??
mysqlpp::BadNullConversion ??
mysqlpp::BadOption ??
mysqlpp::BadParamCount ??
mysqlpp::BadQuery ??
mysqlpp::ConnectionFailed ??
mysqlpp::DBSelectionFailed ??
mysqlpp::EndOfResults ??
mysqlpp::EndOfResultSets ??
mysqlpp::LockFailed ??
mysqlpp::ObjectNotInitialized ??

std::ios_base
std::basic_ios
std::basic_ios< char >

std::basic_ostream< char >
std::ostream

mysqlpp::Query ??
mysqlpp::Lock . ??

mysqlpp::BasicLock ??
mysqlpp::Lockable ??

mysqlpp::Connection ??
mysqlpp::Query ??

mysqlpp::mysql_type_info ??
mysqlpp::NoExceptions ??
mysqlpp::Null< Type, Behavior > ??
mysqlpp::null_type ??
mysqlpp::NullisBlank ??
mysqlpp::NullisNull ??
mysqlpp::NullisZero ??
mysqlpp::OptionalExceptions ??

mysqlpp::Connection ??
mysqlpp::Query ??
mysqlpp::ResUse ??

mysqlpp::Result ??
mysqlpp::Row . ??

mysqlpp::ResNSel ??
mysqlpp::scoped_var_set< T > ??
mysqlpp::Set< Container > ??
mysqlpp::SQLParseElement ??

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

3.1 MySQL++ Class Hierarchy 7

mysqlpp::subscript_iterator< OnType, ReturnType,
SizeType, DiffType > ??

mysqlpp::tiny_int ??
mysqlpp::Transaction ??
mysqlpp::value_list_b< Seq, Manip > ??
mysqlpp::value_list_ba< Seq, Manip > ??
std::vector< T >

mysqlpp::FieldTypes ??
mysqlpp::SQLQueryParms ??

std::vector< std::string >
mysqlpp::FieldNames ??

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8 MySQL++ Hierarchical Index

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

Chapter 4

MySQL++ Class Index

4.1 MySQL++ Class List

Here are the classes, structs, unions and interfaces with
brief descriptions:

AutoFlag< T > (A template for setting a flag on a variable as long as the
object that set it is in scope. Flag resets when object goes out of
scope. Works on anything that looks like bool) ??

mysqlpp::BadConversion (Exception (p. ??) thrown when a bad type
conversion is attempted) ??

mysqlpp::BadFieldName (Exception (p. ??) thrown when a requested
named field doesn’t exist) ??

mysqlpp::BadNullConversion (Exception (p. ??) thrown when you at-
tempt to convert a SQL null to an incompatible type) . . . ??

mysqlpp::BadOption (Exception (p. ??) thrown when you pass an unrec-
ognized option to Connection::set_option() (p. ??)) ??

mysqlpp::BadParamCount (Exception (p. ??) thrown when not enough
query parameters are provided) ??

mysqlpp::BadQuery (Exception (p. ??) thrown when MySQL encoun-
ters a problem while processing your query) ??

mysqlpp::BasicLock (Trivial Lock (p. ??) subclass, using a boolean vari-
able as the lock flag) ??

mysqlpp::ColData_Tmpl< Str > (Template for string data that can con-
vert itself to any standard C data type) ??

mysqlpp::Connection (Manages the connection to the MySQL database) ??
mysqlpp::ConnectionFailed (Exception (p. ??) thrown when there is a

problem establishing the database server connection. It’s also
thrown if Connection::shutdown() (p. ??) fails) ??

10 MySQL++ Class Index

mysqlpp::const_string (Wrapper for const char∗ to make it behave
in a way more useful to MySQL++) ??

mysqlpp::const_subscript_container< OnType, ValueType, Return-
Type, SizeType, DiffType > (A base class that one derives from
to become a random access container, which can be accessed
with subscript notation) ??

mysqlpp::Date (C++ form of MySQL’s DATE type) ??
mysqlpp::DateTime (C++ form of MySQL’s DATETIME type) . . . ??
mysqlpp::DBSelectionFailed (Exception (p. ??) thrown when the pro-

gram tries to select a new database and the server refuses for
some reason) ??

mysqlpp::DTbase< T > (Base class template for MySQL++ date and
time classes) ??

mysqlpp::EndOfResults (Exception (p. ??) thrown when Res-
Use::fetch_row() (p. ??) walks off the end of a use-query’s
result set) . ??

mysqlpp::EndOfResultSets (Exception (p. ??) thrown when
Query::store_next() (p. ??) walks off the end of a use-query’s
multi result sets) ??

mysqlpp::equal_list_b< Seq1, Seq2, Manip > (Same as equal_list_ba
(p. ??), plus the option to have some elements of the equals
clause suppressed) ??

mysqlpp::equal_list_ba< Seq1, Seq2, Manip > (Holds two lists of items,
typically used to construct a SQL "equals clause") ??

mysqlpp::Exception (Base class for all MySQL++ custom exceptions) . ??
mysqlpp::FieldNames (Holds a list of SQL field names) ??
mysqlpp::Fields (A container similar to std::vector for holding

mysqlpp::Field (p. ??) records) ??
mysqlpp::FieldTypes (A vector of SQL field types) ??
mysqlpp::Lock (Abstract base class for lock implementation, used by

Lockable (p. ??)) ??
mysqlpp::Lockable (Interface allowing a class to declare itself as "lock-

able") . ??
mysqlpp::LockFailed (Exception (p. ??) thrown when a Lockable (p. ??)

object fails) ??
mysqlpp::mysql_type_info (Holds basic type information for ColData) ??
mysqlpp::NoExceptions (Disable exceptions in an object derived from

OptionalExceptions (p. ??)) ??
mysqlpp::Null< Type, Behavior > (Class for holding data from a SQL

column with the NULL attribute) ??
mysqlpp::null_type (The type of the global mysqlpp::null (p. ??) object) ??
mysqlpp::NullisBlank (Class for objects that define SQL null as a blank

C string) . ??
mysqlpp::NullisNull (Class for objects that define SQL null in terms of

MySQL++’s null_type (p. ??)) ??
mysqlpp::NullisZero (Class for objects that define SQL null as 0) . . ??

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

4.1 MySQL++ Class List 11

mysqlpp::ObjectNotInitialized (Exception (p. ??) thrown when you try
to use an object that isn’t completely initialized) ??

mysqlpp::OptionalExceptions (Interface allowing a class to have op-
tional exceptions) ??

mysqlpp::Query (A class for building and executing SQL queries) . . ??
mysqlpp::ResNSel (Holds the information on the success of queries that

don’t return any results) ??
mysqlpp::Result (This class manages SQL result sets) ??
mysqlpp::ResUse (A basic result set class, for use with "use" queries) ??
mysqlpp::Row (Manages rows from a result set) ??
mysqlpp::scoped_var_set< T > (Sets a variable to a given value tem-

porarily) . ??
mysqlpp::Set< Container > (A special std::set derivative for holding

MySQL data sets) ??
mysqlpp::SQLParseElement (Used within Query (p. ??) to hold elements

for parameterized queries) ??
mysqlpp::SQLQueryParms (This class holds the parameter values for

filling template queries) ??
mysqlpp::SQLString (A specialized std::string that will convert

from any valid MySQL type) ??
mysqlpp::subscript_iterator< OnType, ReturnType, SizeType, DiffType

> (Iterator that can be subscripted) ??
mysqlpp::Time (C++ form of MySQL’s TIME type) ??
mysqlpp::tiny_int (Class for holding an SQL tiny_int (p. ??) object) ??
mysqlpp::Transaction (Helper object for creating exception-safe SQL

transactions) ??
mysqlpp::value_list_b< Seq, Manip > (Same as value_list_ba (p. ??),

plus the option to have some elements of the list suppressed) . ??
mysqlpp::value_list_ba< Seq, Manip > (Holds a list of items, typically

used to construct a SQL "value list") ??

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

12 MySQL++ Class Index

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

Chapter 5

MySQL++ File Index

5.1 MySQL++ File List

Here is a list of all documented files with brief
descriptions:

autoflag.h (Defines a template for setting a flag within a given variable
scope, and resetting it when exiting that scope) ??

coldata.h (Declares classes for converting string data to any of the basic
C types) . ??

common.h (This file includes top-level definitions for use both internal to
the library, and outside it. Contrast mysql++.h) ??

connection.h (Declares the Connection class) ??
const_string.h (Declares a wrapper for const char∗ which behaves in

a way more useful to MySQL++) ??
convert.h (Declares various string-to-integer type conversion templates) ??
datetime.h (Declares classes to add MySQL-compatible date and time

types to C++’s type system) ??
exceptions.h (Declares the MySQL++-specific exception classes) . . . ??
field_names.h (Declares a class to hold a list of field names) ??
field_types.h (Declares a class to hold a list of SQL field type info) . . ??
fields.h (Declares a class for holding information about a set of fields) . ??
lockable.h (Declares interface that allows a class to declare itself as

"lockable") ??
manip.h (Declares std::ostream manipulators useful with SQL syn-

tax) . ??
myset.h (Declares templates for generating custom containers used else-

where in the library) ??
mysql++.h (The main MySQL++ header file) ??
noexceptions.h (Declares interface that allows exceptions to be optional) ??

14 MySQL++ File Index

null.h (Declares classes that implement SQL "null" semantics within
C++’s type system) ??

qparms.h (Declares the template query parameter-related stuff) . . . ??
query.h (Defines a class for building and executing SQL queries) . . ??
querydef.h . ??
resiter.h (Declares templates for adapting existing classes to be iteratable

random-access containers) ??
result.h (Declares classes for holding SQL query result sets) ??
row.h (Declares the classes for holding row data from a result set) . . ??
sql_string.h (Declares an std::string derivative that adds some

things needed within the library) ??
sql_types.h (Declares the closest C++ equivalent of each MySQL column

type) . ??
stream2string.h (Declares an adapter that converts something that can

be inserted into a C++ stream into a string type) ??
string_util.h (Declares string-handling utility functions used within the

library) . ??
tiny_int.h (Declares class for holding a SQL tiny_int) ??
transaction.h (Declares the Transaction class) ??
type_info.h (Declares classes that provide an interface between the SQL

and C++ type systems) ??
vallist.h (Declares templates for holding lists of values) ??

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

Chapter 6

MySQL++ Namespace
Documentation

6.1 mysqlpp Namespace Reference

Classes

• class ColData_Tmpl
Template for string data that can convert itself to any standard C data type.

• class scoped_var_set
Sets a variable to a given value temporarily.

• class Connection
Manages the connection to the MySQL database.

• class const_string
Wrapper for const char∗ to make it behave in a way more useful to MySQL++.

• struct DTbase
Base class template for MySQL++ date and time classes.

• struct DateTime
C++ form of MySQL’s DATETIME type.

• struct Date
C++ form of MySQL’s DATE type.

16 MySQL++ Namespace Documentation

• struct Time
C++ form of MySQL’s TIME type.

• class Exception
Base class for all MySQL++ custom exceptions.

• class BadConversion
Exception (p. ??) thrown when a bad type conversion is attempted.

• class BadFieldName
Exception (p. ??) thrown when a requested named field doesn’t exist.

• class BadNullConversion
Exception (p. ??) thrown when you attempt to convert a SQL null to an incompatible
type.

• class BadOption
Exception (p. ??) thrown when you pass an unrecognized option to
Connection::set_option() (p. ??).

• class BadParamCount
Exception (p. ??) thrown when not enough query parameters are provided.

• class BadQuery
Exception (p. ??) thrown when MySQL encounters a problem while processing your
query.

• class ConnectionFailed
Exception (p. ??) thrown when there is a problem establishing the database server
connection. It’s also thrown if Connection::shutdown() (p. ??) fails.

• class DBSelectionFailed
Exception (p. ??) thrown when the program tries to select a new database and the
server refuses for some reason.

• class EndOfResults
Exception (p. ??) thrown when ResUse::fetch_row() (p. ??) walks off the end of a
use-query’s result set.

• class EndOfResultSets
Exception (p. ??) thrown when Query::store_next() (p. ??) walks off the end of a
use-query’s multi result sets.

• class LockFailed

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 17

Exception (p. ??) thrown when a Lockable (p. ??) object fails.

• class ObjectNotInitialized
Exception (p. ??) thrown when you try to use an object that isn’t completely initial-
ized.

• class FieldNames
Holds a list of SQL field names.

• class FieldTypes
A vector of SQL field types.

• class Fields
A container similar to std::vector for holding mysqlpp::Field (p. ??) records.

• class Lock
Abstract base class for lock implementation, used by Lockable (p. ??).

• class BasicLock
Trivial Lock (p. ??) subclass, using a boolean variable as the lock flag.

• class Lockable
Interface allowing a class to declare itself as "lockable".

• class Set
A special std::set derivative for holding MySQL data sets.

• class OptionalExceptions
Interface allowing a class to have optional exceptions.

• class NoExceptions
Disable exceptions in an object derived from OptionalExceptions (p. ??).

• class null_type
The type of the global mysqlpp::null (p. ??) object.

• struct NullisNull
Class for objects that define SQL null in terms of MySQL++’s null_type (p. ??).

• struct NullisZero
Class for objects that define SQL null as 0.

• struct NullisBlank

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

18 MySQL++ Namespace Documentation

Class for objects that define SQL null as a blank C string.

• class Null
Class for holding data from a SQL column with the NULL attribute.

• class SQLQueryParms
This class holds the parameter values for filling template queries.

• struct SQLParseElement
Used within Query (p. ??) to hold elements for parameterized queries.

• class Query
A class for building and executing SQL queries.

• class const_subscript_container
A base class that one derives from to become a random access container, which can
be accessed with subscript notation.

• class subscript_iterator
Iterator that can be subscripted.

• class ResUse
A basic result set class, for use with "use" queries.

• class Result
This class manages SQL result sets.

• class ResNSel
Holds the information on the success of queries that don’t return any results.

• class Row
Manages rows from a result set.

• class SQLString
A specialized std::string that will convert from any valid MySQL type.

• class tiny_int
Class for holding an SQL tiny_int (p. ??) object.

• class Transaction
Helper object for creating exception-safe SQL transactions.

• class mysql_type_info

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 19

Holds basic type information for ColData.

• struct equal_list_ba
Holds two lists of items, typically used to construct a SQL "equals clause".

• struct equal_list_b
Same as equal_list_ba (p. ??), plus the option to have some elements of the equals
clause suppressed.

• struct value_list_ba
Holds a list of items, typically used to construct a SQL "value list".

• struct value_list_b
Same as value_list_ba (p. ??), plus the option to have some elements of the list
suppressed.

Typedefs

• typedef ColData_Tmpl< const_string > ColData
The type that is returned by constant rows.

• typedef ColData_Tmpl< std::string > MutableColData
The type that is returned by mutable rows.

• typedef MYSQL_FIELD Field
Alias for MYSQL_FIELD.

Enumerations

• enum quote_type0 { quote }
• enum quote_only_type0 { quote_only }
• enum quote_double_only_type0 { quote_double_only }
• enum escape_type0 { escape }
• enum do_nothing_type0 { do_nothing }
• enum ignore_type0 { ignore }
• enum query_reset { DONT_RESET, RESET_QUERY }

Used for indicating whether a query object should auto-reset.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

20 MySQL++ Namespace Documentation

Functions

• std::ostream & operator<< (std::ostream &o, const const_string
&str)

Inserts a const_string (p. ??) into a C++ stream.

• int compare (const const_string &lhs, const const_string &rhs)
Calls lhs.compare() (p. ??), passing rhs.

• bool operator== (const_string &lhs, const_string &rhs)
Returns true if lhs is the same as rhs.

• bool operator!= (const_string &lhs, const_string &rhs)
Returns true if lhs is not the same as rhs.

• bool operator< (const_string &lhs, const_string &rhs)
Returns true if lhs is lexically less than rhs.

• bool operator<= (const_string &lhs, const_string &rhs)
Returns true if lhs is lexically less or equal to rhs.

• bool operator> (const_string &lhs, const_string &rhs)
Returns true if lhs is lexically greater than rhs.

• bool operator>= (const_string &lhs, const_string &rhs)
Returns true if lhs is lexically greater than or equal to rhs.

• std::ostream & operator<< (std::ostream &os, const Date &d)
Inserts a Date (p. ??) object into a C++ stream.

• std::ostream & operator<< (std::ostream &os, const Time &t)
Inserts a Time (p. ??) object into a C++ stream in a MySQL-compatible format.

• std::ostream & operator<< (std::ostream &os, const DateTime &dt)
Inserts a DateTime (p. ??) object into a C++ stream in a MySQL-compatible format.

• SQLQueryParms & operator<< (quote_type2 p, SQLString &in)
Inserts a SQLString (p. ??) into a stream, quoted and escaped.

• template<> ostream & operator<< (quote_type1 o, const string &in)
Inserts a C++ string into a stream, quoted and escaped.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 21

• template<> ostream & operator<< (quote_type1 o, const char ∗const
&in)

Inserts a C string into a stream, quoted and escaped.

• template<class Str> ostream & _manip (quote_type1 o, const ColData_-
Tmpl< Str > &in)

Utility function used by operator<<(quote_type1, ColData).

• template<> ostream & operator<< (quote_type1 o, const ColData_Tmpl<
string > &in)

Inserts a ColData into a stream, quoted and escaped.

• template<> ostream & operator<< (quote_type1 o, const ColData_Tmpl<
const_string > &in)

Inserts a ColData with const string into a stream, quoted and escaped.

• ostream & operator<< (ostream &o, const ColData_Tmpl< string >
&in)

Inserts a ColData into a stream.

• ostream & operator<< (ostream &o, const ColData_Tmpl< const_string >
&in)

Inserts a ColData with const string into a stream.

• Query & operator<< (Query &o, const ColData_Tmpl< string > &in)
Insert a ColData into a SQLQuery.

• Query & operator<< (Query &o, const ColData_Tmpl< const_string >
&in)

Insert a ColData with const string into a SQLQuery.

• SQLQueryParms & operator<< (quote_only_type2 p, SQLString &in)
Inserts a SQLString (p. ??) into a stream, quoting it unless it’s data that needs no
quoting.

• template<> ostream & operator<< (quote_only_type1 o, const ColData_-
Tmpl< string > &in)

Inserts a ColData into a stream, quoted.

• template<> ostream & operator<< (quote_only_type1 o, const ColData_-
Tmpl< const_string > &in)

Inserts a ColData with const string into a stream, quoted.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

22 MySQL++ Namespace Documentation

• SQLQueryParms & operator<< (quote_double_only_type2 p, SQLString
&in)

Inserts a SQLString (p. ??) into a stream, double-quoting it (") unless it’s data that
needs no quoting.

• template<> ostream & operator<< (quote_double_only_type1 o, const
ColData_Tmpl< string > &in)

Inserts a ColData into a stream, double-quoted (").

• template<> ostream & operator<< (quote_double_only_type1 o, const
ColData_Tmpl< const_string > &in)

Inserts a ColData with const string into a stream, double-quoted (").

• SQLQueryParms & operator<< (escape_type2 p, SQLString &in)
Inserts a SQLString (p. ??) into a stream, escaping special SQL characters.

• template<> std::ostream & operator<< (escape_type1 o, const std::string
&in)

Inserts a C++ string into a stream, escaping special SQL characters.

• template<> ostream & operator<< (escape_type1 o, const char ∗const
&in)

Inserts a C string into a stream, escaping special SQL characters.

• template<class Str> ostream & _manip (escape_type1 o, const ColData_-
Tmpl< Str > &in)

Utility function used by operator<<(escape_type1, ColData).

• template<> std::ostream & operator<< (escape_type1 o, const ColData_-
Tmpl< std::string > &in)

Inserts a ColData into a stream, escaping special SQL characters.

• template<> std::ostream & operator<< (escape_type1 o, const ColData_-
Tmpl< const_string > &in)

Inserts a ColData with const string into a stream, escaping special SQL characters.

• SQLQueryParms & operator<< (do_nothing_type2 p, SQLString &in)
Inserts a SQLString (p. ??) into a stream, with no escaping or quoting.

• SQLQueryParms & operator<< (ignore_type2 p, SQLString &in)
Inserts a SQLString (p. ??) into a stream, with no escaping or quoting, and without
marking the string as having been "processed".

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 23

• template<class T> std::ostream & operator<< (escape_type1 o, const T
&in)

Inserts any type T into a stream that has an operator<< defined for it.

• template<> std::ostream & operator<< (escape_type1 o, char ∗const
&in)

Inserts a C string into a stream, escaping special SQL characters.

• std::ostream & operator<< (escape_type1 o, char in[])
Inserts an array of char into a stream, escaping special SQL characters.

• template<class Container> std::ostream & operator<< (std::ostream &s,
const Set< Container > &d)

Inserts a Set (p. ??) object into a C++ stream.

• unsigned int get_library_version ()
Get the current MySQL++ library version number.

• template<class Type, class Behavior> std::ostream & operator<<
(std::ostream &o, const Null< Type, Behavior > &n)

Inserts null-able data into a C++ stream if it is not actually null. Otherwise, insert
something appropriate for null data.

• void swap (ResUse &x, ResUse &y)
Swaps two ResUse (p. ??) objects.

• void swap (Result &x, Result &y)
Swaps two Result (p. ??) objects.

• template<class Strng, class T> Strng stream2string (const T &object)
Converts a stream-able object to any type that can be initialized from an
std::string.

• void strip (std::string &s)
Strips blanks at left and right ends.

• void escape_string (std::string &s)
C++ equivalent of mysql_escape_string().

• void str_to_upr (std::string &s)
Changes case of string to upper.

• void str_to_lwr (std::string &s)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

24 MySQL++ Namespace Documentation

Changes case of string to lower.

• void strip_all_blanks (std::string &s)
Removes all blanks.

• void strip_all_non_num (std::string &s)
Removes all non-numerics.

• bool operator== (const mysql_type_info &a, const mysql_type_info &b)
Returns true if two mysql_type_info (p. ??) objects are equal.

• bool operator!= (const mysql_type_info &a, const mysql_type_info &b)
Returns true if two mysql_type_info (p. ??) objects are not equal.

• bool operator== (const std::type_info &a, const mysql_type_info &b)
Returns true if a given mysql_type_info (p. ??) object is equal to a given C++ type_-
info object.

• bool operator!= (const std::type_info &a, const mysql_type_info &b)
Returns true if a given mysql_type_info (p. ??) object is not equal to a given C++
type_info object.

• bool operator== (const mysql_type_info &a, const std::type_info &b)
Returns true if a given mysql_type_info (p. ??) object is equal to a given C++ type_-
info object.

• bool operator!= (const mysql_type_info &a, const std::type_info &b)
Returns true if a given mysql_type_info (p. ??) object is not equal to a given C++
type_info object.

• void create_vector (size_t size, std::vector< bool > &v, bool t0, bool
t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Create a vector of bool with the given arguments as values.

• template<class Container> void create_vector (const Container &c,
std::vector< bool > &v, std::string s0, std::string s1, std::string s2,
std::string s3, std::string s4, std::string s5, std::string s6, std::string s7,
std::string s8, std::string s9, std::string sa, std::string sb, std::string sc)

Create a vector of bool using a list of named fields.

• template<class Seq1, class Seq2, class Manip> std::ostream & operator<<
(std::ostream &o, const equal_list_ba< Seq1, Seq2, Manip > &el)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 25

Inserts an equal_list_ba (p. ??) into an std::ostream.

• template<class Seq1, class Seq2, class Manip> std::ostream & operator<<
(std::ostream &o, const equal_list_b< Seq1, Seq2, Manip > &el)

Same as operator<< for equal_list_ba (p. ??), plus the option to suppress insertion
of some list items in the stream.

• template<class Seq, class Manip> std::ostream & operator<<
(std::ostream &o, const value_list_ba< Seq, Manip > &cl)

Inserts a value_list_ba (p. ??) into an std::ostream.

• template<class Seq, class Manip> std::ostream & operator<<
(std::ostream &o, const value_list_b< Seq, Manip > &cl)

Same as operator<< for value_list_ba (p. ??), plus the option to suppress insertion
of some list items in the stream.

• template<class Seq> value_list_ba< Seq, do_nothing_type0 > value_list
(const Seq &s, const char ∗d=",")

Constructs a value_list_ba (p. ??).

• template<class Seq, class Manip> value_list_ba< Seq, Manip > value_list
(const Seq &s, const char ∗d, Manip m)

Constructs a value_list_ba (p. ??).

• template<class Seq, class Manip> value_list_b< Seq, Manip > value_list
(const Seq &s, const char ∗d, Manip m, const std::vector< bool > &vb)

Constructs a value_list_b (p. ??) (sparse value list).

• template<class Seq, class Manip> value_list_b< Seq, Manip > value_list
(const Seq &s, const char ∗d, Manip m, bool t0, bool t1=false, bool t2=false,
bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a value_list_b (p. ??) (sparse value list).

• template<class Seq> value_list_b< Seq, do_nothing_type0 > value_list
(const Seq &s, const char ∗d, bool t0, bool t1=false, bool t2=false, bool
t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a sparse value list.

• template<class Seq> value_list_b< Seq, do_nothing_type0 > value_list
(const Seq &s, bool t0, bool t1=false, bool t2=false, bool t3=false, bool
t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

26 MySQL++ Namespace Documentation

Constructs a sparse value list.

• template<class Seq1, class Seq2> equal_list_ba< Seq1, Seq2, do_nothing_-
type0 > equal_list (const Seq1 &s1, const Seq2 &s2, const char ∗d=",", const
char ∗e=" = ")

Constructs an equal_list_ba (p. ??).

• template<class Seq1, class Seq2, class Manip> equal_list_ba< Seq1, Seq2,
Manip > equal_list (const Seq1 &s1, const Seq2 &s2, const char ∗d, const
char ∗e, Manip m)

Constructs an equal_list_ba (p. ??).

• template<class Seq1, class Seq2, class Manip> equal_list_b< Seq1, Seq2,
Manip > equal_list (const Seq1 &s1, const Seq2 &s2, const char ∗d, const
char ∗e, Manip m, const std::vector< bool > &vb)

Constructs a equal_list_b (p. ??) (sparse equal list).

• template<class Seq1, class Seq2, class Manip> equal_list_b< Seq1, Seq2,
Manip > equal_list (const Seq1 &s1, const Seq2 &s2, const char ∗d, const
char ∗e, Manip m, bool t0, bool t1=false, bool t2=false, bool t3=false,
bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b (p. ??) (sparse equal list).

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > equal_list (const Seq1 &s1, const Seq2 &s2, const char ∗d, const
char ∗e, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false,
bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool
ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b (p. ??) (sparse equal list).

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > equal_list (const Seq1 &s1, const Seq2 &s2, const char ∗d, bool
t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false,
bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Constructs a equal_list_b (p. ??) (sparse equal list).

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > equal_list (const Seq1 &s1, const Seq2 &s2, bool t0, bool t1=false,
bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false)

Constructs a equal_list_b (p. ??) (sparse equal list).

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 27

Variables

• bool dont_quote_auto = false
Set (p. ??) to true if you want to suppress automatic quoting.

• bool dont_quote_auto
Set (p. ??) to true if you want to suppress automatic quoting.

• const null_type null = null_type()
Global ’null’ instance. Use wherever you need a SQL null. (As opposed to a C++
language null pointer or null character.).

6.1.1 Detailed Description

All global symbols in MySQL++ are in namespace mysqlpp.
This is needed because many symbols are rather generic
(e.g. Row (p. ??), Query (p. ??)...), so there is a serious
danger of conflicts.

6.1.2 Enumeration Type Documentation

6.1.2.1 enum mysqlpp::quote_type0

The standard ’quote’ manipulator.

Insert this into a stream to put single quotes around
the next item in the stream, and escape characters within
it that are ’special’ in SQL. This is the most generally
useful of the manipulators.

Enumerator:

quote insert into a std::ostream to single-quote and
escape next item

6.1.2.2 enum mysqlpp::quote_only_type0

The ’quote_only’ manipulator.

Similar to quote manipulator, except that it doesn’t
escape special SQL characters.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

28 MySQL++ Namespace Documentation

Enumerator:

quote_only insert into a std::ostream to single-quote
next item

6.1.2.3 enum mysqlpp::quote_double_only_type0

The ’double_quote_only’ manipulator.

Similar to quote_only manipulator, except that it uses
double quotes instead of single quotes.

Enumerator:

quote_double_only insert into a std::ostream to
double-quote next item

6.1.2.4 enum mysqlpp::escape_type0

The ’escape’ manipulator.

Calls mysql_escape_string() in the MySQL C API on the
following argument to prevent any special SQL characters
from being interpreted.

6.1.2.5 enum mysqlpp::do_nothing_type0

The ’do_nothing’ manipulator.

Does exactly what it says: nothing. Used as a dummy
manipulator when you are required to use some manipulator
but don’t want anything to be done to the following item.
When used with SQLQueryParms (p. ??) it will make sure
that it does not get formatted in any way, overriding
any setting set by the template query.

Enumerator:

do_nothing insert into a std::ostream to override
manipulation of next item

6.1.2.6 enum mysqlpp::ignore_type0

The ’ignore’ manipulator.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 29

Only valid when used with SQLQueryParms (p. ??). It’s a
dummy manipulator like the do_nothing manipulator, except
that it will not override formatting set by the template
query. It is simply ignored.

Enumerator:

ignore insert into a std::ostream as a dummy
manipulator

6.1.3 Function Documentation

6.1.3.1 MYSQLPP_EXPORT std::ostream & mysqlpp::operator<<
(std::ostream & os, const Date & d)

Inserts a Date (p. ??) object into a C++ stream.

The format is YYYY-MM-DD, zero-padded.

Parameters:

os stream to insert date into

d date to insert into stream

6.1.3.2 MYSQLPP_EXPORT std::ostream & mysqlpp::operator<<
(std::ostream & os, const Time & t)

Inserts a Time (p. ??) object into a C++ stream in a My-
SQL-compatible format.

The format is HH:MM:SS, zero-padded.

Parameters:

os stream to insert time into

t time to insert into stream

6.1.3.3 MYSQLPP_EXPORT std::ostream & mysqlpp::operator<<
(std::ostream & os, const DateTime & dt)

Inserts a DateTime (p. ??) object into a C++ stream in a
MySQL-compatible format.

The date and time are inserted into the stream, in that
order, with a space between them.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

30 MySQL++ Namespace Documentation

Parameters:

os stream to insert date and time into

dt date/time object to insert into stream

6.1.3.4 SQLQueryParms& mysqlpp::operator<< (quote_type2 p, SQLString
& in)

Inserts a SQLString (p. ??) into a stream, quoted and
escaped.

If in.is_string is set and in.dont_escape is not set, the
string is quoted and escaped.

If both in.is_string and in.dont_escape are set, the
string is quoted but not escaped.

If in.is_string is not set, the data is inserted as-is.
This is the case when you initialize SQLString (p. ??)
with one of the constructors taking an integral type,
for instance.

6.1.3.5 template<> ostream& mysqlpp::operator<< (quote_type1 o, const
string & in)

Inserts a C++ string into a stream, quoted and escaped.

Because std::string lacks the type information we need,
the string is both quoted and escaped, always.

6.1.3.6 template<> ostream& mysqlpp::operator<< (quote_type1 o, const
char ∗const & in)

Inserts a C string into a stream, quoted and escaped.

Because C strings lack the type information we need, the
string is both quoted and escaped, always.

6.1.3.7 template<> ostream& mysqlpp::operator<< (quote_type1 o, const
ColData_Tmpl< string > & in)

Inserts a ColData into a stream, quoted and escaped.

Because ColData was designed to contain MySQL type data,
we may choose not to actually quote or escape the data,
if it is not needed.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 31

6.1.3.8 template<> ostream& mysqlpp::operator<< (quote_type1 o, const
ColData_Tmpl< const_string > & in)

Inserts a ColData with const string into a stream, quoted
and escaped.

Because ColData was designed to contain MySQL type data,
we may choose not to actually quote or escape the data,
if it is not needed.

6.1.3.9 ostream& mysqlpp::operator<< (ostream & o, const ColData_Tmpl<
string > & in)

Inserts a ColData into a stream.

Because ColData was designed to contain MySQL type data,
this operator has the information needed to choose to
quote and/or escape the data as it is inserted into
the stream, even if you don’t use any of the quoting or
escaping manipulators.

6.1.3.10 ostream& mysqlpp::operator<< (ostream & o, const ColData_Tmpl<
const_string > & in)

Inserts a ColData with const string into a stream.

Because ColData was designed to contain MySQL type data,
this operator has the information needed to choose to
quote and/or escape the data as it is inserted into
the stream, even if you don’t use any of the quoting or
escaping manipulators.

6.1.3.11 Query& mysqlpp::operator<< (Query & o, const ColData_Tmpl<
string > & in)

Insert a ColData into a SQLQuery.

This operator appears to be a workaround for a weakness
in one compiler’s implementation of the C++ type system.
See Wishlist for current plan on what to do about this.

6.1.3.12 Query& mysqlpp::operator<< (Query & o, const ColData_Tmpl<
const_string > & in)

Insert a ColData with const string into a SQLQuery.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

32 MySQL++ Namespace Documentation

This operator appears to be a workaround for a weakness
in one compiler’s implementation of the C++ type system.
See Wishlist for current plan on what to do about this.

6.1.3.13 SQLQueryParms& mysqlpp::operator<< (quote_only_type2 p,
SQLString & in)

Inserts a SQLString (p. ??) into a stream, quoting it
unless it’s data that needs no quoting.

We make the decision to quote the data based on the
in.is_string flag. You can set it yourself, but
SQLString’s ctors should set it correctly for you.

6.1.3.14 template<> ostream& mysqlpp::operator<< (quote_only_type1 o,
const ColData_Tmpl< string > & in)

Inserts a ColData into a stream, quoted.

Because ColData was designed to contain MySQL type data,
we may choose not to actually quote the data, if it is
not needed.

6.1.3.15 template<> ostream& mysqlpp::operator<< (quote_only_type1 o,
const ColData_Tmpl< const_string > & in)

Inserts a ColData with const string into a stream,
quoted.

Because ColData was designed to contain MySQL type data,
we may choose not to actually quote the data, if it is
not needed.

6.1.3.16 SQLQueryParms& mysqlpp::operator<< (quote_double_only_type2
p, SQLString & in)

Inserts a SQLString (p. ??) into a stream, double-quoting
it (") unless it’s data that needs no quoting.

We make the decision to quote the data based on the
in.is_string flag. You can set it yourself, but
SQLString’s ctors should set it correctly for you.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 33

6.1.3.17 template<> ostream& mysqlpp::operator<<
(quote_double_only_type1 o, const ColData_Tmpl< string > & in)

Inserts a ColData into a stream, double-quoted (").

Because ColData was designed to contain MySQL type data,
we may choose not to actually quote the data, if it is
not needed.

6.1.3.18 template<> ostream& mysqlpp::operator<<
(quote_double_only_type1 o, const ColData_Tmpl< const_string > &
in)

Inserts a ColData with const string into a stream,
double-quoted (").

Because ColData was designed to contain MySQL type data,
we may choose not to actually quote the data, if it is
not needed.

6.1.3.19 MYSQLPP_EXPORT SQLQueryParms & mysqlpp::operator<<
(escape_type2 p, SQLString & in)

Inserts a SQLString (p. ??) into a stream, escaping special
SQL characters.

We actually only do the escaping if in.is_string is set
but in.dont_escape is not. If that is not the case, we
insert the string data directly.

6.1.3.20 template<> MYSQLPP_EXPORT std::ostream &
mysqlpp::operator<< (escape_type1 o, const std::string & in)

Inserts a C++ string into a stream, escaping special SQL
characters.

Because std::string lacks the type information we need,
the string is always escaped, even if it doesn’t need it.

6.1.3.21 template<> MYSQLPP_EXPORT std::ostream &
mysqlpp::operator<< (escape_type1 o, const char ∗const & in)

Inserts a C string into a stream, escaping special SQL
characters.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

34 MySQL++ Namespace Documentation

Because C’s type system lacks the information we need
to second- guess this manipulator, we always run the
escaping algorithm on the data, even if it’s not needed.

6.1.3.22 template<> MYSQLPP_EXPORT std::ostream &
mysqlpp::operator<< (escape_type1 o, const ColData_Tmpl<
std::string > & in)

Inserts a ColData into a stream, escaping special SQL
characters.

Because ColData was designed to contain MySQL type
data, we may choose not to escape the data, if it is not
needed.

6.1.3.23 template<> MYSQLPP_EXPORT std::ostream &
mysqlpp::operator<< (escape_type1 o, const ColData_Tmpl<
const_string > & in)

Inserts a ColData with const string into a stream,
escaping special SQL characters.

Because ColData was designed to contain MySQL type
data, we may choose not to escape the data, if it is not
needed.

6.1.3.24 template<class T> std::ostream& mysqlpp::operator<<
(escape_type1 o, const T & in) [inline]

Inserts any type T into a stream that has an operator<<
defined for it.

Does not actually escape that data! Use one of the other
forms of operator<< for the escape manipulator if you
need escaping. This template exists to catch cases like
inserting an int after the escape manipulator: you don’t
actually want escaping in this instance.

6.1.3.25 template<> std::ostream& mysqlpp::operator<< (escape_type1 o,
char ∗const & in) [inline]

Inserts a C string into a stream, escaping special SQL
characters.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 35

This version exists solely to handle constness problems.
We force everything to the completely-const version:
operator<<(escape_type1, const char∗ const&).

6.1.3.26 MYSQLPP_EXPORT unsigned int mysqlpp::get_library_version ()

Get the current MySQL++ library version number.

MySQL++ version number that the program is actually
linked to, encoded by MYSQLPP_VERSION macro. Compare
this value to the MYSQLPP_HEADER_VERSION constant in
order to ensure that your program is using header files
from the same version of MySQL++ as the actual library
you’re linking to.

6.1.3.27 template<class Strng, class T> Strng mysqlpp::stream2string (const T
& object)

Converts a stream-able object to any type that can be
initialized from an std::string.

This adapter takes any object that has an out_-
stream() member function and converts it to a string
type. An example of such a type within the library is
mysqlpp::Date (p. ??).

6.1.3.28 void mysqlpp::create_vector (size_t size, std::vector< bool > & v,
bool t0, bool t1 = false, bool t2 = false, bool t3 = false, bool t4 =
false, bool t5 = false, bool t6 = false, bool t7 = false, bool t8 =
false, bool t9 = false, bool ta = false, bool tb = false, bool tc =
false)

Create a vector of bool with the given arguments as
values.

This function takes up to 13 bools, with the size
parameter controlling the actual number of parameters
we pay attention to.

This function is used within the library to build the
vector used in calling the vector form of Row::equal_-
list() (p. ??), Row::value_list() (p. ??), and Row::field_-
list() (p. ??). See the "Harnessing SSQLS Internals"
section of the user manual to see that feature at work.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

36 MySQL++ Namespace Documentation

6.1.3.29 template<class Container> void mysqlpp::create_vector (const
Container & c, std::vector< bool > & v, std::string s0, std::string s1,
std::string s2, std::string s3, std::string s4, std::string s5, std::string s6,
std::string s7, std::string s8, std::string s9, std::string sa, std::string sb,
std::string sc)

Create a vector of bool using a list of named fields.

This function is used with the ResUse (p. ??) and Result
(p. ??) containers, which have a field_num() member
function that maps a field name to its position number.
So for each named field, we set the bool in the vector at
the corresponding position to true.

This function is used within the library to build the
vector used in calling the vector form of Row::equal_-
list() (p. ??), Row::value_list() (p. ??), and Row::field_-
list() (p. ??). See the "Harnessing SSQLS Internals"
section of the user manual to see that feature at work.

6.1.3.30 template<class Seq1, class Seq2, class Manip> std::ostream&
mysqlpp::operator<< (std::ostream & o, const equal_list_ba< Seq1,
Seq2, Manip > & el)

Inserts an equal_list_ba (p. ??) into an std::ostream.

Given two lists (a, b) and (c, d), a delimiter D, and an
equals symbol E, this operator will insert "aEcDbEd" into
the stream.

See equal_list_ba’s documentation for concrete examples.

See also:

equal_list() (p. ??)

6.1.3.31 template<class Seq1, class Seq2, class Manip> std::ostream&
mysqlpp::operator<< (std::ostream & o, const equal_list_b< Seq1,
Seq2, Manip > & el)

Same as operator<< for equal_list_ba (p. ??), plus the
option to suppress insertion of some list items in the
stream.

See equal_list_b’s documentation for examples of how this
works.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 37

6.1.3.32 template<class Seq, class Manip> std::ostream&
mysqlpp::operator<< (std::ostream & o, const value_list_ba< Seq,
Manip > & cl)

Inserts a value_list_ba (p. ??) into an std::ostream.

Given a list (a, b) and a delimiter D, this operator will
insert "aDb" into the stream.

See value_list_ba’s documentation for concrete examples.

See also:

value_list() (p. ??)

6.1.3.33 template<class Seq, class Manip> std::ostream&
mysqlpp::operator<< (std::ostream & o, const value_list_b< Seq,
Manip > & cl)

Same as operator<< for value_list_ba (p. ??), plus the
option to suppress insertion of some list items in the
stream.

See value_list_b’s documentation for examples of how this
works.

6.1.3.34 template<class Seq> value_list_ba<Seq, do_nothing_type0>
mysqlpp::value_list (const Seq & s, const char ∗ d = ",")

Constructs a value_list_ba (p. ??).

This function returns a value list that uses the ’do_-
nothing’ manipulator. That is, the items are not quoted
or escaped in any way. See value_list(Seq, const char∗,
Manip) if you need to specify a manipulator.

Parameters:

s an STL sequence of items in the value list

d delimiter operator<< should place between items

6.1.3.35 template<class Seq, class Manip> value_list_ba<Seq, Manip>
mysqlpp::value_list (const Seq & s, const char ∗ d, Manip m)

Constructs a value_list_ba (p. ??).

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

38 MySQL++ Namespace Documentation

Parameters:

s an STL sequence of items in the value list

d delimiter operator<< should place between items

m manipulator to use when inserting items into a
stream

6.1.3.36 template<class Seq, class Manip> value_list_b<Seq, Manip>
mysqlpp::value_list (const Seq & s, const char ∗ d, Manip m, const
std::vector< bool > & vb) [inline]

Constructs a value_list_b (p. ??) (sparse value list).

Parameters:

s an STL sequence of items in the value list

d delimiter operator<< should place between items

m manipulator to use when inserting items into a
stream

vb for each item in this vector that is true, the
corresponding item in the value list is inserted
into a stream; the others are suppressed

6.1.3.37 template<class Seq, class Manip> value_list_b<Seq, Manip>
mysqlpp::value_list (const Seq & s, const char ∗ d, Manip m, bool t0,
bool t1 = false, bool t2 = false, bool t3 = false, bool t4 = false,
bool t5 = false, bool t6 = false, bool t7 = false, bool t8 = false,
bool t9 = false, bool ta = false, bool tb = false, bool tc = false)

Constructs a value_list_b (p. ??) (sparse value list).

Same as value_list(Seq&, const char∗, Manip, const
vector<bool>&), except that it takes the bools as
arguments instead of wrapped up in a vector object.

6.1.3.38 template<class Seq> value_list_b<Seq, do_nothing_type0>
mysqlpp::value_list (const Seq & s, const char ∗ d, bool t0, bool t1 =
false, bool t2 = false, bool t3 = false, bool t4 = false, bool t5 =
false, bool t6 = false, bool t7 = false, bool t8 = false, bool t9 =
false, bool ta = false, bool tb = false, bool tc = false)

Constructs a sparse value list.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 39

Same as value_list(Seq&, const char∗, Manip, bool,
bool...) but without the Manip parameter. We use the
do_nothing manipulator, meaning that the value list items
are neither escaped nor quoted when being inserted into a
stream.

6.1.3.39 template<class Seq> value_list_b<Seq, do_nothing_type0>
mysqlpp::value_list (const Seq & s, bool t0, bool t1 = false, bool t2 =
false, bool t3 = false, bool t4 = false, bool t5 = false, bool t6 =
false, bool t7 = false, bool t8 = false, bool t9 = false, bool ta =
false, bool tb = false, bool tc = false)

Constructs a sparse value list.

Same as value_list(Seq&, const char∗, Manip, bool,
bool...) but without the Manip or delimiter parameters.
We use the do_nothing manipulator, meaning that the
value list items are neither escaped nor quoted when
being inserted into a stream. The delimiter is a comma.
This form is suitable for lists of simple data, such as
integers.

6.1.3.40 template<class Seq1, class Seq2> equal_list_ba<Seq1, Seq2,
do_nothing_type0> mysqlpp::equal_list (const Seq1 & s1, const Seq2
& s2, const char ∗ d = ",", const char ∗ e = " = ")

Constructs an equal_list_ba (p. ??).

This function returns an equal list that uses the ’do_-
nothing’ manipulator. That is, the items are not quoted
or escaped in any way when inserted into a stream. See
equal_list(Seq, Seq, const char∗, const char∗, Manip) if
you need a different manipulator.

The idea is for both lists to be of equal length because
corresponding elements from each list are handled as
pairs, but if one list is shorter than the other, the
generated list will have that many elements.

Parameters:

s1 items on the left side of the equals sign when the
equal list is inserted into a stream

s2 items on the right side of the equals sign

d delimiter operator<< should place between pairs

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

40 MySQL++ Namespace Documentation

e what operator<< should place between items in each
pair; by default, an equals sign, as that is the
primary use for this mechanism.

6.1.3.41 template<class Seq1, class Seq2, class Manip> equal_list_ba<Seq1,
Seq2, Manip> mysqlpp::equal_list (const Seq1 & s1, const Seq2 & s2,
const char ∗ d, const char ∗ e, Manip m)

Constructs an equal_list_ba (p. ??).

Same as equal_list(Seq&, Seq&, const char∗, const char∗)
except that it also lets you specify the manipulator.
Use this version if the data must be escaped or quoted
when being inserted into a stream.

6.1.3.42 template<class Seq1, class Seq2, class Manip> equal_list_b<Seq1,
Seq2, Manip> mysqlpp::equal_list (const Seq1 & s1, const Seq2 & s2,
const char ∗ d, const char ∗ e, Manip m, const std::vector< bool > &
vb)

Constructs a equal_list_b (p. ??) (sparse equal list).

Same as equal_list(Seq&, Seq&, const char∗, const char∗,
Manip) except that you can pass a vector of bools.
For each true item in that list, operator<< adds the
corresponding item is put in the equal list. This lets
you pass in sequences when you don’t want all of the
elements to be inserted into a stream.

6.1.3.43 template<class Seq1, class Seq2, class Manip> equal_list_b<Seq1,
Seq2, Manip> mysqlpp::equal_list (const Seq1 & s1, const Seq2 & s2,
const char ∗ d, const char ∗ e, Manip m, bool t0, bool t1 = false, bool
t2 = false, bool t3 = false, bool t4 = false, bool t5 = false, bool
t6 = false, bool t7 = false, bool t8 = false, bool t9 = false, bool
ta = false, bool tb = false, bool tc = false)

Constructs a equal_list_b (p. ??) (sparse equal list).

Same as equal_list(Seq&, Seq&, const char∗, const char∗,
Manip, vector<bool>&) except that it takes boolean
parameters instead of a list of bools.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 41

6.1.3.44 template<class Seq1, class Seq2> equal_list_b<Seq1, Seq2,
do_nothing_type0> mysqlpp::equal_list (const Seq1 & s1, const Seq2
& s2, const char ∗ d, const char ∗ e, bool t0, bool t1 = false, bool t2 =
false, bool t3 = false, bool t4 = false, bool t5 = false, bool t6 =
false, bool t7 = false, bool t8 = false, bool t9 = false, bool ta =
false, bool tb = false, bool tc = false)

Constructs a equal_list_b (p. ??) (sparse equal list).

Same as equal_list(Seq&, Seq&, const char∗, const char∗,
Manip, bool, bool...) except that it doesn’t take the
Manip argument. It uses the do_nothing manipulator
instead, meaning that none of the elements are escaped
when being inserted into a stream.

6.1.3.45 template<class Seq1, class Seq2> equal_list_b<Seq1, Seq2,
do_nothing_type0> mysqlpp::equal_list (const Seq1 & s1, const Seq2
& s2, const char ∗ d, bool t0, bool t1 = false, bool t2 = false, bool t3
= false, bool t4 = false, bool t5 = false, bool t6 = false, bool t7 =
false, bool t8 = false, bool t9 = false, bool ta = false, bool tb =
false, bool tc = false)

Constructs a equal_list_b (p. ??) (sparse equal list).

Same as equal_list(Seq&, Seq&, const char∗, const char∗,
bool, bool...) except that it doesn’t take the second
const char∗ argument. It uses " = " for the equals
symbol.

6.1.3.46 template<class Seq1, class Seq2> equal_list_b<Seq1, Seq2,
do_nothing_type0> mysqlpp::equal_list (const Seq1 & s1, const Seq2
& s2, bool t0, bool t1 = false, bool t2 = false, bool t3 = false, bool
t4 = false, bool t5 = false, bool t6 = false, bool t7 = false, bool
t8 = false, bool t9 = false, bool ta = false, bool tb = false, bool
tc = false)

Constructs a equal_list_b (p. ??) (sparse equal list).

Same as equal_list(Seq&, Seq&, const char∗, bool,
bool...) except that it doesn’t take the const char∗
argument. It uses a comma for the delimiter. This form
is useful for building simple equals lists, where no
manipulators are necessary, and the default delimiter
and equals symbol are suitable.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

42 MySQL++ Namespace Documentation

6.1.4 Variable Documentation

6.1.4.1 bool mysqlpp::dont_quote_auto = false

Set (p. ??) to true if you want to suppress automatic
quoting.

Works only for ColData inserted into C++ streams.

6.1.4.2 bool mysqlpp::dont_quote_auto

Set (p. ??) to true if you want to suppress automatic
quoting.

Works only for ColData inserted into C++ streams.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

Chapter 7

MySQL++ Class
Documentation

7.1 AutoFlag< T > Class Template Reference

A template for setting a flag on a variable as long as
the object that set it is in scope. Flag resets when
object goes out of scope. Works on anything that looks
like bool.

#include <autoflag.h>

Public Member Functions

• AutoFlag (T &ref)

Constructor: sets ref to true.

• ∼AutoFlag ()

Destructor: sets referent passed to ctor to false.

7.1.1 Detailed Description

template<class T = bool> class AutoFlag< T >

A template for setting a flag on a variable as long as
the object that set it is in scope. Flag resets when

44 MySQL++ Class Documentation

object goes out of scope. Works on anything that looks
like bool.

The documentation for this class was generated from the
following file:

• autoflag.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.2 mysqlpp::BadConversion Class Reference 45

7.2 mysqlpp::BadConversion Class Reference

Exception (p. ??) thrown when a bad type conversion is
attempted.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadConversion::

mysqlpp::BadConversion

mysqlpp::Exception

std::exception

Public Member Functions

• BadConversion (const char ∗tn, const char ∗d, size_t r, size_t a)
Create exception object, building error string dynamically.

• BadConversion (const std::string &w, const char ∗tn, const char ∗d, size_t
r, size_t a)

Create exception object, given completed error string.

• BadConversion (const char ∗w="")
Create exception object, with error string only.

• ∼BadConversion () throw ()
Destroy exception.

Public Attributes

• const char ∗ type_name
name of type we tried to convert to

• std::string data
string form of data we tried to convert

• size_t retrieved
documentation needed!

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

46 MySQL++ Class Documentation

• size_t actual_size

documentation needed!

7.2.1 Detailed Description

Exception (p. ??) thrown when a bad type conversion is
attempted.

7.2.2 Constructor & Destructor Documentation

7.2.2.1 mysqlpp::BadConversion::BadConversion (const char ∗ tn, const char ∗
d, size_t r, size_t a) [inline]

Create exception object, building error string
dynamically.

Parameters:

tn type name we tried to convert to

d string form of data we tried to convert

r ??

a ??

7.2.2.2 mysqlpp::BadConversion::BadConversion (const std::string & w, const
char ∗ tn, const char ∗ d, size_t r, size_t a) [inline]

Create exception object, given completed error string.

Parameters:

w the "what" error string

tn type name we tried to convert to

d string form of data we tried to convert

r ??

a ??

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.2 mysqlpp::BadConversion Class Reference 47

7.2.2.3 mysqlpp::BadConversion::BadConversion (const char ∗ w = "")
[inline, explicit]

Create exception object, with error string only.

Parameters:

w the "what" error string

All other data members are initialize to default values

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

48 MySQL++ Class Documentation

7.3 mysqlpp::BadFieldName Class Reference

Exception (p. ??) thrown when a requested named field
doesn’t exist.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadFieldName::

mysqlpp::BadFieldName

mysqlpp::Exception

std::exception

Public Member Functions

• BadFieldName (const char ∗bad_field)
Create exception object.

• ∼BadFieldName () throw ()
Destroy exception.

7.3.1 Detailed Description

Exception (p. ??) thrown when a requested named field
doesn’t exist.

Thrown by Row::lookup_by_name() when you pass a field
name that isn’t in the result set.

7.3.2 Constructor & Destructor Documentation

7.3.2.1 mysqlpp::BadFieldName::BadFieldName (const char ∗ bad_field)
[inline, explicit]

Create exception object.

Parameters:

bad_field name of field the MySQL server didn’t like

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.3 mysqlpp::BadFieldName Class Reference 49

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

50 MySQL++ Class Documentation

7.4 mysqlpp::BadNullConversion Class Reference

Exception (p. ??) thrown when you attempt to convert a SQL
null to an incompatible type.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadNullConversion::

mysqlpp::BadNullConversion

mysqlpp::Exception

std::exception

Public Member Functions

• BadNullConversion (const char ∗w="")
Create exception object.

7.4.1 Detailed Description

Exception (p. ??) thrown when you attempt to convert a SQL
null to an incompatible type.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.5 mysqlpp::BadOption Class Reference 51

7.5 mysqlpp::BadOption Class Reference

Exception (p. ??) thrown when you pass an unrecognized
option to Connection::set_option() (p. ??).

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadOption::

mysqlpp::BadOption

mysqlpp::Exception

std::exception

Public Member Functions

• BadOption (const char ∗w, Connection::Option o)
Create exception object, taking C string.

• BadOption (const std::string &w, Connection::Option o)
Create exception object, taking C++ string.

• Connection::Option what_option () const
Return the option that failed.

7.5.1 Detailed Description

Exception (p. ??) thrown when you pass an unrecognized
option to Connection::set_option() (p. ??).

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

52 MySQL++ Class Documentation

7.6 mysqlpp::BadParamCount Class Reference

Exception (p. ??) thrown when not enough query parameters
are provided.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadParamCount::

mysqlpp::BadParamCount

mysqlpp::Exception

std::exception

Public Member Functions

• BadParamCount (const char ∗w="")
Create exception object.

• ∼BadParamCount () throw ()
Destroy exception.

7.6.1 Detailed Description

Exception (p. ??) thrown when not enough query parameters
are provided.

This is used in handling template queries.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.7 mysqlpp::BadQuery Class Reference 53

7.7 mysqlpp::BadQuery Class Reference

Exception (p. ??) thrown when MySQL encounters a problem
while processing your query.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadQuery::

mysqlpp::BadQuery

mysqlpp::Exception

std::exception

Public Member Functions

• BadQuery (const char ∗w="")
Create exception object, taking C string.

• BadQuery (const std::string &w)
Create exception object, taking C++ string.

7.7.1 Detailed Description

Exception (p. ??) thrown when MySQL encounters a problem
while processing your query.

This exception is typically only thrown when the server
rejects a SQL query. In v1.7, it was used as a more
generic exception type, for no particularly good reason.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

54 MySQL++ Class Documentation

7.8 mysqlpp::BasicLock Class Reference

Trivial Lock (p. ??) subclass, using a boolean variable as
the lock flag.

#include <lockable.h>

Inheritance diagram for mysqlpp::BasicLock::

mysqlpp::BasicLock

mysqlpp::Lock

Public Member Functions

• BasicLock (bool is_locked=false)
Create object.

• ∼BasicLock ()
Destroy object.

• bool lock ()
Lock (p. ??) the object.

• void unlock ()
Unlock the object.

• bool locked () const
Returns true if object is locked.

• void set (bool b)
Set (p. ??) the lock state.

7.8.1 Detailed Description

Trivial Lock (p. ??) subclass, using a boolean variable as
the lock flag.

This is the only Lock (p. ??) implementation available in
this version of MySQL++. It will be supplemented with

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.8 mysqlpp::BasicLock Class Reference 55

a better implementation for use with threads at a later
date.

7.8.2 Member Function Documentation

7.8.2.1 bool mysqlpp::BasicLock::lock () [inline, virtual]

Lock (p. ??) the object.

Returns:

true if object was already locked

Implements mysqlpp::Lock p. (classmysqlpp11Lockfef1ec8de0790c73f5c4726d6bddc3e9 ??)

The documentation for this class was generated from the following file:

• lockable.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

56 MySQL++ Class Documentation

7.9 mysqlpp::ColData_Tmpl< Str > Class Template
Reference

Template for string data that can convert itself to any standard C data type.

#include <coldata.h>

Public Member Functions

• ColData_Tmpl ()
Default constructor.

• ColData_Tmpl (const ColData_Tmpl< Str > &cd)
Copy ctor.

• ColData_Tmpl (bool n, mysql_type_info t=mysql_type_info::string_type)
Constructor allowing you to set the null flag and the type data.

• ColData_Tmpl (const std::string &str, mysql_type_info t=mysql_type_-
info::string_type, bool n=false)

C++ string version of full ctor.

• ColData_Tmpl (const char ∗str, mysql_type_info t=mysql_type_-
info::string_type, bool n=false)

Null-terminated C string version of full ctor.

• ColData_Tmpl (const char ∗str, typename Str::size_type len, mysql_type_-
info t=mysql_type_info::string_type, bool n=false)

Full constructor.

• mysql_type_info type () const
Get this object’s current MySQL type.

• bool quote_q () const
Returns true if data of this type should be quoted, false otherwise.

• bool escape_q () const
Returns true if data of this type should be escaped, false otherwise.

• template<class Type> Type conv (Type dummy) const
Template for converting data from one type to another.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.9 mysqlpp::ColData_Tmpl< Str > Class Template Reference 57

• void it_is_null ()
Set (p. ??) a flag indicating that this object is a SQL null.

• const bool is_null () const
Returns true if this object is a SQL null.

• const std::string & get_string () const
Returns this object’s data in C++ string form.

• operator cchar ∗ () const
Returns a const char pointer to the object’s raw data.

• operator signed char () const
Converts this object’s string data to a signed char.

• operator unsigned char () const
Converts this object’s string data to an unsigned char.

• operator int () const
Converts this object’s string data to an int.

• operator unsigned int () const
Converts this object’s string data to an unsigned int.

• operator short int () const
Converts this object’s string data to a short int.

• operator unsigned short int () const
Converts this object’s string data to an unsigned short int.

• operator long int () const
Converts this object’s string data to a long int.

• operator unsigned long int () const
Converts this object’s string data to an unsigned long int.

• operator longlong () const
Converts this object’s string data to the platform- specific ’longlong’ type, usually a
64-bit integer.

• operator ulonglong () const
Converts this object’s string data to the platform- specific ’ulonglong’ type, usually
a 64-bit unsigned integer.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

58 MySQL++ Class Documentation

• operator float () const
Converts this object’s string data to a float.

• operator double () const
Converts this object’s string data to a double.

• operator bool () const
Converts this object’s string data to a bool.

• template<class T, class B> operator Null () const
Converts this object to a SQL null.

7.9.1 Detailed Description

template<class Str> class mysqlpp::ColData_Tmpl< Str >

Template for string data that can convert itself to any standard C data type.

Do not use this class directly. Use the typedef ColData or MutableColData instead.
ColData is a ColData_Tmpl (p. ??)<const std::string> and MutableCol-
Data is a ColData_Tmpl<std::string> (p. ??).

The ColData types add to the C++ string type the ability to automatically convert the
string data to any of the basic C types. This is important with SQL, because all data
coming from the database is in string form. MySQL++ uses this class internally to
hold the data it receives from the server, so you can use it naturally, because it does the
conversions implicitly:

ColData("12.86") + 2.0

That works fine, but be careful. If you had said this instead:

ColData("12.86") + 2

the result would be 14 because 2 is an integer, and C++’s type conversion rules put the
ColData object in an integer context.

If these automatic conversions scare you, define the macro NO_BINARY_OPERS to
disable this behavior.

This class also has some basic information about the type of data stored in it, to allow
it to do the conversions more intelligently than a trivial implementation would allow.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.9 mysqlpp::ColData_Tmpl< Str > Class Template Reference 59

7.9.2 Constructor & Destructor Documentation

7.9.2.1 template<class Str> mysqlpp::ColData_Tmpl< Str >::ColData_Tmpl
() [inline]

Default constructor.

Null (p. ??) flag is set to false, type data is not set, and string data is left empty.

It’s probably a bad idea to use this ctor, becuase there’s no way to set the type data once
the object’s constructed.

7.9.2.2 template<class Str> mysqlpp::ColData_Tmpl< Str >::ColData_Tmpl
(const ColData_Tmpl< Str > & cd) [inline]

Copy ctor.

Parameters:

cd the other ColData_Tmpl (p. ??) object

7.9.2.3 template<class Str> mysqlpp::ColData_Tmpl< Str >::ColData_Tmpl
(bool n, mysql_type_info t = mysql_type_info::string_type) [inline,
explicit]

Constructor allowing you to set the null flag and the type data.

Parameters:

n if true, data is a SQL null
t MySQL type information for data being stored

7.9.2.4 template<class Str> mysqlpp::ColData_Tmpl< Str
>::ColData_Tmpl (const std::string & str, mysql_type_info t
= mysql_type_info::string_type, bool n = false) [inline,
explicit]

C++ string version of full ctor.

Parameters:

str the string this object represents
t MySQL type information for data within str
n if true, str is a SQL null

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

60 MySQL++ Class Documentation

7.9.2.5 template<class Str> mysqlpp::ColData_Tmpl< Str >::ColData_Tmpl
(const char ∗ str, mysql_type_info t = mysql_type_info::string_type, bool
n = false) [inline, explicit]

Null-terminated C string version of full ctor.

Parameters:

str the string this object represents

t MySQL type information for data within str

n if true, str is a SQL null

7.9.2.6 template<class Str> mysqlpp::ColData_Tmpl< Str >::ColData_Tmpl
(const char ∗ str, typename Str::size_type len, mysql_type_info t
= mysql_type_info::string_type, bool n = false) [inline,
explicit]

Full constructor.

Parameters:

str the string this object represents

len the length of the string; embedded nulls are legal

t MySQL type information for data within str

n if true, str is a SQL null

7.9.3 Member Function Documentation

7.9.3.1 template<class Str> const std::string& mysqlpp::ColData_Tmpl< Str
>::get_string () const [inline]

Returns this object’s data in C++ string form.

This method is inefficient, and not recommended. It makes a duplicate copy of the
string that lives as long as the ColData object itself.

If you are using the MutableColData typedef for this template, you can avoid the
duplicate copy entirely. You can pass a MutableColData object to anything ex-
pecting a std::string and get the right result. (This didn’t work reliably prior to
v2.3.)

This method is arguably useful with plain ColData objects, but there are more effi-
cient alternatives. If you know your data is a null-terminated C string, just cast this
object to a const char∗ or call the data() method. This gives you a pointer to our

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.9 mysqlpp::ColData_Tmpl< Str > Class Template Reference 61

internal buffer, so the copy isn’t needed. If the ColData can contain embedded null
characters, you do need to make a copy, but it’s better to make your own copy of the
string, instead of calling get_string() (p. ??), so you can better control its lifetime:

///

7.9.3.2 template<class Str> template<class T, class B>
mysqlpp::ColData_Tmpl< Str >::operator Null< T, B > () const

Converts this object to a SQL null.

Returns a copy of the global null object if the string data held by the object is exactly
equal to "NULL". Else, it constructs an empty object of type T and tries to convert it
to Null<T, B>.

The documentation for this class was generated from the following file:

• coldata.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

62 MySQL++ Class Documentation

7.10 mysqlpp::Connection Class Reference

Manages the connection to the MySQL database.

#include <connection.h>

Inheritance diagram for mysqlpp::Connection::

mysqlpp::Connection

mysqlpp::OptionalExceptions mysqlpp::Lockable

Public Types

• opt_type_none
• opt_type_string
• opt_type_integer
• opt_type_boolean
• opt_FIRST = -1
• opt_connect_timeout = 0
• opt_compress
• opt_named_pipe
• opt_init_command
• opt_read_default_file
• opt_read_default_group
• opt_set_charset_dir
• opt_set_charset_name
• opt_local_infile
• opt_protocol
• opt_shared_memory_base_name
• opt_read_timeout
• opt_write_timeout
• opt_use_result
• opt_use_remote_connection
• opt_use_embedded_connection
• opt_guess_connection
• opt_set_client_ip
• opt_secure_auth
• opt_multi_statements
• opt_report_data_truncation
• opt_reconnect

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 63

• opt_COUNT
• enum OptionArgType { opt_type_none, opt_type_string, opt_type_integer,

opt_type_boolean }
Legal types of option arguments.

• enum Option {

opt_FIRST = -1, opt_connect_timeout = 0, opt_compress, opt_named_pipe,

opt_init_command, opt_read_default_file, opt_read_default_group, opt_-
set_charset_dir,

opt_set_charset_name, opt_local_infile, opt_protocol, opt_shared_-
memory_base_name,

opt_read_timeout, opt_write_timeout, opt_use_result, opt_use_remote_-
connection,

opt_use_embedded_connection, opt_guess_connection, opt_set_client_ip,
opt_secure_auth,

opt_multi_statements, opt_report_data_truncation, opt_reconnect, opt_-
COUNT }

Per-connection options you can set with set_option() (p. ??).

Public Member Functions

• Connection (bool te=true)
Create object without connecting it to the MySQL server.

• Connection (const char ∗db, const char ∗host="", const char ∗user="",
const char ∗passwd="", uint port=0, my_bool compress=0, unsigned int
connect_timeout=60, cchar ∗socket_name=0, unsigned int client_flag=0)

Create object and connect to database server in one step.

• Connection (const Connection &other)
Establish a new connection using the same parameters as an existing C API con-
nection.

• bool connect (const MYSQL &mysql)
Establish a new connection using the same parameters as an existing C API con-
nection.

• ∼Connection ()
Destroy connection object.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

64 MySQL++ Class Documentation

• bool connect (cchar ∗db="", cchar ∗host="", cchar ∗user="", cchar
∗passwd="", uint port=0, my_bool compress=0, unsigned int connect_-
timeout=60, cchar ∗socket_name=0, unsigned int client_flag=0)

Connect to database after object is created.

• void close ()
Close connection to MySQL server.

• std::string info ()
Calls MySQL C API function mysql_info() and returns result as a C++ string.

• bool connected () const
return true if connection was established successfully

• bool success () const
Return true if the last query was successful.

• void purge ()
Alias for close() (p. ??).

• Query query ()
Return a new query object.

• operator bool ()
Alias for success() (p. ??).

• Connection & operator= (const Connection &rhs)
Copy an existing Connection (p. ??) object’s state into this object.

• const char ∗ error ()
Return error message for last MySQL error associated with this connection.

• int errnum ()
Return last MySQL error number associated with this connection.

• int refresh (unsigned int refresh_options)
Wraps MySQL C API function mysql_refresh().

• int ping ()
"Pings" the MySQL database

• int kill (unsigned long pid)
Kill a MySQL server thread.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 65

• std::string client_info ()
Get MySQL client library version.

• std::string host_info ()
Get information about the network connection.

• int proto_info ()
Returns version number of MySQL protocol this connection is using.

• std::string server_info ()
Get the MySQL server’s version number.

• std::string stat ()
Returns information about MySQL server status.

• bool create_db (const std::string &db)
Create a database.

• bool drop_db (const std::string &db)
Drop a database.

• bool select_db (const std::string &db)
Change to a different database.

• bool select_db (const char ∗db)
Change to a different database.

• bool reload ()
Ask MySQL server to reload the grant tables.

• bool shutdown ()
Ask MySQL server to shut down.

• st_mysql_options get_options () const
Return the connection options object.

• bool set_option (Option option)
Sets a connection option, with no argument.

• bool set_option (Option option, const char ∗arg)
Sets a connection option, with string argument.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

66 MySQL++ Class Documentation

• bool set_option (Option option, unsigned int arg)

Sets a connection option, with integer argument.

• bool set_option (Option option, bool arg)

Sets a connection option, with Boolean argument.

• bool set_option_default (Option option)

Same as set_option() (p. ??), except that it won’t override a previously-set option.

• template<typename T> bool set_option_default (Option option, T arg)

Same as set_option() (p. ??), except that it won’t override a previously-set option.

• bool option_set (Option option)

Returns true if the given option has been set already.

• void enable_ssl (const char ∗key=0, const char ∗cert=0, const char ∗ca=0,
const char ∗capath=0, const char ∗cipher=0)

Enable SSL-encrypted connection.

• my_ulonglong affected_rows ()

Return the number of rows affected by the last query.

• my_ulonglong insert_id ()

Get ID generated for an AUTO_INCREMENT column in the previous INSERT
query.

• std::ostream & api_version (std::ostream &os)

Insert C API version we’re linked against into C++ stream.

Protected Types

• opt_err_type
• opt_err_value
• opt_err_conn
• enum OptionError { opt_err_type, opt_err_value, opt_err_conn }

Types of option setting errors we can diagnose.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 67

Protected Member Functions

• void disconnect ()
Drop the connection to the database server.

• bool bad_option (Option option, OptionError error)
Error handling routine for set_option() (p. ??).

• OptionArgType option_arg_type (Option option)
Given option value, return its proper argument type.

• bool set_option_impl (mysql_option moption, const void ∗arg=0)
Set (p. ??) MySQL C API connection option.

• void copy (const Connection &other)
Establish a new connection as a copy of an existing one.

Friends

• class ResNSel
• class ResUse
• class Query

Classes

• struct OptionInfo

7.10.1 Detailed Description

Manages the connection to the MySQL database.

7.10.2 Member Enumeration Documentation

7.10.2.1 enum mysqlpp::Connection::Option

Per-connection options you can set with set_option() (p. ??).

This is currently a combination of the MySQL C API mysql_option and enum_-
mysql_set_option enums. It may be extended in the future.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

68 MySQL++ Class Documentation

7.10.3 Constructor & Destructor Documentation

7.10.3.1 mysqlpp::Connection::Connection (bool te = true)

Create object without connecting it to the MySQL server.

Parameters:

te if true, exceptions are thrown on errors

7.10.3.2 mysqlpp::Connection::Connection (const char ∗ db, const char ∗ host =
"", const char ∗ user = "", const char ∗ passwd = "", uint port = 0,
my_bool compress = 0, unsigned int connect_timeout = 60, cchar ∗
socket_name = 0, unsigned int client_flag = 0)

Create object and connect to database server in one step.

This constructor allows you to most fully specify the options used when connecting to
the MySQL database. It is the thinnest layer in MySQL++ over the MySQL C API
function mysql_real_connect(). The correspondence isn’t exact as we have
some additional parameters you’d have to set with mysql_option() when using
the C API.

Parameters:

db name of database to use

host host name or IP address of MySQL server, or 0 if server is running on the
same host as your program

user user name to log in under, or 0 to use the user name this program is running
under

passwd password to use when logging in

port TCP port number MySQL server is listening on, or 0 to use default value

compress if true, compress data passing through connection, to save bandwidth at
the expense of CPU time

connect_timeout max seconds to wait for server to respond to our connection
attempt

socket_name Unix domain socket server is using, if connecting to MySQL server
on the same host as this program running on, or 0 to use default name

client_flag special connection flags. See MySQL C API documentation for
mysql_real_connect() for details.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 69

7.10.3.3 mysqlpp::Connection::Connection (const Connection & other)

Establish a new connection using the same parameters as an existing C API connection.

Parameters:

other existing Connection (p. ??) object

7.10.4 Member Function Documentation

7.10.4.1 my_ulonglong mysqlpp::Connection::affected_rows () [inline]

Return the number of rows affected by the last query.

Simply wraps mysql_affected_rows() in the C API.

7.10.4.2 ostream & mysqlpp::Connection::api_version (std::ostream & os)

Insert C API version we’re linked against into C++ stream.

Version will be of the form X.Y.Z, where X is the major version number, Y the minor
version, and Z the bug fix number.

7.10.4.3 std::string mysqlpp::Connection::client_info () [inline]

Get MySQL client library version.

Simply wraps mysql_get_client_info() in the C API.

7.10.4.4 void mysqlpp::Connection::close () [inline]

Close connection to MySQL server.

Closes the connection to the MySQL server.

7.10.4.5 bool mysqlpp::Connection::connect (cchar ∗ db = "", cchar ∗ host =
"", cchar ∗ user = "", cchar ∗ passwd = "", uint port = 0, my_bool
compress = 0, unsigned int connect_timeout = 60, cchar ∗ socket_name
= 0, unsigned int client_flag = 0)

Connect to database after object is created.

It’s better to use the connect-on-create constructor if you can. See its documentation
for the meaning of these parameters.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

70 MySQL++ Class Documentation

If you call this method on an object that is already connected to a database server, the
previous connection is dropped and a new connection is established.

7.10.4.6 bool mysqlpp::Connection::connect (const MYSQL & mysql)

Establish a new connection using the same parameters as an existing C API connection.

Parameters:

mysql existing MySQL C API connection object

7.10.4.7 bool mysqlpp::Connection::connected () const [inline]

return true if connection was established successfully

Returns:

true if connection was established successfully

7.10.4.8 void mysqlpp::Connection::copy (const Connection & other)
[protected]

Establish a new connection as a copy of an existing one.

Parameters:

other the connection to copy

7.10.4.9 bool mysqlpp::Connection::create_db (const std::string & db)

Create a database.

Parameters:

db name of database to create

Returns:

true if database was created successfully

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 71

7.10.4.10 void mysqlpp::Connection::disconnect () [protected]

Drop the connection to the database server.

This method is protected because it should only be used within the library. Unless you
use the default constructor, this object should always be connected.

7.10.4.11 bool mysqlpp::Connection::drop_db (const std::string & db)

Drop a database.

Parameters:

db name of database to destroy

Returns:

true if database was created successfully

7.10.4.12 void mysqlpp::Connection::enable_ssl (const char ∗ key = 0, const
char ∗ cert = 0, const char ∗ ca = 0, const char ∗ capath = 0, const
char ∗ cipher = 0)

Enable SSL-encrypted connection.

Must be called before connection is established.

Wraps mysql_ssl_set() in MySQL C API.

7.10.4.13 int mysqlpp::Connection::errnum () [inline]

Return last MySQL error number associated with this connection.

Simply wraps mysql_errno() in the C API.

7.10.4.14 const char∗ mysqlpp::Connection::error () [inline]

Return error message for last MySQL error associated with this connection.

Simply wraps mysql_error() in the C API.

7.10.4.15 std::string mysqlpp::Connection::host_info () [inline]

Get information about the network connection.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

72 MySQL++ Class Documentation

String contains info about type of connection and the server hostname.

Simply wraps mysql_get_host_info() in the C API.

7.10.4.16 my_ulonglong mysqlpp::Connection::insert_id () [inline]

Get ID generated for an AUTO_INCREMENT column in the previous INSERT query.

Return values:

0 if the previous query did not generate an ID. Use the SQL function LAST_-
INSERT_ID() if you need the last ID generated by any query, not just the
previous one.

7.10.4.17 int mysqlpp::Connection::kill (unsigned long pid) [inline]

Kill a MySQL server thread.

Parameters:

pid ID of thread to kill

Simply wraps mysql_kill() in the C API.

7.10.4.18 mysqlpp::Connection::operator bool () [inline]

Alias for success() (p. ??).

Alias for success() (p. ??) member function. Allows you to have code constructs like
this:

///

7.10.4.19 int mysqlpp::Connection::ping ()

"Pings" the MySQL database

Wraps mysql_ping() in the C API. As a result, this function will try to reconnect
to the server if the connection has been dropped.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 73

Return values:

0 if server is responding, regardless of whether we had to reconnect or not

nonzero if either we already know the connection is down and cannot re-establish
it, or if the server did not respond to the ping and we could not re-establish
the connection.

7.10.4.20 int mysqlpp::Connection::proto_info () [inline]

Returns version number of MySQL protocol this connection is using.

Simply wraps mysql_get_proto_info() in the C API.

7.10.4.21 Query mysqlpp::Connection::query ()

Return a new query object.

The returned query object is tied to this MySQL connection, so when you call a method
like execute() (p. ??) on that object, the query is sent to the server this object is con-
nected to.

7.10.4.22 int mysqlpp::Connection::refresh (unsigned int refresh_options)
[inline]

Wraps MySQL C API function mysql_refresh().

The corresponding C API function is undocumented. All I know is that it’s
used by mysqldump and mysqladmin, according to MySQL bug database
entry http://bugs.mysql.com/bug.php?id=9816 If that entry
changes to say that the function is now documented,
reevaluate whether we need to wrap it. It may be
that it’s not supposed to be used by regular end-user
programs.

7.10.4.23 bool mysqlpp::Connection::reload ()

Ask MySQL server to reload the grant tables.

User must have the "reload" privilege.

Simply wraps mysql_reload() in the C API. Since that
function is deprecated, this one is, too. The MySQL++
replacement is execute("FLUSH PRIVILEGES").

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

74 MySQL++ Class Documentation

7.10.4.24 std::string mysqlpp::Connection::server_info () [inline]

Get the MySQL server’s version number.

Simply wraps mysql_get_server_info() in the C API.

7.10.4.25 bool mysqlpp::Connection::set_option (Option option)

Sets a connection option, with no argument.

Parameters:

option any of the Option enum constants

Based on the option you give, this function calls either
mysql_options() or mysql_set_server_option() in the C
API.

There are several overloaded versions of this function.
The others take an additional argument for the option and
differ only by the type of the option. Unlike with the
underlying C API, it does matter which of these overloads
you call: if you use the wrong argument type or pass
an argument where one is not expected (or vice versa),
the call will either throw an exception or return false,
depending on the object’s "throw exceptions" flag.

This mechanism parallels the underlying C API structure
fairly closely, but do not expect this to continue
in the future. Its very purpose is to ’paper over’
the differences among the C API’s option setting
mechanisms, so it may become further abstracted from
these mechanisms.

Return values:

true if option was successfully set, or at
least queued for setting during connection
establishment sequence

If exceptions are enabled, a false return means the C API
rejected the option, or the connection is not established
and so the option was queued for later processing. If
exceptions are disabled, false can also mean that the
argument was of the wrong type (wrong overload was
called), the option value was out of range, or the option
is not supported by the C API, most because it isn’t a
high enough version. These latter cases will cause Bad-
Option (p. ??) exceptions otherwise.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 75

7.10.4.26 bool mysqlpp::Connection::set_option_impl (mysql_option moption,
const void ∗ arg = 0) [protected]

Set (p. ??) MySQL C API connection option.

Wraps mysql_options() in C API. This is an internal
implementation detail, to be used only by the public
overloads above.

7.10.4.27 bool mysqlpp::Connection::shutdown ()

Ask MySQL server to shut down.

User must have the "shutdown" privilege.

Simply wraps mysql_shutdown() in the C API.

7.10.4.28 std::string mysqlpp::Connection::stat () [inline]

Returns information about MySQL server status.

String is similar to that returned by the mysqladmin
status command. Among other things, it contains uptime
in seconds, and the number of running threads, questions
and open tables.

The documentation for this class was generated from the
following files:

• connection.h
• connection.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

76 MySQL++ Class Documentation

7.11 mysqlpp::ConnectionFailed Class Reference

Exception (p. ??) thrown when there is a problem
establishing the database server connection. It’s also
thrown if Connection::shutdown() (p. ??) fails.

#include <exceptions.h>

Inheritance diagram for mysqlpp::ConnectionFailed::

mysqlpp::ConnectionFailed

mysqlpp::Exception

std::exception

Public Member Functions

• ConnectionFailed (const char ∗w="")
Create exception object.

7.11.1 Detailed Description

Exception (p. ??) thrown when there is a problem
establishing the database server connection. It’s also
thrown if Connection::shutdown() (p. ??) fails.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.12 mysqlpp::const_string Class Reference 77

7.12 mysqlpp::const_string Class Reference

Wrapper for const char∗ to make it behave in a way more
useful to MySQL++.

#include <const_string.h>

Public Types

• typedef const char value_type
Type of the data stored in this object, when it is not equal to SQL null.

• typedef unsigned int size_type
Type of "size" integers.

• typedef const char & const_reference
Type used when returning a reference to a character in the string.

• typedef const char ∗ const_iterator
Type of iterators.

• typedef const_iterator iterator
Same as const_iterator because the data cannot be changed.

Public Member Functions

• const_string ()
Create empty string.

• const_string (const std::string &str)
Initialize string from existing C++ string.

• const_string (const char ∗str)
Initialize string from existing C string.

• const_string (const char ∗str, size_type len)
Initialize string from existing C string of known length.

• ∼const_string ()
Destroy string.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

78 MySQL++ Class Documentation

• const_string & operator= (const char ∗str)
Assignment operator, from C string.

• const_string & operator= (const const_string &cs)
Assignment operator, from other const_string (p. ??).

• size_type length () const
Return number of characters in the string.

• size_type size () const
Return number of characters in string.

• const_iterator begin () const
Return iterator pointing to the first character of the string.

• const_iterator end () const
Return iterator pointing to one past the last character of the string.

• size_type max_size () const
Return the maximum number of characters in the string.

• const_reference operator[] (size_type pos) const
Return a reference to a character within the string.

• const_reference at (size_type pos) const
Return a reference to a character within the string.

• const char ∗ c_str () const
Return a const pointer to the string data. Not necessarily null-terminated!

• const char ∗ data () const
Alias for c_str() (p. ??).

• int compare (const const_string &str) const
Lexically compare this string to another.

7.12.1 Detailed Description

Wrapper for const char∗ to make it behave in a way more
useful to MySQL++.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.12 mysqlpp::const_string Class Reference 79

This class implements a small subset of the standard
string class.

As of MySQL++ 2.3, it makes a copy of the string we are
initialized with, instead of just copying the pointer.
This is required to avoid problems with the new SSQLS +
BLOB support.

7.12.2 Member Function Documentation

7.12.2.1 const_reference mysqlpp::const_string::at (size_type pos) const
[inline]

Return a reference to a character within the string.

Unlike operator[]() (p. ??), this function throws an
std::out_of_range exception if the index isn’t within
range.

7.12.2.2 int mysqlpp::const_string::compare (const const_string & str) const
[inline]

Lexically compare this string to another.

Parameters:

str string to compare against this one

Return values:

<0 if str1 is lexically "less than" str2

0 if str1 is equal to str2

>0 if str1 is lexically "greater than" str2

7.12.2.3 size_type mysqlpp::const_string::max_size () const [inline]

Return the maximum number of characters in the string.

Because this is a const string, this is just an alias for
size() (p. ??); its size is always equal to the amount of
data currently stored.

The documentation for this class was generated from the
following file:

• const_string.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

80 MySQL++ Class Documentation

7.13 mysqlpp::const_subscript_container< OnType,
ValueType, ReturnType, SizeType, DiffType >
Class Template Reference

A base class that one derives from to become a random
access container, which can be accessed with subscript
notation.

#include <resiter.h>

Inheritance diagram for mysqlpp::const_subscript_-
container< OnType, ValueType, ReturnType, SizeType, Diff-
Type >::

mysqlpp::const_subscript_container< OnType, ValueType, ReturnType, SizeType, DiffType >

mysqlpp::Fields mysqlpp::Result mysqlpp::Row

Public Types

• typedef const_subscript_container< OnType, ValueType, ReturnType,
SizeType, DiffType > this_type

this object’s type

• typedef subscript_iterator< const this_type, ReturnType, SizeType, Diff-
Type > iterator

mutable iterator type

• typedef iterator const_iterator
constant iterator type

• typedef const std::reverse_iterator< iterator > reverse_iterator
mutable reverse iterator type

• typedef const std::reverse_iterator< const_iterator > const_reverse_-
iterator

const reverse iterator type

• typedef ValueType value_type
type of data stored in container

• typedef value_type & reference
reference to value_type

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.13 mysqlpp::const_subscript_container< OnType, ValueType, ReturnType,
SizeType, DiffType > Class Template Reference 81

• typedef value_type & const_reference
const ref to value_type

• typedef value_type ∗ pointer
pointer to value_type

• typedef value_type ∗ const_pointer
const pointer to value_type

• typedef DiffType difference_type
for index differences

• typedef SizeType size_type
for returned sizes

Public Member Functions

• virtual ∼const_subscript_container ()
Destroy object.

• virtual size_type size () const =0
Return count of elements in container.

• virtual ReturnType at (SizeType i) const =0
Return element at given index in container.

• size_type max_size () const
Return maximum number of elements that can be stored in container without re-
sizing.

• bool empty () const
Returns true if container is empty.

• iterator begin () const
Return iterator pointing to first element in the container.

• iterator end () const
Return iterator pointing to one past the last element in the container.

• reverse_iterator rbegin () const
Return reverse iterator pointing to first element in the container.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

82 MySQL++ Class Documentation

• reverse_iterator rend () const
Return reverse iterator pointing to one past the last element in the container.

7.13.1 Detailed Description

template<class OnType, class ValueType, class ReturnType = const ValueType&,
class SizeType = unsigned int, class DiffType = int> class mysqlpp::const_-
subscript_container< OnType, ValueType, ReturnType, SizeType, DiffType >

A base class that one derives from to become a random
access container, which can be accessed with subscript
notation.

OnType must have the member functions operator[](Size-
Type) and

The documentation for this class was generated from the
following file:

• resiter.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.14 mysqlpp::Date Struct Reference 83

7.14 mysqlpp::Date Struct Reference

C++ form of MySQL’s DATE type.

#include <datetime.h>

Inheritance diagram for mysqlpp::Date::

mysqlpp::Date

mysqlpp::DTbase< T >

Public Member Functions

• Date ()
Default constructor.

• Date (short int y, tiny_int m, tiny_int d)
Initialize object.

• Date (const Date &other)
Initialize object as a copy of another Date (p. ??).

• Date (const DateTime &other)
Initialize object from date part of date/time object.

• Date (cchar ∗str)
Initialize object from a MySQL date string.

• Date (const ColData &str)
Initialize object from a MySQL date string.

• Date (const std::string &str)
Initialize object from a MySQL date string.

• MYSQLPP_EXPORT short int compare (const Date &other) const
Compare this date to another.

• MYSQLPP_EXPORT cchar ∗ convert (cchar ∗)
Parse a MySQL date string into this object.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

84 MySQL++ Class Documentation

Public Attributes

• short int year
the year

• tiny_int month
the month, 1-12

• tiny_int day
the day, 1-31

7.14.1 Detailed Description

C++ form of MySQL’s DATE type.

Objects of this class can be inserted into streams, and
initialized from MySQL DATE strings.

7.14.2 Constructor & Destructor Documentation

7.14.2.1 mysqlpp::Date::Date (cchar ∗ str) [inline]

Initialize object from a MySQL date string.

String must be in the YYYY-MM-DD format. It doesn’t have
to be zero-padded.

7.14.2.2 mysqlpp::Date::Date (const ColData & str) [inline]

Initialize object from a MySQL date string.

See also:

Date(cchar∗) (p. ??)

7.14.2.3 mysqlpp::Date::Date (const std::string & str) [inline]

Initialize object from a MySQL date string.

See also:

Date(cchar∗) (p. ??)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.14 mysqlpp::Date Struct Reference 85

7.14.3 Member Function Documentation

7.14.3.1 short int mysqlpp::Date::compare (const Date & other) const

Compare this date to another.

Returns < 0 if this date is before the other, 0 of they
are equal, and > 0 if this date is after the other.

7.14.4 Member Data Documentation

7.14.4.1 short int mysqlpp::Date::year

the year

No surprises; the year 2005 is stored as the integer
2005.

The documentation for this struct was generated from the
following files:

• datetime.h
• datetime.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

86 MySQL++ Class Documentation

7.15 mysqlpp::DateTime Struct Reference

C++ form of MySQL’s DATETIME type.

#include <datetime.h>

Inheritance diagram for mysqlpp::DateTime::

mysqlpp::DateTime

mysqlpp::DTbase< T >

Public Member Functions

• DateTime ()
Default constructor.

• DateTime (const DateTime &other)
Initialize object as a copy of another Date (p. ??).

• DateTime (cchar ∗str)
Initialize object from a MySQL date-and-time string.

• DateTime (const ColData &str)
Initialize object from a MySQL date-and-time string.

• DateTime (const std::string &str)
Initialize object from a MySQL date-and-time string.

• DateTime (time_t t)
Initialize object from a time_t.

• MYSQLPP_EXPORT short compare (const DateTime &other) const
Compare this datetime to another.

• MYSQLPP_EXPORT cchar ∗ convert (cchar ∗)
Parse a MySQL date and time string into this object.

• operator time_t () const
Convert to time_t.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.15 mysqlpp::DateTime Struct Reference 87

Public Attributes

• short int year
the year

• tiny_int month
the month, 1-12

• tiny_int day
the day, 1-31

• tiny_int hour
hour, 0-23

• tiny_int minute
minute, 0-59

• tiny_int second
second, 0-59

7.15.1 Detailed Description

C++ form of MySQL’s DATETIME type.

Objects of this class can be inserted into streams, and
initialized from MySQL DATETIME strings.

7.15.2 Constructor & Destructor Documentation

7.15.2.1 mysqlpp::DateTime::DateTime (cchar ∗ str) [inline]

Initialize object from a MySQL date-and-time string.

String must be in the HH:MM:SS format. It doesn’t have
to be zero-padded.

7.15.2.2 mysqlpp::DateTime::DateTime (const ColData & str) [inline]

Initialize object from a MySQL date-and-time string.

See also:

DateTime(cchar∗) (p. ??)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

88 MySQL++ Class Documentation

7.15.2.3 mysqlpp::DateTime::DateTime (const std::string & str) [inline]

Initialize object from a MySQL date-and-time string.

See also:

DateTime(cchar∗) (p. ??)

7.15.3 Member Function Documentation

7.15.3.1 short int mysqlpp::DateTime::compare (const DateTime & other) const

Compare this datetime to another.

Returns < 0 if this datetime is before the other, 0 of
they are equal, and > 0 if this datetime is after the
other.

This method is protected because it is merely the engine
used by the various operators in DTbase (p. ??).

7.15.4 Member Data Documentation

7.15.4.1 short int mysqlpp::DateTime::year

the year

No surprises; the year 2005 is stored as the integer
2005.

The documentation for this struct was generated from the
following files:

• datetime.h
• datetime.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.16 mysqlpp::DBSelectionFailed Class Reference 89

7.16 mysqlpp::DBSelectionFailed Class Reference

Exception (p. ??) thrown when the program tries to select a
new database and the server refuses for some reason.

#include <exceptions.h>

Inheritance diagram for mysqlpp::DBSelectionFailed::

mysqlpp::DBSelectionFailed

mysqlpp::Exception

std::exception

Public Member Functions

• DBSelectionFailed (const char ∗w="")
Create exception object.

7.16.1 Detailed Description

Exception (p. ??) thrown when the program tries to select a
new database and the server refuses for some reason.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

90 MySQL++ Class Documentation

7.17 mysqlpp::DTbase< T > Struct Template Refer-
ence

Base class template for MySQL++ date and time classes.

#include <datetime.h>

Inheritance diagram for mysqlpp::DTbase< T >::

mysqlpp::DTbase< T >

mysqlpp::Date mysqlpp::DateTime mysqlpp::Time

Public Member Functions

• virtual ∼DTbase ()
Destroy object.

• operator std::string () const
Return a copy of the item in C++ string form.

• virtual MYSQLPP_EXPORT short compare (const T &other) const =0
Compare this object to another of the same type.

• bool operator== (const T &other) const
Returns true if "other" is equal to this object.

• bool operator!= (const T &other) const
Returns true if "other" is not equal to this object.

• bool operator< (const T &other) const
Returns true if "other" is less than this object.

• bool operator<= (const T &other) const
Returns true if "other" is less than or equal to this object.

• bool operator> (const T &other) const
Returns true if "other" is greater than this object.

• bool operator>= (const T &other) const
Returns true if "other" is greater than or equal to this object.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.17 mysqlpp::DTbase< T > Struct Template Reference 91

7.17.1 Detailed Description

template<class T> struct mysqlpp::DTbase< T >

Base class template for MySQL++ date and time classes.

This template primarily defines the comparison operators,
which are all implemented in terms of compare() (p. ??).
Each subclass implements that as a protected method,
because these operators are the only supported comparison
method.

This template also defines interfaces for converting the
object to a string form, which a subclass must define.

7.17.2 Member Function Documentation

7.17.2.1 template<class T> virtual MYSQLPP_EXPORT short
mysqlpp::DTbase< T >::compare (const T & other) const [pure
virtual]

Compare this object to another of the same type.

Returns < 0 if this object is "before" the other, 0 of
they are equal, and > 0 if this object is "after" the
other.

The documentation for this struct was generated from the
following file:

• datetime.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

92 MySQL++ Class Documentation

7.18 mysqlpp::EndOfResults Class Reference

Exception (p. ??) thrown when ResUse::fetch_row() (p. ??)
walks off the end of a use-query’s result set.

#include <exceptions.h>

Inheritance diagram for mysqlpp::EndOfResults::

mysqlpp::EndOfResults

mysqlpp::Exception

std::exception

Public Member Functions

• EndOfResults (const char ∗w="end of results")
Create exception object.

7.18.1 Detailed Description

Exception (p. ??) thrown when ResUse::fetch_row() (p. ??)
walks off the end of a use-query’s result set.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.19 mysqlpp::EndOfResultSets Class Reference 93

7.19 mysqlpp::EndOfResultSets Class Reference

Exception (p. ??) thrown when Query::store_next() (p. ??)
walks off the end of a use-query’s multi result sets.

#include <exceptions.h>

Inheritance diagram for mysqlpp::EndOfResultSets::

mysqlpp::EndOfResultSets

mysqlpp::Exception

std::exception

Public Member Functions

• EndOfResultSets (const char ∗w="end of result sets")
Create exception object.

7.19.1 Detailed Description

Exception (p. ??) thrown when Query::store_next() (p. ??)
walks off the end of a use-query’s multi result sets.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

94 MySQL++ Class Documentation

7.20 mysqlpp::equal_list_b< Seq1, Seq2, Manip >
Struct Template Reference

Same as equal_list_ba (p. ??), plus the option to have some
elements of the equals clause suppressed.

#include <vallist.h>

Public Member Functions

• equal_list_b (const Seq1 &s1, const Seq2 &s2, const std::vector< bool > &f,
const char ∗d, const char ∗e, Manip m)

Create object.

Public Attributes

• const Seq1 ∗ list1

the list of objects on the left-hand side of the equals sign

• const Seq2 ∗ list2

the list of objects on the right-hand side of the equals sign

• const std::vector< bool > fields

for each true item in the list, the pair in that position will be inserted into a C++
stream

• const char ∗ delem

delimiter to use between each pair of elements

• const char ∗ equl

"equal" sign to use between each item in each equal pair; doesn’t have to actually
be " = "

• Manip manip

manipulator to use when inserting the equal_list into a C++ stream

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.20 mysqlpp::equal_list_b< Seq1, Seq2, Manip > Struct Template Reference 95

7.20.1 Detailed Description

template<class Seq1, class Seq2, class Manip> struct mysqlpp::equal_list_b<
Seq1, Seq2, Manip >

Same as equal_list_ba (p. ??), plus the option to have some
elements of the equals clause suppressed.

Imagine an object of this type contains the lists (a, b,
c) (d, e, f), that the object’s ’fields’ list is (true,
false, true), and that the object’s delimiter and equals
symbols are set to " AND " and " = " respectively. When
you insert that object into a C++ stream, you would get
"a = d AND c = f".

See equal_list_ba’s documentation for more details.

7.20.2 Constructor & Destructor Documentation

7.20.2.1 template<class Seq1, class Seq2, class Manip>
mysqlpp::equal_list_b< Seq1, Seq2, Manip >::equal_list_b (const
Seq1 & s1, const Seq2 & s2, const std::vector< bool > & f, const char ∗
d, const char ∗ e, Manip m) [inline]

Create object.

Parameters:

s1 list of objects on left-hand side of equal sign

s2 list of objects on right-hand side of equal sign

f for each true item in the list, the pair of items in
that position will be inserted into a C++ stream

d what delimiter to use between each group in the
list when inserting the list into a C++ stream

e the "equals" sign between each pair of items in the
equal list; doesn’t actually have to be " = "!

m manipulator to use when inserting the list into a
C++ stream

The documentation for this struct was generated from the
following file:

• vallist.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

96 MySQL++ Class Documentation

7.21 mysqlpp::equal_list_ba< Seq1, Seq2, Manip >
Struct Template Reference

Holds two lists of items, typically used to construct a
SQL "equals clause".

#include <vallist.h>

Public Member Functions

• equal_list_ba (const Seq1 &s1, const Seq2 &s2, const char ∗d, const char ∗e,
Manip m)

Create object.

Public Attributes

• const Seq1 ∗ list1
the list of objects on the left-hand side of the equals sign

• const Seq2 ∗ list2
the list of objects on the right-hand side of the equals sign

• const char ∗ delem
delimiter to use between each pair of elements

• const char ∗ equl
"equal" sign to use between each item in each equal pair; doesn’t have to actually
be " = "

• Manip manip
manipulator to use when inserting the equal_list into a C++ stream

7.21.1 Detailed Description

template<class Seq1, class Seq2, class Manip> struct mysqlpp::equal_list_ba<
Seq1, Seq2, Manip >

Holds two lists of items, typically used to construct a
SQL "equals clause".

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.21 mysqlpp::equal_list_ba< Seq1, Seq2, Manip > Struct Template Reference97

The WHERE clause in a SQL SELECT statment is an example
of an equals clause.

Imagine an object of this type contains the lists (a,
b) (c, d), and that the object’s delimiter and equals
symbols are set to ", " and " = " respectively. When you
insert that object into a C++ stream, you would get "a =
c, b = d".

This class is never instantiated by hand. The equal_-
list() (p. ??) functions build instances of this structure
template to do their work. MySQL++’s SSQLS mechanism
calls those functions when building SQL queries; you can
call them yourself to do similar work. The "Harnessing
SSQLS Internals" section of the user manual has some
examples of this.

See also:

equal_list_b (p. ??)

7.21.2 Constructor & Destructor Documentation

7.21.2.1 template<class Seq1, class Seq2, class Manip>
mysqlpp::equal_list_ba< Seq1, Seq2, Manip >::equal_list_ba (const
Seq1 & s1, const Seq2 & s2, const char ∗ d, const char ∗ e, Manip m)
[inline]

Create object.

Parameters:

s1 list of objects on left-hand side of equal sign

s2 list of objects on right-hand side of equal sign

d what delimiter to use between each group in the
list when inserting the list into a C++ stream

e the "equals" sign between each pair of items in the
equal list; doesn’t actually have to be " = "!

m manipulator to use when inserting the list into a
C++ stream

The documentation for this struct was generated from the
following file:

• vallist.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

98 MySQL++ Class Documentation

7.22 mysqlpp::Exception Class Reference

Base class for all MySQL++ custom exceptions.

#include <exceptions.h>

Inheritance diagram for mysqlpp::Exception::

mysqlpp::Exception

std::exception

mysqlpp::BadConversion

mysqlpp::BadFieldName

mysqlpp::BadNullConversion

mysqlpp::BadOption

mysqlpp::BadParamCount

mysqlpp::BadQuery

mysqlpp::ConnectionFailed

mysqlpp::DBSelectionFailed

mysqlpp::EndOfResults

mysqlpp::EndOfResultSets

mysqlpp::LockFailed

mysqlpp::ObjectNotInitialized

Public Member Functions

• Exception (const Exception &e) throw ()
Create exception object as copy of another.

• Exception & operator= (const Exception &rhs) throw ()
Assign another exception object’s contents to this one.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.22 mysqlpp::Exception Class Reference 99

• ∼Exception () throw ()
Destroy exception object.

• virtual const char ∗ what () const throw ()
Returns explanation of why exception was thrown.

Protected Member Functions

• Exception (const char ∗w="") throw ()
Create exception object.

• Exception (const std::string &w) throw ()
Create exception object.

Protected Attributes

• std::string what_
explanation of why exception was thrown

7.22.1 Detailed Description

Base class for all MySQL++ custom exceptions.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

100 MySQL++ Class Documentation

7.23 mysqlpp::FieldNames Class Reference

Holds a list of SQL field names.

#include <field_names.h>

Inheritance diagram for mysqlpp::FieldNames::

mysqlpp::FieldNames

std::vector< std::string >

Public Member Functions

• FieldNames ()

Default constructor.

• FieldNames (const ResUse ∗res)

Create field name list from a result set.

• FieldNames (int i)

Create empty field name list, reserving space for a fixed number of field names.

• FieldNames & operator= (const ResUse ∗res)

Initializes the field list from a result set.

• FieldNames & operator= (int i)

Insert i empty field names at beginning of list.

• std::string & operator[] (int i)

Get the name of a field given its index.

• const std::string & operator[] (int i) const

Get the name of a field given its index, in const context.

• uint operator[] (std::string i) const

Get the index number of a field given its name.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.23 mysqlpp::FieldNames Class Reference 101

7.23.1 Detailed Description

Holds a list of SQL field names.

The documentation for this class was generated from the
following files:

• field_names.h
• field_names.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

102 MySQL++ Class Documentation

7.24 mysqlpp::Fields Class Reference

A container similar to std::vector for holding
mysqlpp::Field (p. ??) records.

#include <fields.h>

Inheritance diagram for mysqlpp::Fields::

mysqlpp::Fields

mysqlpp::const_subscript_container< OnType, ValueType, ReturnType, SizeType, DiffType >

Public Member Functions

• Fields ()
Default constructor.

• Fields (ResUse ∗r)
Create a field list from a result set.

• const Field & at (Fields::size_type i) const
Returns a field given its index.

• const Field & at (int i) const
Returns a field given its index.

• size_type size () const
get the number of fields

7.24.1 Detailed Description

A container similar to std::vector for holding
mysqlpp::Field (p. ??) records.

The documentation for this class was generated from the
following files:

• fields.h
• fields.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.25 mysqlpp::FieldTypes Class Reference 103

7.25 mysqlpp::FieldTypes Class Reference

A vector of SQL field types.

#include <field_types.h>

Inheritance diagram for mysqlpp::FieldTypes::

mysqlpp::FieldTypes

std::vector< T >

Public Member Functions

• FieldTypes ()
Default constructor.

• FieldTypes (const ResUse ∗res)
Create list of field types from a result set.

• FieldTypes (int i)
Create fixed-size list of uninitialized field types.

• FieldTypes & operator= (const ResUse ∗res)
Initialize field list based on a result set.

• FieldTypes & operator= (int i)
Insert a given number of uninitialized field type objects at the beginning of the list.

• mysql_type_info & operator[] (int i)
Returns a field type within the list given its index.

• const mysql_type_info & operator[] (int i) const
Returns a field type within the list given its index, in const context.

7.25.1 Detailed Description

A vector of SQL field types.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

104 MySQL++ Class Documentation

7.25.2 Member Function Documentation

7.25.2.1 FieldTypes& mysqlpp::FieldTypes::operator= (int i) [inline]

Insert a given number of uninitialized field type objects
at the beginning of the list.

Parameters:

i number of field type objects to insert

The documentation for this class was generated from the
following files:

• field_types.h
• field_types.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.26 mysqlpp::Lock Class Reference 105

7.26 mysqlpp::Lock Class Reference

Abstract base class for lock implementation, used by
Lockable (p. ??).

#include <lockable.h>

Inheritance diagram for mysqlpp::Lock::

mysqlpp::Lock

mysqlpp::BasicLock

Public Member Functions

• virtual ∼Lock ()
Destroy object.

• virtual bool lock ()=0
Lock (p. ??) the object.

• virtual void unlock ()=0
Unlock the object.

• virtual bool locked () const =0
Returns true if object is locked.

• virtual void set (bool b)=0
Set (p. ??) the lock state.

7.26.1 Detailed Description

Abstract base class for lock implementation, used by
Lockable (p. ??).

7.26.2 Member Function Documentation

7.26.2.1 virtual bool mysqlpp::Lock::lock () [pure virtual]

Lock (p. ??) the object.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

106 MySQL++ Class Documentation

Returns:

true if object was already locked

Implemented in mysqlpp::BasicLock p. (classmysqlpp11BasicLockbfd0405de02ace3eb94b7c7e1a7cdf11 ??)

The documentation for this class was generated from the following file:

• lockable.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.27 mysqlpp::Lockable Class Reference 107

7.27 mysqlpp::Lockable Class Reference

Interface allowing a class to declare itself as "lockable".

#include <lockable.h>

Inheritance diagram for mysqlpp::Lockable::

mysqlpp::Lockable

mysqlpp::Connection mysqlpp::Query

Protected Member Functions

• Lockable (bool is_locked)
Default constructor.

• virtual ∼Lockable ()
Destroy object.

• virtual bool lock ()
Lock (p. ??) the object.

• virtual void unlock ()
Unlock the object.

• bool locked () const
Returns true if object is locked.

• void set_lock (bool b)
Set (p. ??) the lock state. Protected, because this method is only for use by subclass
assignment operators and the like.

7.27.1 Detailed Description

Interface allowing a class to declare itself as "lockable".

A class derives from this one to acquire a standard interface for serializing operations
that may not be thread-safe.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

108 MySQL++ Class Documentation

7.27.2 Member Function Documentation

7.27.2.1 virtual bool mysqlpp::Lockable::lock () [inline, protected,
virtual]

Lock (p. ??) the object.

Returns:

true if object was already locked

The documentation for this class was generated from the following file:

• lockable.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.28 mysqlpp::LockFailed Class Reference 109

7.28 mysqlpp::LockFailed Class Reference

Exception (p. ??) thrown when a Lockable (p. ??) object fails.

#include <exceptions.h>

Inheritance diagram for mysqlpp::LockFailed::

mysqlpp::LockFailed

mysqlpp::Exception

std::exception

Public Member Functions

• LockFailed (const char ∗w="lock failed")
Create exception object.

7.28.1 Detailed Description

Exception (p. ??) thrown when a Lockable (p. ??) object fails.

Currently, "failure" means that the object is already locked when you make a call that
tries to lock it again. In the future, that case will probably result in the second thread
blocking, but the thread library could assert other errors that would keep this exception
relevant.

The documentation for this class was generated from the following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

110 MySQL++ Class Documentation

7.29 mysqlpp::mysql_type_info Class Reference

Holds basic type information for ColData.

#include <type_info.h>

Public Member Functions

• mysql_type_info (unsigned char n=static_cast< unsigned char >(-1))
Create object.

• mysql_type_info (enum_field_types t, bool _unsigned, bool _null)
Create object from MySQL C API type info.

• mysql_type_info (const MYSQL_FIELD &f)
Create object from a MySQL C API field.

• mysql_type_info (const mysql_type_info &t)
Create object as a copy of another.

• mysql_type_info (const std::type_info &t)
Create object from a C++ type_info object.

• mysql_type_info & operator= (unsigned char n)
Assign a new internal type value.

• mysql_type_info & operator= (const mysql_type_info &t)
Assign another mysql_type_info (p. ??) object to this object.

• mysql_type_info & operator= (const std::type_info &t)
Assign a C++ type_info object to this object.

• const char ∗ name () const
Returns an implementation-defined name of the C++ type.

• const char ∗ sql_name () const
Returns the name of the SQL type.

• const std::type_info & c_type () const
Returns the type_info for the C++ type associated with the SQL type.

• const unsigned int length () const

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.29 mysqlpp::mysql_type_info Class Reference 111

Return length of data in this field.

• const unsigned int max_length () const
Return maximum length of data in this field.

• const mysql_type_info base_type () const
Returns the type_info for the C++ type inside of the mysqlpp::Null (p. ??) type.

• int id () const
Returns the ID of the SQL type.

• bool quote_q () const
Returns true if the SQL type is of a type that needs to be quoted.

• bool escape_q () const
Returns true if the SQL type is of a type that needs to be escaped.

• bool before (mysql_type_info &b)
Provides a way to compare two types for sorting.

Public Attributes

• unsigned int _length
field length, from MYSQL_FIELD

• unsigned int _max_length
max data length, from MYSQL_FIELD

Static Public Attributes

• static const unsigned char string_type = 20
The internal constant we use for our string type.

7.29.1 Detailed Description

Holds basic type information for ColData.

Class to hold basic type information for mysqlpp::ColData (p. ??).

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

112 MySQL++ Class Documentation

7.29.2 Constructor & Destructor Documentation

7.29.2.1 mysqlpp::mysql_type_info::mysql_type_info (unsigned char n =
static_cast<unsigned char>(-1)) [inline]

Create object.

Parameters:

n index into the internal type table

Because of the n parameter’s definition, this constructor shouldn’t be used outside the
library.

The default is intended to try and crash a program using a default mysql_type_info
(p. ??) object. This is a very wrong thing to do.

7.29.2.2 mysqlpp::mysql_type_info::mysql_type_info (enum_field_types t, bool
_unsigned, bool _null) [inline]

Create object from MySQL C API type info.

Parameters:

t the MySQL C API type ID for this type

_unsigned if true, this is the unsigned version of the type

_null if true, this type can hold a SQL null

7.29.2.3 mysqlpp::mysql_type_info::mysql_type_info (const MYSQL_FIELD
& f) [inline]

Create object from a MySQL C API field.

Parameters:

f field from which we extract the type info

7.29.2.4 mysqlpp::mysql_type_info::mysql_type_info (const std::type_info & t)
[inline]

Create object from a C++ type_info object.

This tries to map a C++ type to the closest MySQL data type. It is necessarily somewhat
approximate.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.29 mysqlpp::mysql_type_info Class Reference 113

7.29.3 Member Function Documentation

7.29.3.1 const mysql_type_info mysqlpp::mysql_type_info::base_type () const
[inline]

Returns the type_info for the C++ type inside of the mysqlpp::Null (p. ??) type.

Returns the type_info for the C++ type inside the mysqlpp::Null (p. ??) type. If the
type is not Null (p. ??) then this is the same as c_type() (p. ??).

7.29.3.2 bool mysqlpp::mysql_type_info::before (mysql_type_info & b)
[inline]

Provides a way to compare two types for sorting.

Returns true if the SQL ID of this type is lower than that of another. Used by
mysqlpp::type_info_cmp when comparing types.

7.29.3.3 const std::type_info& mysqlpp::mysql_type_info::c_type () const
[inline]

Returns the type_info for the C++ type associated with the SQL type.

Returns the C++ type_info record corresponding to the SQL type.

7.29.3.4 bool mysqlpp::mysql_type_info::escape_q () const

Returns true if the SQL type is of a type that needs to be escaped.

Returns:

true if the type needs to be escaped for syntactically correct SQL.

7.29.3.5 int mysqlpp::mysql_type_info::id () const [inline]

Returns the ID of the SQL type.

Returns the ID number MySQL uses for this type. Note: Do not depend on the value
of this ID as it may change between MySQL versions.

7.29.3.6 const unsigned int mysqlpp::mysql_type_info::length () const
[inline]

Return length of data in this field.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

114 MySQL++ Class Documentation

This only works if you initialized this object from a MYSQL_FIELD object.

7.29.3.7 const unsigned int mysqlpp::mysql_type_info::max_length () const
[inline]

Return maximum length of data in this field.

This only works if you initialized this object from a MYSQL_FIELD object.

7.29.3.8 const char∗ mysqlpp::mysql_type_info::name () const [inline]

Returns an implementation-defined name of the C++ type.

Returns the name that would be returned by typeid().name() (p. ??) for the C++ type
associated with the SQL type.

7.29.3.9 mysql_type_info& mysqlpp::mysql_type_info::operator= (const
std::type_info & t) [inline]

Assign a C++ type_info object to this object.

This tries to map a C++ type to the closest MySQL data type. It is necessarily somewhat
approximate.

7.29.3.10 mysql_type_info& mysqlpp::mysql_type_info::operator= (unsigned
char n) [inline]

Assign a new internal type value.

Parameters:

n an index into the internal MySQL++ type table

This function shouldn’t be used outside the library.

7.29.3.11 bool mysqlpp::mysql_type_info::quote_q () const

Returns true if the SQL type is of a type that needs to be quoted.

Returns:

true if the type needs to be quoted for syntactically correct SQL.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.29 mysqlpp::mysql_type_info Class Reference 115

7.29.3.12 const char∗ mysqlpp::mysql_type_info::sql_name () const
[inline]

Returns the name of the SQL type.

Returns the SQL name for the type.

7.29.4 Member Data Documentation

7.29.4.1 const unsigned char mysqlpp::mysql_type_info::string_type = 20
[static]

The internal constant we use for our string type.

We expose this because other parts of MySQL++ need to know what the string constant
is at the moment.

The documentation for this class was generated from the following files:

• type_info.h
• type_info.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

116 MySQL++ Class Documentation

7.30 mysqlpp::NoExceptions Class Reference

Disable exceptions in an object derived from OptionalExceptions (p. ??).

#include <noexceptions.h>

Public Member Functions

• NoExceptions (OptionalExceptions &a)
Constructor.

• ∼NoExceptions ()
Destructor.

7.30.1 Detailed Description

Disable exceptions in an object derived from OptionalExceptions (p. ??).

This class was designed to be created on the stack, taking a reference to a subclass of
OptionalExceptions (p. ??). (We call that our "associate" object.) On creation, we
save that object’s current exception state, and disable exceptions. On destruction, we
restore our associate’s previous state.

7.30.2 Constructor & Destructor Documentation

7.30.2.1 mysqlpp::NoExceptions::NoExceptions (OptionalExceptions & a)
[inline]

Constructor.

Takes a reference to an OptionalExceptions (p. ??) derivative, saves that object’s cur-
rent exception state, and disables exceptions.

7.30.2.2 mysqlpp::NoExceptions::∼NoExceptions () [inline]

Destructor.

Restores our associate object’s previous exception state.

The documentation for this class was generated from the following file:

• noexceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.31 mysqlpp::Null< Type, Behavior > Class Template Reference 117

7.31 mysqlpp::Null< Type, Behavior > Class Template
Reference

Class for holding data from a SQL column with the NULL attribute.

#include <null.h>

Public Types

• typedef Type value_type
Type of the data stored in this object, when it is not equal to SQL null.

Public Member Functions

• Null ()
Default constructor.

• Null (const Type &x)
Initialize the object with a particular value.

• Null (const null_type &n)
Construct a Null (p. ??) equal to SQL null.

• operator Type & ()
Converts this object to Type.

• Null & operator= (const Type &x)
Assign a value to the object.

• Null & operator= (const null_type &n)
Assign SQL null to this object.

Public Attributes

• Type data
The object’s value, when it is not SQL null.

• bool is_null
If set, this object is considered equal to SQL null.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

118 MySQL++ Class Documentation

7.31.1 Detailed Description

template<class Type, class Behavior = NullisNull> class mysqlpp::Null< Type,
Behavior >

Class for holding data from a SQL column with the NULL attribute.

This template is necessary because there is nothing in the C++ type system with the
same semantics as SQL’s null. In SQL, a column can have the optional ’NULL’ at-
tribute, so there is a difference in type between, say an int column that can be null
and one that cannot be. C++’s NULL constant does not have these features.

It’s important to realize that this class doesn’t hold nulls, it holds data that can be null.
It can hold a non-null value, you can then assign null to it (using MySQL++’s global
null object), and then assign a regular value to it again; the object will behave as you
expect throughout this process.

Because one of the template parameters is a C++ type, the typeid() for a null int is
different than for a null string, to pick two random examples. See type_info.cpp for
the table SQL types that can be null.

7.31.2 Constructor & Destructor Documentation

7.31.2.1 template<class Type, class Behavior = NullisNull> mysqlpp::Null<
Type, Behavior >::Null () [inline]

Default constructor.

"data" member is left uninitialized by this ctor, because we don’t know what to initialize
it to.

7.31.2.2 template<class Type, class Behavior = NullisNull> mysqlpp::Null<
Type, Behavior >::Null (const Type & x) [inline]

Initialize the object with a particular value.

The object is marked as "not null" if you use this ctor. This behavior exists because
the class doesn’t encode nulls, but rather data which can be null. The distinction is
necessary because ’NULL’ is an optional attribute of SQL columns.

7.31.2.3 template<class Type, class Behavior = NullisNull> mysqlpp::Null<
Type, Behavior >::Null (const null_type & n) [inline]

Construct a Null (p. ??) equal to SQL null.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.31 mysqlpp::Null< Type, Behavior > Class Template Reference 119

This is typically used with the global null object. (Not to be confused with C’s NULL
type.) You can say something like...

///

...to get a null int.

7.31.3 Member Function Documentation

7.31.3.1 template<class Type, class Behavior = NullisNull> mysqlpp::Null<
Type, Behavior >::operator Type & () [inline]

Converts this object to Type.

If is_null is set, returns whatever we consider that null "is", according to the Behavior
parameter you used when instantiating this template. See NullisNull (p. ??), Nullis-
Zero (p. ??) and NullisBlank (p. ??).

Otherwise, just returns the ’data’ member.

7.31.3.2 template<class Type, class Behavior = NullisNull> Null&
mysqlpp::Null< Type, Behavior >::operator= (const null_type & n)
[inline]

Assign SQL null to this object.

This just sets the is_null flag; the data member is not affected until you call the Type()
operator on it.

7.31.3.3 template<class Type, class Behavior = NullisNull> Null&
mysqlpp::Null< Type, Behavior >::operator= (const Type & x)
[inline]

Assign a value to the object.

This marks the object as "not null" as a side effect.

7.31.4 Member Data Documentation

7.31.4.1 template<class Type, class Behavior = NullisNull> bool
mysqlpp::Null< Type, Behavior >::is_null

If set, this object is considered equal to SQL null.

This flag affects how the Type() and << operators work.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

120 MySQL++ Class Documentation

The documentation for this class was generated from the following file:

• null.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.32 mysqlpp::null_type Class Reference 121

7.32 mysqlpp::null_type Class Reference

The type of the global mysqlpp::null (p. ??) object.

#include <null.h>

7.32.1 Detailed Description

The type of the global mysqlpp::null (p. ??) object.

This class is for internal use only. Normal code should use Null (p. ??) instead.

The documentation for this class was generated from the following file:

• null.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

122 MySQL++ Class Documentation

7.33 mysqlpp::NullisBlank Struct Reference

Class for objects that define SQL null as a blank C string.

#include <null.h>

7.33.1 Detailed Description

Class for objects that define SQL null as a blank C string.

Returns "" when you ask what null is, and is empty when you insert it into a C++
stream.

Used for the behavior parameter for template Null (p. ??)

The documentation for this struct was generated from the following file:

• null.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.34 mysqlpp::NullisNull Struct Reference 123

7.34 mysqlpp::NullisNull Struct Reference

Class for objects that define SQL null in terms of MySQL++’s null_type (p. ??).

#include <null.h>

7.34.1 Detailed Description

Class for objects that define SQL null in terms of MySQL++’s null_type (p. ??).

Returns a null_type (p. ??) instance when you ask what null is, and is "(NULL)" when
you insert it into a C++ stream.

Used for the behavior parameter for template Null (p. ??)

The documentation for this struct was generated from the following file:

• null.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

124 MySQL++ Class Documentation

7.35 mysqlpp::NullisZero Struct Reference

Class for objects that define SQL null as 0.

#include <null.h>

7.35.1 Detailed Description

Class for objects that define SQL null as 0.

Returns 0 when you ask what null is, and is zero when you insert it into a C++ stream.

Used for the behavior parameter for template Null (p. ??)

The documentation for this struct was generated from the following file:

• null.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.36 mysqlpp::ObjectNotInitialized Class Reference 125

7.36 mysqlpp::ObjectNotInitialized Class Reference

Exception (p. ??) thrown when you try to use an object that isn’t completely initialized.

#include <exceptions.h>

Inheritance diagram for mysqlpp::ObjectNotInitialized::

mysqlpp::ObjectNotInitialized

mysqlpp::Exception

std::exception

Public Member Functions

• ObjectNotInitialized (const char ∗w="")
Create exception object.

7.36.1 Detailed Description

Exception (p. ??) thrown when you try to use an object that isn’t completely initialized.

The documentation for this class was generated from the following file:

• exceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

126 MySQL++ Class Documentation

7.37 mysqlpp::OptionalExceptions Class Reference

Interface allowing a class to have optional exceptions.

#include <noexceptions.h>

Inheritance diagram for mysqlpp::OptionalExceptions::

mysqlpp::OptionalExceptions

mysqlpp::Connection mysqlpp::Query mysqlpp::ResUse mysqlpp::Row

mysqlpp::Result

Public Member Functions

• OptionalExceptions (bool e=true)
Default constructor.

• virtual ∼OptionalExceptions ()
Destroy object.

• void enable_exceptions ()
Enable exceptions from the object.

• void disable_exceptions ()
Disable exceptions from the object.

• bool throw_exceptions () const
Returns true if exceptions are enabled.

Protected Member Functions

• void set_exceptions (bool e)
Sets the exception state to a particular value.

Friends

• class NoExceptions

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.37 mysqlpp::OptionalExceptions Class Reference 127

Declare NoExceptions (p. ??) to be our friend so it can access our protected func-
tions.

7.37.1 Detailed Description

Interface allowing a class to have optional exceptions.

A class derives from this one to acquire a standard interface for disabling exceptions,
possibly only temporarily. By default, exceptions are enabled.

7.37.2 Constructor & Destructor Documentation

7.37.2.1 mysqlpp::OptionalExceptions::OptionalExceptions (bool e = true)
[inline]

Default constructor.

Parameters:

e if true, exceptions are enabled (this is the default)

7.37.3 Member Function Documentation

7.37.3.1 void mysqlpp::OptionalExceptions::set_exceptions (bool e)
[inline, protected]

Sets the exception state to a particular value.

This method is protected because it is only intended for use by subclasses’ copy con-
structors and the like.

The documentation for this class was generated from the following file:

• noexceptions.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

128 MySQL++ Class Documentation

7.38 mysqlpp::Query Class Reference

A class for building and executing SQL queries.

#include <query.h>

Inheritance diagram for mysqlpp::Query::

mysqlpp::Query

std::ostream mysqlpp::OptionalExceptions mysqlpp::Lockable

std::basic_ostream< char >

std::basic_ios< char >

std::ios_base

Public Member Functions

• Query (Connection ∗c, bool te=true)
Create a new query object attached to a connection.

• Query (const Query &q)
Create a new query object as a copy of another.

• Query & operator= (const Query &rhs)
Assign another query’s state to this object.

• std::string error ()
Get the last error message that was set.

• bool success ()
Returns true if the last operation succeeded.

• void parse ()
Treat the contents of the query string as a template query.

• void reset ()
Reset the query object so that it can be reused.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 129

• std::string preview ()
Return the query string currently in the buffer.

• std::string preview (const SQLString &arg0)
Return the query string currently in the buffer with template query parameter sub-
stitution.

• std::string preview (SQLQueryParms &p)
Return the query string currently in the buffer.

• std::string str ()
Get built query as a null-terminated C++ string.

• std::string str (const SQLString &arg0)
Get built query as a null-terminated C++ string with template query parameter sub-
stitution.

• std::string str (query_reset r)
Get built query as a null-terminated C++ string.

• std::string str (SQLQueryParms &p)
Get built query as a null-terminated C++ string.

• std::string str (SQLQueryParms &p, query_reset r)
Get built query as a null-terminated C++ string.

• bool exec (const std::string &str)
Execute a query.

• ResNSel execute ()
Execute built-up query.

• ResNSel execute (const SQLString &str)
Execute query in a C++ string, or substitute string into a template query and execute
it.

• ResNSel execute (const char ∗str)
Execute query in a C string.

• ResNSel execute (const char ∗str, size_t len)
Execute query in a known-length string of characters. This can include null char-
acters.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

130 MySQL++ Class Documentation

• ResUse use ()
Execute a query that can return a result set.

• ResUse use (const SQLString &str)
Execute query in a C++ string.

• ResUse use (const char ∗str)
Execute query in a C string.

• ResUse use (const char ∗str, size_t len)
Execute query in a known-length C string.

• Result store ()
Execute a query that can return a result set.

• Result store (const SQLString &str)
Execute query in a C++ string.

• Result store (const char ∗str)
Execute query in a C string.

• Result store (const char ∗str, size_t len)
Execute query in a known-length C string.

• template<typename Function> Function for_each (const SQLString
&query, Function fn)

Execute a query, and call a functor for each returned row.

• template<typename Function> Function for_each (Function fn)
Execute the query, and call a functor for each returned row.

• template<class SSQLS, typename Function> Function for_each (const
SSQLS &ssqls, Function fn)

Run a functor for every row in a table.

• template<class Sequence, typename Function> Function store_if (Se-
quence &seq, const SQLString &query, Function fn)

Execute a query, conditionally storing each row in a container.

• template<class Sequence, class SSQLS, typename Function> Function
store_if (Sequence &seq, const SSQLS &ssqls, Function fn)

Pulls every row in a table, conditionally storing each one in a container.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 131

• template<class Sequence, typename Function> Function store_if (Se-
quence &seq, Function fn)

Execute the query, conditionally storing each row in a container.

• Result store_next ()
Return next result set, when processing a multi-query.

• bool more_results ()
Return whether more results are waiting for a multi-query or stored procedure re-
sponse.

• template<class Sequence> void storein_sequence (Sequence &con, query_-
reset r=RESET_QUERY)

Execute a query, storing the result set in an STL sequence container.

• template<class Set> void storein_set (Set &con, query_reset r=RESET_-
QUERY)

Execute a query, storing the result set in an STL associative container.

• template<class Container> void storein (Container &con, query_reset
r=RESET_QUERY)

Execute a query, and store the entire result set in an STL container.

• template<class T> void storein (std::vector< T > &con, const char ∗s)
Specialization of storein_sequence() (p. ??) for std::vector.

• template<class T> void storein (std::deque< T > &con, const char ∗s)
Specialization of storein_sequence() (p. ??) for std::deque.

• template<class T> void storein (std::list< T > &con, const char ∗s)
Specialization of storein_sequence() (p. ??) for std::list.

• template<class T> void storein (std::set< T > &con, const char ∗s)
Specialization of storein_set() (p. ??) for std::set.

• template<class T> void storein (std::multiset< T > &con, const char ∗s)
Specialization of storein_set() (p. ??) for std::multiset.

• template<class T> Query & update (const T &o, const T &n)
Replace an existing row’s data with new data.

• template<class T> Query & insert (const T &v)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

132 MySQL++ Class Documentation

Insert a new row.

• template<class Iter> Query & insert (Iter first, Iter last)
Insert multiple new rows.

• template<class T> Query & replace (const T &v)
Insert new row unless there is an existing row that matches on a unique index, in
which case we replace it.

• operator bool ()
Return true if the last query was successful.

• bool operator! ()
Return true if the last query failed.

Public Attributes

• SQLQueryParms def
The default template parameters.

Friends

• class SQLQueryParms

7.38.1 Detailed Description

A class for building and executing SQL queries.

This class is derived from SQLQuery. It adds to that a tie between the query object and
a MySQL++ Connection (p. ??) object, so that the query can be sent to the MySQL
server we’re connected to.

One does not generally create Query (p. ??) objects directly. Instead, call
mysqlpp::Connection::query() (p. ??) to get one tied to that connection.

There are several ways to build and execute SQL queries with this class.

The way most like other database libraries is to pass a SQL statement to one of the
exec∗(), (p. ??) store∗(), (p. ??) or use() (p. ??) methods taking a C or C++ string.
The query is executed immediately, and any results returned.

For more complicated queries, you can use Query’s stream interface. You simply build
up a query using the Query (p. ??) instance as you would any other C++ stream ob-
ject. When the query string is complete, you call the overloaded version of exec∗(),

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 133

store∗() or use() (p. ??) that takes no parameters, which executes the built query
and returns any results.

If you are using the library’s Specialized SQL Structures feature, Query (p. ??) has
several special functions for generating common SQL queries from those structures.
For instance, it offers the insert() (p. ??) method, which builds an INSERT query to
add the contents of the SSQLS to the database. As with the stream interface, these
methods only build the query string; call one of the parameterless methods mentioned
previously to actually execute the query.

Finally, you can build "template queries". This is something like C’s printf() func-
tion, in that you insert a specially-formatted query string into the object which contains
placeholders for data. You call the parse() (p. ??) method to tell the Query (p. ??) ob-
ject that the query string contains placeholders. Once that’s done, you can call any of
the many overloaded methods that take a number of SQLStrings (up to 25 by default)
or any type that can be converted to SQLString (p. ??), and those parameters will be
inserted into the placeholders. When you call one of the parameterless functions the
execute the query, the final query string is assembled and sent to the server.

See the user manual for more details about these options.

7.38.2 Constructor & Destructor Documentation

7.38.2.1 mysqlpp::Query::Query (Connection ∗ c, bool te = true)

Create a new query object attached to a connection.

This is the constructor used by mysqlpp::Connection::query() (p. ??).

Parameters:

c connection the finished query should be sent out on

te if true, throw exceptions on errors

7.38.2.2 mysqlpp::Query::Query (const Query & q)

Create a new query object as a copy of another.

This is not a traditional copy ctor! Its only purpose is to make it possible to assign the
return of Connection::query() (p. ??) to an empty Query (p. ??) object. In particular,
the stream buffer and template query stuff will be empty in the copy, regardless of what
values they have in the original.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

134 MySQL++ Class Documentation

7.38.3 Member Function Documentation

7.38.3.1 std::string mysqlpp::Query::error ()

Get the last error message that was set.

This class has an internal error message string, but if it isn’t set, we return the last error
message that happened on the connection we’re bound to instead.

7.38.3.2 bool mysqlpp::Query::exec (const std::string & str)

Execute a query.

Same as execute() (p. ??), except that it only returns a flag indicating whether the query
succeeded or not. It is basically a thin wrapper around the C API function mysql_-
real_query().

Parameters:

str the query to execute

Returns:

true if query was executed successfully

See also:

execute() (p. ??), store() (p. ??), storein() (p. ??), and use() (p. ??)

7.38.3.3 ResNSel mysqlpp::Query::execute (const char ∗ str, size_t len)

Execute query in a known-length string of characters. This can include null characters.

Executes the query immediately, and returns the results.

7.38.3.4 ResNSel mysqlpp::Query::execute (const char ∗ str)

Execute query in a C string.

Executes the query immediately, and returns the results.

7.38.3.5 ResNSel mysqlpp::Query::execute (const SQLString & str)

Execute query in a C++ string, or substitute string into a template query and execute it.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 135

Parameters:

str If the object represents a compiled template query, substitutes this string in for
the first parameter. Otherwise, takes the string as a complete SQL query and
executes it.

7.38.3.6 ResNSel mysqlpp::Query::execute () [inline]

Execute built-up query.

Use one of the execute() (p. ??) overloads if you don’t expect the server to return a
result set. For instance, a DELETE query. The returned ResNSel (p. ??) object contains
status information from the server, such as whether the query succeeded, and if so how
many rows were affected.

This overloaded version of execute() (p. ??) simply executes the query that you have
built up in the object in some way. (For instance, via the insert() (p. ??) method, or by
using the object’s stream interface.)

Returns:

ResNSel (p. ??) status information about the query

See also:

exec() (p. ??), store() (p. ??), storein() (p. ??), and use() (p. ??)

7.38.3.7 template<class SSQLS, typename Function> Function
mysqlpp::Query::for_each (const SSQLS & ssqls, Function fn)
[inline]

Run a functor for every row in a table.

Just like for_each(Function) (p. ??), except that it builds a "select ∗ from TABLE"
query using the SQL table name from the SSQLS instance you pass.

Parameters:

ssqls the SSQLS instance to get a table name from

fn the functor called for each row

Returns:

a copy of the passed functor

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

136 MySQL++ Class Documentation

7.38.3.8 template<typename Function> Function mysqlpp::Query::for_each
(Function fn) [inline]

Execute the query, and call a functor for each returned row.

Just like for_each(const SQLString&, Function) (p. ??), but it uses the query string
held by the Query (p. ??) object already

Parameters:

fn the functor called for each row

Returns:

a copy of the passed functor

7.38.3.9 template<typename Function> Function mysqlpp::Query::for_each
(const SQLString & query, Function fn) [inline]

Execute a query, and call a functor for each returned row.

This method wraps a use() (p. ??) query, calling the given functor for every returned
row. It is analogous to STL’s for_each() (p. ??) algorithm, but instead of iterating over
some range within a container, it iterates over a result set produced by a query.

Parameters:

query the query string

fn the functor called for each row

Returns:

a copy of the passed functor

7.38.3.10 template<class Iter> Query& mysqlpp::Query::insert (Iter first, Iter
last) [inline]

Insert multiple new rows.

Builds an INSERT SQL query using items from a range within an STL container.
Insert the entire contents of the container by using the begin() and end() iterators of
the container as parameters to this function.

Parameters:

first iterator pointing to first element in range to insert

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 137

last iterator pointing to one past the last element to insert

See also:

replace() (p. ??), update() (p. ??)

7.38.3.11 template<class T> Query& mysqlpp::Query::insert (const T & v)
[inline]

Insert a new row.

This function builds an INSERT SQL query. One uses it with MySQL++’s Specialized
SQL Structures mechanism.

Parameters:

v new row

See also:

replace() (p. ??), update() (p. ??)

7.38.3.12 bool mysqlpp::Query::more_results ()

Return whether more results are waiting for a multi-query or stored procedure response.

If this function returns true, you must call store_next() (p. ??) to fetch the next result
set before you can execute more queries.

Wraps mysql_more_results() in the MySQL C API. That function only exists in My-
SQL v4.1 and higher. Therefore, this function always returns false when built against
older API libraries.

Returns:

true if another result set exists

7.38.3.13 Query & mysqlpp::Query::operator= (const Query & rhs)

Assign another query’s state to this object.

The same caveats apply to this operator as apply to the copy ctor.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

138 MySQL++ Class Documentation

7.38.3.14 void mysqlpp::Query::parse ()

Treat the contents of the query string as a template query.

This method sets up the internal structures used by all of the other members that accept
template query parameters. See the "Template Queries" chapter in the user manual for
more information.

7.38.3.15 std::string mysqlpp::Query::preview (const SQLString & arg0)
[inline]

Return the query string currently in the buffer with template query parameter substitu-
tion.

Parameters:

arg0 the value to substitute for the first template query parameter

7.38.3.16 template<class T> Query& mysqlpp::Query::replace (const T & v)
[inline]

Insert new row unless there is an existing row that matches on a unique index, in which
case we replace it.

This function builds a REPLACE SQL query. One uses it with MySQL++’s Special-
ized SQL Structures mechanism.

Parameters:

v new row

See also:

insert() (p. ??), update() (p. ??)

7.38.3.17 void mysqlpp::Query::reset ()

Reset the query object so that it can be reused.

This erases the query string and the contents of the parameterized query element list.

7.38.3.18 Result mysqlpp::Query::store (const char ∗ str, size_t len)

Execute query in a known-length C string.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 139

Executes the query immediately, and returns an object that contains the entire result
set. This is less memory-efficient than use() (p. ??), but it lets you have random access
to the results.

7.38.3.19 Result mysqlpp::Query::store (const char ∗ str)

Execute query in a C string.

Executes the query immediately, and returns an object that contains the entire result
set. This is less memory-efficient than use() (p. ??), but it lets you have random access
to the results.

7.38.3.20 Result mysqlpp::Query::store (const SQLString & str)

Execute query in a C++ string.

Executes the query immediately, and returns an object that contains the entire result
set. This is less memory-efficient than use() (p. ??), but it lets you have random access
to the results.

7.38.3.21 Result mysqlpp::Query::store () [inline]

Execute a query that can return a result set.

Use one of the store() (p. ??) overloads to execute a query and retrieve the entire result
set into memory. This is useful if you actually need all of the records at once, but if
not, consider using one of the use() (p. ??) methods instead, which returns the results
one at a time, so they don’t allocate as much memory as store() (p. ??).

You must use store() (p. ??), storein() (p. ??) or use() (p. ??) for SELECT, SHOW,
DESCRIBE and EXPLAIN queries. You can use these functions with other query
types, but since they don’t return a result set, exec() (p. ??) and execute() (p. ??) are
more efficient.

The name of this method comes from the MySQL C API function it is implemented in
terms of, mysql_store_result().

This function has the same set of overloads as execute() (p. ??).

Returns:

Result (p. ??) object containing entire result set

See also:

exec() (p. ??), execute() (p. ??), storein() (p. ??), and use() (p. ??)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

140 MySQL++ Class Documentation

7.38.3.22 template<class Sequence, typename Function> Function
mysqlpp::Query::store_if (Sequence & seq, Function fn) [inline]

Execute the query, conditionally storing each row in a container.

Just like store_if(Sequence&, const SQLString&, Function) (p. ??), but it uses the
query string held by the Query (p. ??) object already

Parameters:

seq the destination container; needs a push_back() method

fn the functor called for each row

Returns:

a copy of the passed functor

7.38.3.23 template<class Sequence, class SSQLS, typename Function>
Function mysqlpp::Query::store_if (Sequence & seq, const SSQLS &
ssqls, Function fn) [inline]

Pulls every row in a table, conditionally storing each one in a container.

Just like store_if(Sequence&, const SQLString&, Function) (p. ??), but it uses the
SSQLS instance to construct a "select ∗ from TABLE" query, using the table name field
in the SSQLS.

Parameters:

seq the destination container; needs a push_back() method

ssqls the SSQLS instance to get a table name from

fn the functor called for each row

Returns:

a copy of the passed functor

7.38.3.24 template<class Sequence, typename Function> Function
mysqlpp::Query::store_if (Sequence & seq, const SQLString & query,
Function fn) [inline]

Execute a query, conditionally storing each row in a container.

This method wraps a use() (p. ??) query, calling the given functor for every returned
row, and storing the results in the given sequence container if the functor returns true.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 141

This is analogous to the STL copy_if() algorithm, except that the source rows come
from a database query instead of another container. (copy_if() isn’t a standard STL
algorithm, but only due to an oversight by the standardization committee.) This fact
may help you to remember the order of the parameters: the container is the destination,
the query is the source, and the functor is the predicate; it’s just like an STL algorithm.

Parameters:

seq the destination container; needs a push_back() method

query the query string

fn the functor called for each row

Returns:

a copy of the passed functor

7.38.3.25 Result mysqlpp::Query::store_next ()

Return next result set, when processing a multi-query.

There are two cases where you’d use this function instead of the regular store() (p. ??)
functions.

First, when handling the result of executing multiple queries at once. (See this
page in the MySQL documentation for details.)

Second, when calling a stored procedure, MySQL can return the result as a set of
results.

In either case, you must consume all results before making another MySQL query, even
if you don’t care about the remaining results or result sets.

As the MySQL documentation points out, you must set the MYSQL_OPTION_-
MULTI_STATEMENTS_ON flag on the connection in order to use this feature. See
Connection::set_option() (p. ??).

Multi-queries only exist in MySQL v4.1 and higher. Therefore, this function just wraps
store() (p. ??) when built against older API libraries.

Returns:

Result (p. ??) object containing the next result set.

7.38.3.26 template<class Container> void mysqlpp::Query::storein (Container
& con, query_reset r = RESET_QUERY) [inline]

Execute a query, and store the entire result set in an STL container.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

142 MySQL++ Class Documentation

This is a set of specialized template functions that call either storein_sequence() (p. ??)
or storein_set() (p. ??), depending on the type of container you pass it. It understands
std::vector, deque, list, slist (a common C++ library extension), set, and
multiset.

Like the functions it wraps, this is actually an overloaded set of functions. See the other
functions’ documentation for details.

Use this function if you think you might someday switch your program from using a
set-associative container to a sequence container for storing result sets, or vice versa.

See exec() (p. ??), execute() (p. ??), store() (p. ??), and use() (p. ??) for alternative
query execution mechanisms.

7.38.3.27 template<class Sequence> void mysqlpp::Query::storein_sequence
(Sequence & con, query_reset r = RESET_QUERY) [inline]

Execute a query, storing the result set in an STL sequence container.

This function works much like store() (p. ??) from the caller’s perspective, because it
returns the entire result set at once. It’s actually implemented in terms of use() (p. ??),
however, so that memory for the result set doesn’t need to be allocated twice.

There are many overloads for this function, pretty much the same as for execute()
(p. ??), except that there is a Container parameter at the front of the list. So, you can
pass a container and a query string, or a container and template query parameters.

Parameters:

con any STL sequence container, such as std::vector

r whether the query automatically resets after being used

See also:

exec() (p. ??), execute() (p. ??), store() (p. ??), and use() (p. ??)

7.38.3.28 template<class Set> void mysqlpp::Query::storein_set (Set & con,
query_reset r = RESET_QUERY) [inline]

Execute a query, storing the result set in an STL associative container.

The same thing as storein_sequence() (p. ??), except that it’s used with associative
STL containers, such as std::set. Other than that detail, that method’s comments
apply equally well to this one.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 143

7.38.3.29 std::string mysqlpp::Query::str (SQLQueryParms & p, query_reset
r)

Get built query as a null-terminated C++ string.

Parameters:

p template query parameters to use, overriding the ones this object holds, if any

r if equal to RESET_QUERY, query object is cleared after this call

7.38.3.30 std::string mysqlpp::Query::str (SQLQueryParms & p)

Get built query as a null-terminated C++ string.

Parameters:

p template query parameters to use, overriding the ones this object holds, if any

7.38.3.31 std::string mysqlpp::Query::str (query_reset r) [inline]

Get built query as a null-terminated C++ string.

Parameters:

r if equal to RESET_QUERY, query object is cleared after this call

7.38.3.32 std::string mysqlpp::Query::str (const SQLString & arg0)
[inline]

Get built query as a null-terminated C++ string with template query parameter substi-
tution.

Parameters:

arg0 the value to substitute for the first template query parameter

7.38.3.33 bool mysqlpp::Query::success ()

Returns true if the last operation succeeded.

Returns true if the last query succeeded, and the associated Connection (p. ??) object’s
success() (p. ??) method also returns true. If either object is unhappy, this method
returns false.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

144 MySQL++ Class Documentation

7.38.3.34 template<class T> Query& mysqlpp::Query::update (const T & o,
const T & n) [inline]

Replace an existing row’s data with new data.

This function builds an UPDATE SQL query using the new row data for the SET clause,
and the old row data for the WHERE clause. One uses it with MySQL++’s Specialized
SQL Structures mechanism.

Parameters:

o old row

n new row

See also:

insert() (p. ??), replace() (p. ??)

7.38.3.35 ResUse mysqlpp::Query::use (const char ∗ str, size_t len)

Execute query in a known-length C string.

Executes the query immediately, and returns an object that lets you walk through the
result set one row at a time, in sequence. This is more memory-efficient than store()
(p. ??).

7.38.3.36 ResUse mysqlpp::Query::use (const char ∗ str)

Execute query in a C string.

Executes the query immediately, and returns an object that lets you walk through the
result set one row at a time, in sequence. This is more memory-efficient than store()
(p. ??).

7.38.3.37 ResUse mysqlpp::Query::use (const SQLString & str)

Execute query in a C++ string.

Executes the query immediately, and returns an object that lets you walk through the
result set one row at a time, in sequence. This is more memory-efficient than store()
(p. ??).

7.38.3.38 ResUse mysqlpp::Query::use () [inline]

Execute a query that can return a result set.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 145

Use one of the use() (p. ??) overloads if memory efficiency is important. They return
an object that can walk through the result records one by one, without fetching the
entire result set from the server. This is superior to store() (p. ??) when there are a
large number of results; store() (p. ??) would have to allocate a large block of memory
to hold all those records, which could cause problems.

A potential downside of this method is that MySQL database resources are tied up until
the result set is completely consumed. Do your best to walk through the result set as
expeditiously as possible.

The name of this method comes from the MySQL C API function that initiates the
retrieval process, mysql_use_result(). This method is implemented in terms of
that function.

This function has the same set of overloads as execute() (p. ??).

Returns:

ResUse (p. ??) object that can walk through result set serially

See also:

exec() (p. ??), execute() (p. ??), store() (p. ??) and storein() (p. ??)

7.38.4 Member Data Documentation

7.38.4.1 SQLQueryParms mysqlpp::Query::def

The default template parameters.

Used for filling in parameterized queries.

The documentation for this class was generated from the following files:

• query.h
• query.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

146 MySQL++ Class Documentation

7.39 mysqlpp::ResNSel Class Reference

Holds the information on the success of queries that don’t return any results.

#include <result.h>

Public Member Functions

• ResNSel (Connection ∗q)
Initialize object.

• operator bool ()
Returns true if the query was successful.

Public Attributes

• bool success
if true, query was successful

• my_ulonglong insert_id
last value used for AUTO_INCREMENT field

• my_ulonglong rows
number of rows affected

• std::string info
additional info about query result

7.39.1 Detailed Description

Holds the information on the success of queries that don’t return any results.

The documentation for this class was generated from the following files:

• result.h
• result.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.40 mysqlpp::Result Class Reference 147

7.40 mysqlpp::Result Class Reference

This class manages SQL result sets.

#include <result.h>

Inheritance diagram for mysqlpp::Result::

mysqlpp::Result

mysqlpp::ResUse mysqlpp::const_subscript_container< OnType, ValueType, ReturnType, SizeType, DiffType >

mysqlpp::OptionalExceptions

Public Member Functions

• Result ()
Default constructor.

• Result (MYSQL_RES ∗result, bool te=true)
Fully initialize object.

• Result (const Result &other)
Initialize object as a copy of another Result (p. ??) object.

• virtual ∼Result ()
Destroy result set.

• const Row fetch_row () const
Wraps mysql_fetch_row() in MySQL C API.

• my_ulonglong num_rows () const
Wraps mysql_num_rows() in MySQL C API.

• void data_seek (uint offset) const
Wraps mysql_data_seek() in MySQL C API.

• size_type size () const
Alias for num_rows() (p. ??), only with different return type.

• size_type rows () const
Alias for num_rows() (p. ??), only with different return type.

• const Row at (size_type i) const

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

148 MySQL++ Class Documentation

Get the row with an offset of i.

7.40.1 Detailed Description

This class manages SQL result sets.

Objects of this class are created to manage the result of "store" queries, where the result
set is handed to the program as single block of row data. (The name comes from the
MySQL C API function mysql_store_result() which creates these blocks of
row data.)

This class is a random access container (in the STL sense) which is neither less-than
comparable nor assignable. This container provides a reverse random-access iterator
in addition to the normal forward one.

7.40.2 Member Function Documentation

7.40.2.1 const Row mysqlpp::Result::fetch_row () const [inline]

Wraps mysql_fetch_row() in MySQL C API.

This is simply the const version of the same function in our parent class (p. ??) . Why
this cannot actually be in our parent class is beyond me.

The documentation for this class was generated from the following file:

• result.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.41 mysqlpp::ResUse Class Reference 149

7.41 mysqlpp::ResUse Class Reference

A basic result set class, for use with "use" queries.

#include <result.h>

Inheritance diagram for mysqlpp::ResUse::

mysqlpp::ResUse

mysqlpp::OptionalExceptions

mysqlpp::Result

Public Member Functions

• ResUse ()
Default constructor.

• ResUse (MYSQL_RES ∗result, Connection ∗c=0, bool te=true)
Create the object, fully initialized.

• ResUse (const ResUse &other)
Create a copy of another ResUse (p. ??) object.

• virtual ∼ResUse ()
Destroy object.

• ResUse & operator= (const ResUse &other)
Copy another ResUse (p. ??) object’s data into this object.

• MYSQL_RES ∗ raw_result ()
Return raw MySQL C API result set.

• Row fetch_row ()
Wraps mysql_fetch_row() in MySQL C API.

• unsigned long ∗ fetch_lengths () const
Wraps mysql_fetch_lengths() in MySQL C API.

• Field & fetch_field () const

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

150 MySQL++ Class Documentation

Wraps mysql_fetch_field() in MySQL C API.

• void field_seek (int field)
Wraps mysql_field_seek() in MySQL C API.

• int num_fields () const
Wraps mysql_num_fields() in MySQL C API.

• void parent_leaving ()
Documentation needed!

• void purge ()
Free all resources held by the object.

• operator bool () const
Return true if we have a valid result set.

• unsigned int columns () const
Return the number of columns in the result set.

• std::string & table ()
Get the name of table that the result set comes from.

• const std::string & table () const
Return the name of the table.

• int field_num (const std::string &) const
Get the index of the named field.

• std::string & field_name (int)
Get the name of the field at the given index.

• const std::string & field_name (int) const
Get the name of the field at the given index.

• FieldNames & field_names ()
Get the names of the fields within this result set.

• const FieldNames & field_names () const
Get the names of the fields within this result set.

• void reset_field_names ()

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.41 mysqlpp::ResUse Class Reference 151

Reset the names in the field list to their original values.

• mysql_type_info & field_type (int i)
Get the MySQL type for a field given its index.

• const mysql_type_info & field_type (int) const
Get the MySQL type for a field given its index.

• FieldTypes & field_types ()
Get a list of the types of the fields within this result set.

• const FieldTypes & field_types () const
Get a list of the types of the fields within this result set.

• void reset_field_types ()
Reset the field types to their original values.

• int names (const std::string &s) const
Alias for field_num() (p. ??).

• std::string & names (int i)
Alias for field_name() (p. ??).

• const std::string & names (int i) const
Alias for field_name() (p. ??).

• FieldNames & names ()
Alias for field_names() (p. ??).

• const FieldNames & names () const
Alias for field_names() (p. ??).

• void reset_names ()
Alias for reset_field_names() (p. ??).

• mysql_type_info & types (int i)
Alias for field_type() (p. ??).

• const mysql_type_info & types (int i) const
Alias for field_type() (p. ??).

• FieldTypes & types ()

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

152 MySQL++ Class Documentation

Alias for field_types() (p. ??).

• const FieldTypes & types () const
Alias for field_types() (p. ??).

• void reset_types ()
Alias for reset_field_types() (p. ??).

• const Fields & fields () const
Get the underlying Fields (p. ??) structure.

• const Field & fields (unsigned int i) const
Get the underlying Field structure given its index.

• bool operator== (const ResUse &other) const
Returns true if the other ResUse (p. ??) object shares the same underlying C API
result set as this one.

• bool operator!= (const ResUse &other) const
Returns true if the other ResUse (p. ??) object has a different underlying C API
result set from this one.

Protected Member Functions

• void copy (const ResUse &other)
Copy another ResUse (p. ??) object’s contents into this one.

Protected Attributes

• Connection ∗ conn_
server result set comes from

• MYSQL_RES ∗ result_
underlying C API result set

• bool initialized_
if true, object is fully initted

• FieldNames ∗ names_
list of field names in result

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.41 mysqlpp::ResUse Class Reference 153

• FieldTypes ∗ types_

list of field types in result

• Fields fields_

list of fields in result

• std::string table_

table result set comes from

7.41.1 Detailed Description

A basic result set class, for use with "use" queries.

A "use" query is one where you make the query and then process just one row at a time
in the result instead of dealing with them all as a single large chunk. (The name comes
from the MySQL C API function that initiates this action, mysql_use_result().)
By calling fetch_row() (p. ??) until it throws a mysqlpp::BadQuery (p. ??) exception
(or an empty row if exceptions are disabled), you can process the result set one row at
a time.

7.41.2 Member Function Documentation

7.41.2.1 void mysqlpp::ResUse::copy (const ResUse & other) [protected]

Copy another ResUse (p. ??) object’s contents into this one.

Self-copy is not allowed.

7.41.2.2 Row mysqlpp::ResUse::fetch_row () [inline]

Wraps mysql_fetch_row() in MySQL C API.

This is not a thin wrapper. It does a lot of error checking before returning the
mysqlpp::Row (p. ??) object containing the row data.

7.41.2.3 std::string & mysqlpp::ResUse::field_name (int)

Get the name of the field at the given index.

This is the inverse of field_num() (p. ??).

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

154 MySQL++ Class Documentation

7.41.2.4 int mysqlpp::ResUse::field_num (const std::string &) const

Get the index of the named field.

This is the inverse of field_name() (p. ??).

7.41.2.5 mysqlpp::ResUse::operator bool () const [inline]

Return true if we have a valid result set.

This operator is primarily used to determine if a query was successful:

///

Query::use() (p. ??) returns a ResUse (p. ??) object, and it won’t contain a valid result
set if the query failed.

7.41.2.6 bool mysqlpp::ResUse::operator== (const ResUse & other) const
[inline]

Returns true if the other ResUse (p. ??) object shares the same underlying C API result
set as this one.

This works because the underlying result set is stored as a pointer, and thus can be
copied and then compared.

7.41.2.7 void mysqlpp::ResUse::purge () [inline]

Free all resources held by the object.

This class’s destructor is little more than a call to purge() (p. ??), so you can think of
this as a way to re-use a ResUse (p. ??) object, to avoid having to completely re-create
it.

7.41.2.8 const std::string& mysqlpp::ResUse::table () const [inline]

Return the name of the table.

This is only valid

The documentation for this class was generated from the following files:

• result.h
• result.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 155

7.42 mysqlpp::Row Class Reference

Manages rows from a result set.

#include <row.h>

Inheritance diagram for mysqlpp::Row::

mysqlpp::Row

mysqlpp::const_subscript_container< OnType, ValueType, ReturnType, SizeType, DiffType > mysqlpp::OptionalExceptions

Public Member Functions

• Row ()
Default constructor.

• Row (const MYSQL_ROW &d, const ResUse ∗r, unsigned long ∗jj, bool
te=true)

Create a row object.

• ∼Row ()
Destroy object.

• const ResUse & parent () const
Get a reference to our parent class.

• size_type size () const
Get the number of fields in the row.

• const ColData operator[] (const char ∗field) const
Get the value of a field given its name.

• const ColData operator[] (size_type i) const
Get the value of a field given its index.

• const ColData at (size_type i) const
Get the value of a field given its index.

• const char ∗ raw_data (int i) const
Return the value of a field as a C string given its index, in raw form.

• std::string::size_type raw_size (int i) const

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

156 MySQL++ Class Documentation

Return the size of a field’s raw data given its index.

• const std::string & raw_string (int i) const
Return the value of a field as a C++ string given its index, in raw form.

• operator bool () const
Returns true if there is data in the row.

• template<class Manip> value_list_ba< Row, Manip > value_list (const
char ∗d=",", Manip m=quote) const

Get a list of the values in this row.

• template<class Manip> value_list_b< Row, Manip > value_list (const char
∗d, const std::vector< bool > &vb, Manip m=quote) const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (const std::vector< bool >
&vb) const

Get a list of the values in this row.

• template<class Manip> value_list_b< Row, Manip > value_list (const char
∗d, Manip m, bool t0, bool t1=false, bool t2=false, bool t3=false, bool
t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false) const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (const char ∗d, bool t0, bool
t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false) const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (bool t0, bool t1=false, bool
t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false) const

Get a list of the values in this row.

• template<class Manip> value_list_b< Row, Manip > value_list (const char
∗d, Manip m, std::string s0, std::string s1="", std::string s2="", std::string
s3="", std::string s4="", std::string s5="", std::string s6="", std::string
s7="", std::string s8="", std::string s9="", std::string sa="", std::string
sb="", std::string sc="") const

Get a list of the values in this row.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 157

• value_list_b< Row, quote_type0 > value_list (const char ∗d, std::string s0,
std::string s1="", std::string s2="", std::string s3="", std::string s4="",
std::string s5="", std::string s6="", std::string s7="", std::string s8="",
std::string s9="", std::string sa="", std::string sb="", std::string sc="")
const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (std::string s0, std::string
s1="", std::string s2="", std::string s3="", std::string s4="", std::string
s5="", std::string s6="", std::string s7="", std::string s8="", std::string
s9="", std::string sa="", std::string sb="", std::string sc="") const

Get a list of the values in this row.

• value_list_ba< FieldNames, do_nothing_type0 > field_list (const char
∗d=",") const

Get a list of the field names in this row.

• template<class Manip> value_list_ba< FieldNames, Manip > field_list
(const char ∗d, Manip m) const

Get a list of the field names in this row.

• template<class Manip> value_list_b< FieldNames, Manip > field_list
(const char ∗d, Manip m, const std::vector< bool > &vb) const

Get a list of the field names in this row.

• value_list_b< FieldNames, quote_type0 > field_list (const char ∗d, const
std::vector< bool > &vb) const

Get a list of the field names in this row.

• value_list_b< FieldNames, quote_type0 > field_list (const std::vector< bool
> &vb) const

Get a list of the field names in this row.

• template<class Manip> value_list_b< FieldNames, Manip > field_list
(const char ∗d, Manip m, bool t0, bool t1=false, bool t2=false, bool t3=false,
bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false) const

Get a list of the field names in this row.

• value_list_b< FieldNames, quote_type0 > field_list (const char ∗d, bool
t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false,
bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false) const

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

158 MySQL++ Class Documentation

Get a list of the field names in this row.

• value_list_b< FieldNames, quote_type0 > field_list (bool t0, bool t1=false,
bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false) const

Get a list of the field names in this row.

• equal_list_ba< FieldNames, Row, quote_type0 > equal_list (const char
∗d=",", const char ∗e=" = ") const

Get an "equal list" of the fields and values in this row.

• template<class Manip> equal_list_ba< FieldNames, Row, Manip >
equal_list (const char ∗d, const char ∗e, Manip m) const

Get an "equal list" of the fields and values in this row.

7.42.1 Detailed Description

Manages rows from a result set.

7.42.2 Constructor & Destructor Documentation

7.42.2.1 mysqlpp::Row::Row (const MYSQL_ROW & d, const ResUse ∗ r,
unsigned long ∗ jj, bool te = true)

Create a row object.

Parameters:

d MySQL C API row data

r result set that the row comes from

jj length of each item in d

te if true, throw exceptions on errors

7.42.3 Member Function Documentation

7.42.3.1 const ColData mysqlpp::Row::at (size_type i) const

Get the value of a field given its index.

If the index value is bad, the underlying std::vector is supposed to throw an exception,
according to the Standard.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 159

For this function to work, the Result (p. ??) or ResUse (p. ??) object that created this
object must still exist. In other words, you cannot re-use or destroy the result object
until you are done retrieving data from this row object.

See operator[](const char∗) for more caveats.

7.42.3.2 template<class Manip> equal_list_ba< FieldNames, Row, Manip >
mysqlpp::Row::equal_list (const char ∗ d, const char ∗ e, Manip m)
const

Get an "equal list" of the fields and values in this row.

This method’s parameters govern how the returned list will behave when you insert it
into a C++ stream:

Parameters:

d delimiter to use between items

e the operator to use between elements

m the manipulator to use for each element

For example, if d is ",", e is " = ", and m is the quote manipulator, then the field and
value lists (a, b) (c, d’e) will yield an equal list that gives the following when inserted
into a C++ stream:

///

Notice how the single quote was ’escaped’ in the SQL way to avoid a syntax error.

7.42.3.3 equal_list_ba< FieldNames, Row, quote_type0 >
mysqlpp::Row::equal_list (const char ∗ d = ",", const char ∗ e =
" = ") const

Get an "equal list" of the fields and values in this row.

When inserted into a C++ stream, the delimiter ’d’ will be used between the items, " =
" is the relationship operator, and items will be quoted and escaped.

7.42.3.4 value_list_b< FieldNames, quote_type0 > mysqlpp::Row::field_list
(bool t0, bool t1 = false, bool t2 = false, bool t3 = false, bool t4 =
false, bool t5 = false, bool t6 = false, bool t7 = false, bool t8 =
false, bool t9 = false, bool ta = false, bool tb = false, bool tc =
false) const

Get a list of the field names in this row.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

160 MySQL++ Class Documentation

For each true parameter, the field name in that position within the row is added to the
returned list. When the list is inserted into a C++ stream, a comma will be placed
between the items as a delimiter, and the items will be quoted and escaped.

7.42.3.5 value_list_b< FieldNames, quote_type0 > mysqlpp::Row::field_list
(const char ∗ d, bool t0, bool t1 = false, bool t2 = false, bool t3 =
false, bool t4 = false, bool t5 = false, bool t6 = false, bool t7 =
false, bool t8 = false, bool t9 = false, bool ta = false, bool tb =
false, bool tc = false) const

Get a list of the field names in this row.

For each true parameter, the field name in that position within the row is added to the
returned list. When the list is inserted into a C++ stream, the delimiter ’d’ will be
placed between the items as a delimiter, and the items will be quoted and escaped.

7.42.3.6 template<class Manip> value_list_b< FieldNames, Manip >
mysqlpp::Row::field_list (const char ∗ d, Manip m, bool t0, bool t1 =
false, bool t2 = false, bool t3 = false, bool t4 = false, bool t5 =
false, bool t6 = false, bool t7 = false, bool t8 = false, bool t9 =
false, bool ta = false, bool tb = false, bool tc = false) const

Get a list of the field names in this row.

For each true parameter, the field name in that position within the row is added to the
returned list. When the list is inserted into a C++ stream, the delimiter ’d’ will be placed
between the items as a delimiter, and the manipulator ’m’ used before each item.

7.42.3.7 value_list_b< FieldNames, quote_type0 > mysqlpp::Row::field_list
(const std::vector< bool > & vb) const

Get a list of the field names in this row.

Parameters:

vb for each true item in this list, add that field name to the returned list; ignore the
others

Field names will be quoted and escaped when inserted into a C++ stream, and a comma
will be placed between them as a delimiter.

7.42.3.8 value_list_b< FieldNames, quote_type0 > mysqlpp::Row::field_list
(const char ∗ d, const std::vector< bool > & vb) const

Get a list of the field names in this row.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 161

Parameters:

d delimiter to place between the items when the list is inserted into a C++ stream

vb for each true item in this list, add that field name to the returned list; ignore the
others

Field names will be quoted and escaped when inserted into a C++ stream.

7.42.3.9 template<class Manip> value_list_b< FieldNames, Manip >
mysqlpp::Row::field_list (const char ∗ d, Manip m, const std::vector<
bool > & vb) const

Get a list of the field names in this row.

Parameters:

d delimiter to place between the items when the list is inserted into a C++ stream

m manipulator to use before each item when the list is inserted into a C++ stream

vb for each true item in this list, add that field name to the returned list; ignore the
others

7.42.3.10 template<class Manip> value_list_ba< FieldNames, Manip >
mysqlpp::Row::field_list (const char ∗ d, Manip m) const

Get a list of the field names in this row.

Parameters:

d delimiter to place between the items when the list is inserted into a C++ stream

m manipulator to use before each item when the list is inserted into a C++ stream

7.42.3.11 value_list_ba< FieldNames, do_nothing_type0 >
mysqlpp::Row::field_list (const char ∗ d = ",") const

Get a list of the field names in this row.

When inserted into a C++ stream, the delimiter ’d’ will be used between the items, and
no manipulator will be used on the items.

7.42.3.12 const ColData mysqlpp::Row::operator[] (size_type i) const
[inline]

Get the value of a field given its index.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

162 MySQL++ Class Documentation

This function is just syntactic sugar, wrapping the at() (p. ??) method. The at() (p. ??)
method is the only way to get at the first field in a result set by index, as row[0] is
ambiguous: it could call either operator[] overload.

See also:

at() (p. ??) for the full documentation for this operator, and operator[](const char∗)
for further caveats about using this operator.

7.42.3.13 const ColData mysqlpp::Row::operator[] (const char ∗ field) const

Get the value of a field given its name.

If the field does not exist in this row, we throw a BadFieldName (p. ??) exception.

For this operator to work, the Result (p. ??) or ResUse (p. ??) object that created this
object must still exist. In other words, you cannot re-use or destroy the result object
until you are done retrieving data from this row object.

Note that we return the ColData (p. ??) object by value. The purpose of ColData is
to make it easy to convert the string data returned by the MySQL server to some more
appropriate type, so you’re almost certain to use this operator in a construct like this:

///

That accesses myfield within the row, returns a temporary ColData object, which is
then automatically converted to a std::string and copied into s. That works fine,
but beware of this similar but incorrect construct:

///

This one line of code does what you expect, but pc is then a dangling pointer: it points
to memory owned by the temporary ColData object, which will have been destroyed
by the time you get around to actually using the pointer.

This function is rather inefficient. If that is a concern for you, use at() (p. ??),
operator[](size_type) or the SSQLS mechanism’ instead.

7.42.3.14 const char∗ mysqlpp::Row::raw_data (int i) const [inline]

Return the value of a field as a C string given its index, in raw form.

This is the same thing as operator[], except that the data isn’t converted to a ColData
object first. Also, this method does not check for out-of-bounds array indices.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 163

7.42.3.15 const std::string& mysqlpp::Row::raw_string (int i) const
[inline]

Return the value of a field as a C++ string given its index, in raw form.

This is the same thing as operator[], except that the data isn’t converted to a ColData
object first.

7.42.3.16 value_list_b<Row, quote_type0> mysqlpp::Row::value_list
(std::string s0, std::string s1 = "", std::string s2 = "", std::string s3
= "", std::string s4 = "", std::string s5 = "", std::string s6 = "",
std::string s7 = "", std::string s8 = "", std::string s9 = "", std::string
sa = "", std::string sb = "", std::string sc = "") const [inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to the returned list. When inserted
into a C++ stream, a comma will be placed between the items as a delimiter, and items
will be quoted and escaped.

7.42.3.17 value_list_b<Row, quote_type0> mysqlpp::Row::value_list (const
char ∗ d, std::string s0, std::string s1 = "", std::string s2 = "",
std::string s3 = "", std::string s4 = "", std::string s5 = "", std::string
s6 = "", std::string s7 = "", std::string s8 = "", std::string s9 = "",
std::string sa = "", std::string sb = "", std::string sc = "") const
[inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to the returned list. When inserted
into a C++ stream, the delimiter ’d’ will be placed between the items, and items will be
quoted and escaped.

7.42.3.18 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, Manip m, std::string s0,
std::string s1 = "", std::string s2 = "", std::string s3 = "", std::string
s4 = "", std::string s5 = "", std::string s6 = "", std::string s7 = "",
std::string s8 = "", std::string s9 = "", std::string sa = "", std::string
sb = "", std::string sc = "") const [inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to the returned list. When in-
serted into a C++ stream, the delimiter ’d’ will be placed between the items, and the
manipulator ’m’ will be inserted before each item.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

164 MySQL++ Class Documentation

7.42.3.19 value_list_b<Row, quote_type0> mysqlpp::Row::value_list (bool t0,
bool t1 = false, bool t2 = false, bool t3 = false, bool t4 = false,
bool t5 = false, bool t6 = false, bool t7 = false, bool t8 = false,
bool t9 = false, bool ta = false, bool tb = false, bool tc = false)
const [inline]

Get a list of the values in this row.

For each true parameter, the value in that position within the row is added to the re-
turned list. When the list is inserted into a C++ stream, the a comma will be placed
between the items, as a delimiter, and items will be quoted and escaped.

7.42.3.20 value_list_b<Row, quote_type0> mysqlpp::Row::value_list (const
char ∗ d, bool t0, bool t1 = false, bool t2 = false, bool t3 = false,
bool t4 = false, bool t5 = false, bool t6 = false, bool t7 = false,
bool t8 = false, bool t9 = false, bool ta = false, bool tb = false,
bool tc = false) const [inline]

Get a list of the values in this row.

For each true parameter, the value in that position within the row is added to the re-
turned list. When the list is inserted into a C++ stream, the delimiter ’d’ will be placed
between the items, and items will be quoted and escaped.

7.42.3.21 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, Manip m, bool t0, bool t1 =
false, bool t2 = false, bool t3 = false, bool t4 = false, bool t5 =
false, bool t6 = false, bool t7 = false, bool t8 = false, bool t9 =
false, bool ta = false, bool tb = false, bool tc = false) const
[inline]

Get a list of the values in this row.

For each true parameter, the value in that position within the row is added to the re-
turned list. When the list is inserted into a C++ stream, the delimiter ’d’ will be placed
between the items, and the manipulator ’m’ used before each item.

7.42.3.22 value_list_b<Row, quote_type0> mysqlpp::Row::value_list (const
std::vector< bool > & vb) const [inline]

Get a list of the values in this row.

Parameters:

vb for each true item in this list, add that value to the returned list; ignore the
others

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 165

Items will be quoted and escaped when inserted into a C++ stream, and a comma will
be used as a delimiter between the items.

7.42.3.23 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, const std::vector< bool >
& vb, Manip m = quote) const [inline]

Get a list of the values in this row.

Parameters:

d delimiter to use between values

vb for each true item in this list, add that value to the returned list; ignore the
others

m manipulator to use when inserting values into a stream

7.42.3.24 template<class Manip> value_list_ba<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d = ",", Manip m = quote)
const [inline]

Get a list of the values in this row.

When inserted into a C++ stream, the delimiter ’d’ will be used between the items, and
the quoting and escaping rules will be set by the manipulator ’m’ you choose.

Parameters:

d delimiter to use between values

m manipulator to use when inserting values into a stream

The documentation for this class was generated from the following files:

• row.h
• row.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

166 MySQL++ Class Documentation

7.43 mysqlpp::scoped_var_set< T > Class Template
Reference

Sets a variable to a given value temporarily.

Public Member Functions

• scoped_var_set (T &var, T new_value)
Create object, saving old value, setting new value.

• ∼scoped_var_set ()
Destroy object, restoring old value.

7.43.1 Detailed Description

template<class T> class mysqlpp::scoped_var_set< T >

Sets a variable to a given value temporarily.

Saves existing value, sets new value, and restores old value when the object is de-
stroyed. Used to set a flag in an exception-safe manner.

The documentation for this class was generated from the following file:

• connection.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.44 mysqlpp::Set< Container > Class Template Reference 167

7.44 mysqlpp::Set< Container > Class Template Ref-
erence

A special std::set derivative for holding MySQL data sets.

#include <myset.h>

Public Member Functions

• Set ()
Default constructor.

• Set (const char ∗str)
Create object from a comma-separated list of values.

• Set (const std::string &str)
Create object from a comma-separated list of values.

• Set (const ColData &str)
Create object from a comma-separated list of values.

• std::ostream & out_stream (std::ostream &s) const
Insert this set’s data into a C++ stream in comma-separated format.

• operator std::string ()
Convert this set’s data to a string containing comma-separated items.

7.44.1 Detailed Description

template<class Container = std::set<std::string>> class mysqlpp::Set< Con-
tainer >

A special std::set derivative for holding MySQL data sets.

The documentation for this class was generated from the following file:

• myset.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

168 MySQL++ Class Documentation

7.45 mysqlpp::SQLParseElement Struct Reference

Used within Query (p. ??) to hold elements for parameterized queries.

#include <qparms.h>

Public Member Functions

• SQLParseElement (std::string b, char o, signed char n)

Create object.

Public Attributes

• std::string before

string inserted before the parameter

• char option

the parameter option, or blank if none

• signed char num

the parameter position to use

7.45.1 Detailed Description

Used within Query (p. ??) to hold elements for parameterized queries.

Each element has three parts:

The concept behind the before variable needs a little explaining. When a template
query is parsed, each parameter is parsed into one of these SQLParseElement (p. ??)
objects, but the non-parameter parts of the template also have to be stored somewhere.
MySQL++ chooses to attach the text leading up to a parameter to that parameter. So,
the before string is simply the text copied literally into the finished query before we
insert a value for the parameter.

The option character is currently one of ’q’, ’Q’, ’r’, ’R’ or ’ ’. See the "Template
Queries" chapter in the user manual for details.

The position value (num) allows a template query to have its parameters in a different
order than in the Query (p. ??) method call. An example of how this can be helpful is
in the "Template Queries" chapter of the user manual.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.45 mysqlpp::SQLParseElement Struct Reference 169

7.45.2 Constructor & Destructor Documentation

7.45.2.1 mysqlpp::SQLParseElement::SQLParseElement (std::string b, char o,
signed char n) [inline]

Create object.

Parameters:

b the ’before’ value

o the ’option’ value

n the ’num’ value

The documentation for this struct was generated from the following file:

• qparms.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

170 MySQL++ Class Documentation

7.46 mysqlpp::SQLQueryParms Class Reference

This class holds the parameter values for filling template queries.

#include <qparms.h>

Inheritance diagram for mysqlpp::SQLQueryParms::

mysqlpp::SQLQueryParms

std::vector< T >

Public Types

• typedef const SQLString & ss
Abbreviation so some of the declarations below don’t span many lines.

Public Member Functions

• SQLQueryParms ()
Default constructor.

• SQLQueryParms (Query ∗p)
Create object.

• bool bound ()
Returns true if we are bound to a query object.

• void clear ()
Clears the list.

• SQLString & operator[] (size_type n)
Access element number n.

• const SQLString & operator[] (size_type n) const
Access element number n.

• SQLString & operator[] (const char ∗str)
Access the value of the element with a key of str.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.46 mysqlpp::SQLQueryParms Class Reference 171

• const SQLString & operator[] (const char ∗str) const
Access the value of the element with a key of str.

• SQLQueryParms & operator<< (const SQLString &str)
Adds an element to the list.

• SQLQueryParms & operator+= (const SQLString &str)
Adds an element to the list.

• SQLQueryParms operator+ (const SQLQueryParms &other) const
Build a composite of two parameter lists.

• void set (ss a, ss b, ss c, ss d, ss e, ss f, ss g, ss h, ss i, ss j, ss k, ss l)
Set (p. ??) the template query parameters.

Friends

• class Query

7.46.1 Detailed Description

This class holds the parameter values for filling template queries.

7.46.2 Constructor & Destructor Documentation

7.46.2.1 mysqlpp::SQLQueryParms::SQLQueryParms (Query ∗ p)
[inline]

Create object.

Parameters:

p pointer to the query object these parameters are tied to

7.46.3 Member Function Documentation

7.46.3.1 bool mysqlpp::SQLQueryParms::bound () [inline]

Returns true if we are bound to a query object.

Basically, this tells you which of the two ctors were called.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

172 MySQL++ Class Documentation

7.46.3.2 SQLQueryParms mysqlpp::SQLQueryParms::operator+ (const
SQLQueryParms & other) const

Build a composite of two parameter lists.

If this list is (a, b) and other is (c, d, e, f, g), then the returned list will be (a, b, e, f,
g). That is, all of this list’s parameters are in the returned list, plus any from the other
list that are in positions beyond what exist in this list.

If the two lists are the same length or this list is longer than the other list, a copy of
this list is returned.

7.46.3.3 void mysqlpp::SQLQueryParms::set (ss a, ss b, ss c, ss d, ss e, ss f, ss g,
ss h, ss i, ss j, ss k, ss l) [inline]

Set (p. ??) the template query parameters.

Sets parameter 0 to a, parameter 1 to b, etc. There are overloaded versions of this
function that take anywhere from one to a dozen parameters.

The documentation for this class was generated from the following files:

• qparms.h
• qparms.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.47 mysqlpp::SQLString Class Reference 173

7.47 mysqlpp::SQLString Class Reference

A specialized std::string that will convert from any valid MySQL type.

#include <sql_string.h>

Inheritance diagram for mysqlpp::SQLString::

mysqlpp::SQLString

std::string

std::basic_string< char >

Public Member Functions

• SQLString ()
Default constructor; empty string.

• SQLString (const std::string &str)
Create object as a copy of a C++ string.

• SQLString (const char ∗str)
Create object as a copy of a C string.

• SQLString (const char ∗str, size_t len)
Create object as a copy of a known-length string of characters.

• SQLString (char i)
Create object as the string form of a char value.

• SQLString (unsigned char i)
Create object as the string form of an unsigned char value.

• SQLString (short int i)
Create object as the string form of a short int value.

• SQLString (unsigned short int i)
Create object as the string form of an unsigned short int value.

• SQLString (int i)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

174 MySQL++ Class Documentation

Create object as the string form of an int value.

• SQLString (unsigned int i)
Create object as the string form of an unsigned int value.

• SQLString (longlong i)
Create object as the string form of a longlong value.

• SQLString (ulonglong i)
Create object as the string form of an unsigned longlong value.

• SQLString (float i)
Create object as the string form of a float value.

• SQLString (double i)
Create object as the string form of a double value.

• SQLString (const null_type &i)
Create object representing NULL.

• SQLString & operator= (const char ∗str)
Copy a C string into this object.

• SQLString & operator= (const std::string &str)
Copy a C++ string into this object.

Public Attributes

• bool is_string
If true, the object’s string data is a copy of another string. Otherwise, it’s the string
form of an integral type.

• bool dont_escape
If true, the string data doesn’t need to be SQL-escaped when building a query.

• bool processed
If true, one of the MySQL++ manipulators has processed the string data.

7.47.1 Detailed Description

A specialized std::string that will convert from any valid MySQL type.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.47 mysqlpp::SQLString Class Reference 175

7.47.2 Member Data Documentation

7.47.2.1 bool mysqlpp::SQLString::processed

If true, one of the MySQL++ manipulators has processed the string data.

"Processing" is escaping special SQL characters, and/or adding quotes. See the docu-
mentation for manip.h (p. ??) for details.

This flag is used by the template query mechanism, to prevent a string from being re-
escaped or re-quoted each time that query is reused. The flag is reset by operator=, to
force the new parameter value to be re-processed.

The documentation for this class was generated from the following files:

• sql_string.h
• sql_string.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

176 MySQL++ Class Documentation

7.48 mysqlpp::subscript_iterator< OnType, Return-
Type, SizeType, DiffType > Class Template Ref-
erence

Iterator that can be subscripted.

#include <resiter.h>

Public Member Functions

• subscript_iterator ()
Default constructor.

• subscript_iterator (OnType ∗what, SizeType pos)
Create iterator given the container and a position within it.

• bool operator== (const subscript_iterator &j) const
Return true if given iterator points to the same container and the same position
within the container.

• bool operator!= (const subscript_iterator &j) const
Return true if given iterator is different from this one, but points to the same con-
tainer.

• bool operator< (const subscript_iterator &j) const
Return true if the given iterator points to the same container as this one, and that
this iterator’s position is less than the given iterator’s.

• bool operator> (const subscript_iterator &j) const
Return true if the given iterator points to the same container as this one, and that
this iterator’s position is greater than the given iterator’s.

• bool operator<= (const subscript_iterator &j) const
Return true if the given iterator points to the same container as this one, and that
this iterator’s position is less than or equal to the given iterator’s.

• bool operator>= (const subscript_iterator &j) const
Return true if the given iterator points to the same container as this one, and that
this iterator’s position is greater than or equal to the given iterator’s.

• ReturnType operator ∗ () const
Dereference the iterator, returning a copy of the pointed-to element within the con-
tainer.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.48 mysqlpp::subscript_iterator< OnType, ReturnType, SizeType, DiffType >
Class Template Reference 177

• ReturnType operator[] (SizeType n) const
Return a copy of the element at the given position within the container.

• subscript_iterator & operator++ ()
Move the iterator to the next element, returning an iterator to that element.

• subscript_iterator operator++ (int)
Move the iterator to the next element, returning an iterator to the element we were
pointing at before the change.

• subscript_iterator & operator– ()
Move the iterator to the previous element, returning an iterator to that element.

• subscript_iterator operator– (int)
Move the iterator to the previous element, returning an iterator to the element we
were pointing at before the change.

• subscript_iterator & operator+= (SizeType n)
Advance iterator position by n.

• subscript_iterator operator+ (SizeType n) const
Return an iterator n positions beyond this one.

• subscript_iterator & operator-= (SizeType n)
Move iterator position back by n.

• subscript_iterator operator- (SizeType n) const
Return an iterator n positions before this one.

• DiffType operator- (const subscript_iterator &j) const
Return an iterator n positions before this one.

7.48.1 Detailed Description

template<class OnType, class ReturnType, class SizeType, class DiffType> class
mysqlpp::subscript_iterator< OnType, ReturnType, SizeType, DiffType >

Iterator that can be subscripted.

This is the type of iterator used by the const_subscript_container (p. ??) template.

The documentation for this class was generated from the following file:

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

178 MySQL++ Class Documentation

• resiter.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.49 mysqlpp::Time Struct Reference 179

7.49 mysqlpp::Time Struct Reference

C++ form of MySQL’s TIME type.

#include <datetime.h>

Inheritance diagram for mysqlpp::Time::

mysqlpp::Time

mysqlpp::DTbase< T >

Public Member Functions

• Time ()
Default constructor.

• Time (tiny_int h, tiny_int m, tiny_int s)
Initialize object.

• Time (const Time &other)
Initialize object as a copy of another Time (p. ??).

• Time (const DateTime &other)
Initialize object from time part of date/time object.

• Time (cchar ∗str)
Initialize object from a MySQL time string.

• Time (const ColData &str)
Initialize object from a MySQL time string.

• Time (const std::string &str)
Initialize object from a MySQL time string.

• MYSQLPP_EXPORT cchar ∗ convert (cchar ∗)
Parse a MySQL time string into this object.

• MYSQLPP_EXPORT short int compare (const Time &other) const
Compare this time to another.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

180 MySQL++ Class Documentation

Public Attributes

• tiny_int hour
hour, 0-23

• tiny_int minute
minute, 0-59

• tiny_int second
second, 0-59

7.49.1 Detailed Description

C++ form of MySQL’s TIME type.

Objects of this class can be inserted into streams, and initialized from MySQL TIME
strings.

7.49.2 Constructor & Destructor Documentation

7.49.2.1 mysqlpp::Time::Time (cchar ∗ str) [inline]

Initialize object from a MySQL time string.

String must be in the HH:MM:SS format. It doesn’t have to be zero-padded.

7.49.2.2 mysqlpp::Time::Time (const ColData & str) [inline]

Initialize object from a MySQL time string.

See also:

Time(cchar∗) (p. ??)

7.49.2.3 mysqlpp::Time::Time (const std::string & str) [inline]

Initialize object from a MySQL time string.

See also:

Time(cchar∗) (p. ??)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.49 mysqlpp::Time Struct Reference 181

7.49.3 Member Function Documentation

7.49.3.1 short int mysqlpp::Time::compare (const Time & other) const

Compare this time to another.

Returns < 0 if this time is before the other, 0 of they are equal, and > 0 if this time is
after the other.

The documentation for this struct was generated from the following files:

• datetime.h
• datetime.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

182 MySQL++ Class Documentation

7.50 mysqlpp::tiny_int Class Reference

Class for holding an SQL tiny_int (p. ??) object.

#include <tiny_int.h>

Public Member Functions

• tiny_int ()
Default constructor.

• tiny_int (short int v)
Create object from any integral type that can be converted to a short int.

• operator short int () const
Return value as a short int.

• tiny_int & operator= (short int v)
Assign a short int to the object.

• tiny_int & operator+= (short int v)
Add another value to this object.

• tiny_int & operator-= (short int v)
Subtract another value to this object.

• tiny_int & operator ∗= (short int v)
Multiply this value by another object.

• tiny_int & operator/= (short int v)
Divide this value by another object.

• tiny_int & operator%= (short int v)
Divide this value by another object and store the remainder.

• tiny_int & operator &= (short int v)
Bitwise AND this value by another value.

• tiny_int & operator|= (short int v)
Bitwise OR this value by another value.

• tiny_int & operator∧= (short int v)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.50 mysqlpp::tiny_int Class Reference 183

Bitwise XOR this value by another value.

• tiny_int & operator<<= (short int v)
Shift this value left by v positions.

• tiny_int & operator>>= (short int v)
Shift this value right by v positions.

• tiny_int & operator++ ()
Add one to this value and return that value.

• tiny_int & operator– ()
Subtract one from this value and return that value.

• tiny_int operator++ (int)
Add one to this value and return the previous value.

• tiny_int operator– (int)
Subtract one from this value and return the previous value.

• tiny_int operator- (const tiny_int &i) const
Return this value minus i.

• tiny_int operator+ (const tiny_int &i) const
Return this value plus i.

• tiny_int operator ∗ (const tiny_int &i) const
Return this value multiplied by i.

• tiny_int operator/ (const tiny_int &i) const
Return this value divided by i.

• tiny_int operator% (const tiny_int &i) const
Return the modulus of this value divided by i.

• tiny_int operator| (const tiny_int &i) const
Return this value bitwise OR’d by i.

• tiny_int operator & (const tiny_int &i) const
Return this value bitwise AND’d by i.

• tiny_int operator∧ (const tiny_int &i) const

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

184 MySQL++ Class Documentation

Return this value bitwise XOR’d by i.

• tiny_int operator<< (const tiny_int &i) const
Return this value bitwise shifted left by i.

• tiny_int operator>> (const tiny_int &i) const
Return this value bitwise shifted right by i.

7.50.1 Detailed Description

Class for holding an SQL tiny_int (p. ??) object.

This is required because the closest C++ type, char, doesn’t have all the right seman-
tics. For one, inserting a char into a stream won’t give you a number.

Several of the functions below accept a short int argument, but internally we store
the data as a char. Beware of integer overflows!

7.50.2 Constructor & Destructor Documentation

7.50.2.1 mysqlpp::tiny_int::tiny_int () [inline]

Default constructor.

Value is uninitialized

The documentation for this class was generated from the following file:

• tiny_int.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.51 mysqlpp::Transaction Class Reference 185

7.51 mysqlpp::Transaction Class Reference

Helper object for creating exception-safe SQL transactions.

#include <transaction.h>

Public Member Functions

• Transaction (Connection &conn, bool consistent=false)

Constructor.

• ∼Transaction ()

Destructor.

• void commit ()

Commits the transaction.

• void rollback ()

Rolls back the transaction.

7.51.1 Detailed Description

Helper object for creating exception-safe SQL transactions.

7.51.2 Constructor & Destructor Documentation

7.51.2.1 Transaction::Transaction (Connection & conn, bool consistent =
false)

Constructor.

Parameters:

conn The connection we use to manage the transaction set

consistent Whether to use "consistent snapshots" during the transaction. See the
documentation for "START TRANSACTION" in the MySQL manual for
more on this.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

186 MySQL++ Class Documentation

7.51.2.2 Transaction::∼Transaction ()

Destructor.

If the transaction has not been committed or rolled back by the time the destructor is
called, it is rolled back. This is the right thing because one way this can happen is if
the object is being destroyed as the stack is unwound to handle an exception. In that
instance, you certainly want to roll back the transaction.

7.51.3 Member Function Documentation

7.51.3.1 void Transaction::commit ()

Commits the transaction.

This commits all updates to the database using the connection we were created with
since this object was created. This is a no-op if the table isn’t stored using a transaction-
aware storage engine. See CREATE TABLE in the MySQL manual for details.

7.51.3.2 void Transaction::rollback ()

Rolls back the transaction.

This abandons all SQL statements made on the connection since this object was cre-
ated. This only works on tables stored using a transaction-aware storage engine. See
CREATE TABLE in the MySQL manual for details.

The documentation for this class was generated from the following files:

• transaction.h
• transaction.cpp

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.52 mysqlpp::value_list_b< Seq, Manip > Struct Template Reference 187

7.52 mysqlpp::value_list_b< Seq, Manip > Struct
Template Reference

Same as value_list_ba (p. ??), plus the option to have some elements of the list sup-
pressed.

#include <vallist.h>

Public Member Functions

• value_list_b (const Seq &s, const std::vector< bool > &f, const char ∗d,
Manip m)

Create object.

Public Attributes

• const Seq ∗ list
set of objects in the value list

• const std::vector< bool > fields
delimiter to use between each value in the list when inserting it into a C++ stream

• const char ∗ delem
delimiter to use between each value in the list when inserting it into a C++ stream

• Manip manip
manipulator to use when inserting the list into a C++ stream

7.52.1 Detailed Description

template<class Seq, class Manip> struct mysqlpp::value_list_b< Seq, Manip >

Same as value_list_ba (p. ??), plus the option to have some elements of the list sup-
pressed.

Imagine an object of this type contains the list (a, b, c), that the object’s ’fields’ list
is (true, false, true), and that the object’s delimiter is set to ":". When you insert that
object into a C++ stream, you would get "a:c".

See value_list_ba’s documentation for more details.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

188 MySQL++ Class Documentation

7.52.2 Constructor & Destructor Documentation

7.52.2.1 template<class Seq, class Manip> mysqlpp::value_list_b< Seq, Manip
>::value_list_b (const Seq & s, const std::vector< bool > & f, const
char ∗ d, Manip m) [inline]

Create object.

Parameters:

s set of objects in the value list

f for each true item in the list, the list item in that position will be inserted into a
C++ stream

d what delimiter to use between each value in the list when inserting the list into
a C++ stream

m manipulator to use when inserting the list into a C++ stream

The documentation for this struct was generated from the following file:

• vallist.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

7.53 mysqlpp::value_list_ba< Seq, Manip > Struct Template Reference 189

7.53 mysqlpp::value_list_ba< Seq, Manip > Struct
Template Reference

Holds a list of items, typically used to construct a SQL "value list".

#include <vallist.h>

Public Member Functions

• value_list_ba (const Seq &s, const char ∗d, Manip m)
Create object.

Public Attributes

• const Seq ∗ list
set of objects in the value list

• const char ∗ delem
delimiter to use between each value in the list when inserting it into a C++ stream

• Manip manip
manipulator to use when inserting the list into a C++ stream

7.53.1 Detailed Description

template<class Seq, class Manip> struct mysqlpp::value_list_ba< Seq, Manip >

Holds a list of items, typically used to construct a SQL "value list".

The SQL INSERT statement has a VALUES clause; this class can be used to construct
the list of items for that clause.

Imagine an object of this type contains the list (a, b, c), and that the object’s delimiter
symbol is set to ", ". When you insert that object into a C++ stream, you would get "a,
b, c".

This class is never instantiated by hand. The value_list() (p. ??) functions build in-
stances of this structure template to do their work. MySQL++’s SSQLS mechanism
calls those functions when building SQL queries; you can call them yourself to do
similar work. The "Harnessing SSQLS Internals" section of the user manual has some
examples of this.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

190 MySQL++ Class Documentation

See also:

value_list_b (p. ??)

7.53.2 Constructor & Destructor Documentation

7.53.2.1 template<class Seq, class Manip> mysqlpp::value_list_ba< Seq,
Manip >::value_list_ba (const Seq & s, const char ∗ d, Manip m)
[inline]

Create object.

Parameters:

s set of objects in the value list

d what delimiter to use between each value in the list when inserting the list into
a C++ stream

m manipulator to use when inserting the list into a C++ stream

The documentation for this struct was generated from the following file:

• vallist.h

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

Chapter 8

MySQL++ File Documentation

8.1 autoflag.h File Reference

Defines a template for setting a flag within a given variable scope, and resetting it when
exiting that scope.

Classes

• class AutoFlag< T >

A template for setting a flag on a variable as long as the object that set it is in scope.
Flag resets when object goes out of scope. Works on anything that looks like bool.

8.1.1 Detailed Description

Defines a template for setting a flag within a given variable scope, and resetting it when
exiting that scope.

192 MySQL++ File Documentation

8.2 coldata.h File Reference

Declares classes for converting string data to any of the basic C types.

#include "common.h"

#include "const_string.h"

#include "convert.h"

#include "exceptions.h"

#include "null.h"

#include "string_util.h"

#include "type_info.h"

#include <typeinfo>

#include <string>

#include <sstream>

#include <stdlib.h>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::ColData_Tmpl< Str >

Template for string data that can convert itself to any standard C data type.

Typedefs

• typedef ColData_Tmpl< const_string > mysqlpp::ColData
The type that is returned by constant rows.

• typedef ColData_Tmpl< std::string > mysqlpp::MutableColData
The type that is returned by mutable rows.

8.2.1 Detailed Description

Declares classes for converting string data to any of the basic C types.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.2 coldata.h File Reference 193

Roughly speaking, this defines classes that are the inverse of mysqlpp::SQLString
(p. ??).

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

194 MySQL++ File Documentation

8.3 common.h File Reference

This file includes top-level definitions for use both internal to the library, and outside
it. Contrast mysql++.h.

#include <mysql.h>

Namespaces

• namespace mysqlpp

Typedefs

• typedef MYSQL_FIELD mysqlpp::Field
Alias for MYSQL_FIELD.

8.3.1 Detailed Description

This file includes top-level definitions for use both internal to the library, and outside
it. Contrast mysql++.h.

This file mostly takes care of platform differences.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.4 connection.h File Reference 195

8.4 connection.h File Reference

Declares the Connection class.

#include "common.h"

#include "lockable.h"

#include "noexceptions.h"

#include <deque>

#include <string>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Connection
Manages the connection to the MySQL database.

• struct mysqlpp::Connection::OptionInfo

8.4.1 Detailed Description

Declares the Connection class.

Every program using MySQL++ must create a Connection object, which manages in-
formation about the connection to the MySQL database, and performs connection-
related operations once the connection is up. Subordinate classes, such as Query and
Row take their defaults as to whether exceptions are thrown when errors are encoun-
tered from the Connection object that created them, directly or indirectly.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

196 MySQL++ File Documentation

8.5 const_string.h File Reference

Declares a wrapper for const char∗ which behaves in a way more useful to My-
SQL++.

#include "common.h"

#include <algorithm>

#include <cstring>

#include <iostream>

#include <stdexcept>

#include <string>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::const_string
Wrapper for const char∗ to make it behave in a way more useful to MySQL++.

Functions

• std::ostream & mysqlpp::operator<< (std::ostream &o, const const_string
&str)

Inserts a const_string (p. ??) into a C++ stream.

• int mysqlpp::compare (const const_string &lhs, const const_string &rhs)
Calls lhs.compare() (p. ??), passing rhs.

• bool mysqlpp::operator== (const_string &lhs, const_string &rhs)
Returns true if lhs is the same as rhs.

• bool mysqlpp::operator!= (const_string &lhs, const_string &rhs)
Returns true if lhs is not the same as rhs.

• bool mysqlpp::operator< (const_string &lhs, const_string &rhs)
Returns true if lhs is lexically less than rhs.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.5 const_string.h File Reference 197

• bool mysqlpp::operator<= (const_string &lhs, const_string &rhs)
Returns true if lhs is lexically less or equal to rhs.

• bool mysqlpp::operator> (const_string &lhs, const_string &rhs)
Returns true if lhs is lexically greater than rhs.

• bool mysqlpp::operator>= (const_string &lhs, const_string &rhs)
Returns true if lhs is lexically greater than or equal to rhs.

8.5.1 Detailed Description

Declares a wrapper for const char∗ which behaves in a way more useful to My-
SQL++.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

198 MySQL++ File Documentation

8.6 convert.h File Reference

Declares various string-to-integer type conversion templates.

#include "common.h"

#include <stdlib.h>

Namespaces

• namespace mysqlpp

8.6.1 Detailed Description

Declares various string-to-integer type conversion templates.

These templates are the mechanism used within mysqlpp::ColData_Tmpl (p. ??) for
its string-to-something conversions.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.7 datetime.h File Reference 199

8.7 datetime.h File Reference

Declares classes to add MySQL-compatible date and time types to C++’s type system.

#include "common.h"

#include "coldata.h"

#include "stream2string.h"

#include "tiny_int.h"

#include <string>

#include <sstream>

#include <iostream>

Namespaces

• namespace mysqlpp

Classes

• struct mysqlpp::DTbase< T >

Base class template for MySQL++ date and time classes.

• struct mysqlpp::DateTime
C++ form of MySQL’s DATETIME type.

• struct mysqlpp::Date
C++ form of MySQL’s DATE type.

• struct mysqlpp::Time
C++ form of MySQL’s TIME type.

Functions

• std::ostream & mysqlpp::operator<< (std::ostream &os, const DateTime
&dt)

Inserts a DateTime (p. ??) object into a C++ stream in a MySQL-compatible format.

• std::ostream & mysqlpp::operator<< (std::ostream &os, const Date &d)
Inserts a Date (p. ??) object into a C++ stream.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

200 MySQL++ File Documentation

• std::ostream & mysqlpp::operator<< (std::ostream &os, const Time &t)
Inserts a Time (p. ??) object into a C++ stream in a MySQL-compatible format.

8.7.1 Detailed Description

Declares classes to add MySQL-compatible date and time types to C++’s type system.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.8 exceptions.h File Reference 201

8.8 exceptions.h File Reference

Declares the MySQL++-specific exception classes.

#include "connection.h"

#include <exception>

#include <string>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Exception
Base class for all MySQL++ custom exceptions.

• class mysqlpp::BadConversion
Exception (p. ??) thrown when a bad type conversion is attempted.

• class mysqlpp::BadFieldName
Exception (p. ??) thrown when a requested named field doesn’t exist.

• class mysqlpp::BadNullConversion
Exception (p. ??) thrown when you attempt to convert a SQL null to an incompatible
type.

• class mysqlpp::BadOption
Exception (p. ??) thrown when you pass an unrecognized option to
Connection::set_option() (p. ??).

• class mysqlpp::BadParamCount
Exception (p. ??) thrown when not enough query parameters are provided.

• class mysqlpp::BadQuery
Exception (p. ??) thrown when MySQL encounters a problem while processing your
query.

• class mysqlpp::ConnectionFailed
Exception (p. ??) thrown when there is a problem establishing the database server
connection. It’s also thrown if Connection::shutdown() (p. ??) fails.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

202 MySQL++ File Documentation

• class mysqlpp::DBSelectionFailed
Exception (p. ??) thrown when the program tries to select a new database and the
server refuses for some reason.

• class mysqlpp::EndOfResults
Exception (p. ??) thrown when ResUse::fetch_row() (p. ??) walks off the end of a
use-query’s result set.

• class mysqlpp::EndOfResultSets
Exception (p. ??) thrown when Query::store_next() (p. ??) walks off the end of a
use-query’s multi result sets.

• class mysqlpp::LockFailed
Exception (p. ??) thrown when a Lockable (p. ??) object fails.

• class mysqlpp::ObjectNotInitialized
Exception (p. ??) thrown when you try to use an object that isn’t completely initial-
ized.

8.8.1 Detailed Description

Declares the MySQL++-specific exception classes.

When exceptions are enabled for a given mysqlpp::OptionalExceptions (p. ??)
derivative, any of these exceptions can be thrown on error.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.9 field_names.h File Reference 203

8.9 field_names.h File Reference

Declares a class to hold a list of field names.

#include "coldata.h"

#include "string_util.h"

#include <algorithm>

#include <vector>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::FieldNames
Holds a list of SQL field names.

8.9.1 Detailed Description

Declares a class to hold a list of field names.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

204 MySQL++ File Documentation

8.10 field_types.h File Reference

Declares a class to hold a list of SQL field type info.

#include "type_info.h"

#include <vector>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::FieldTypes
A vector of SQL field types.

8.10.1 Detailed Description

Declares a class to hold a list of SQL field type info.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.11 fields.h File Reference 205

8.11 fields.h File Reference

Declares a class for holding information about a set of fields.

#include "resiter.h"

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Fields
A container similar to std::vector for holding mysqlpp::Field (p. ??) records.

8.11.1 Detailed Description

Declares a class for holding information about a set of fields.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

206 MySQL++ File Documentation

8.12 lockable.h File Reference

Declares interface that allows a class to declare itself as "lockable".

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Lock
Abstract base class for lock implementation, used by Lockable (p. ??).

• class mysqlpp::BasicLock
Trivial Lock (p. ??) subclass, using a boolean variable as the lock flag.

• class mysqlpp::Lockable
Interface allowing a class to declare itself as "lockable".

8.12.1 Detailed Description

Declares interface that allows a class to declare itself as "lockable".

The meaning of a class being lockable is very much per-class specific in this version
of MySQL++. In a future version, it will imply that operations that aren’t normally
thread-safe will use platform mutexes if MySQL++ is configured to support them. This
is planned for a version beyond v2.0. (See the Wishlist for the plan.) In the meantime,
do not depend on this mechanism for thread safety; you will have to serialize access to
some resources yourself.

To effect this variability in what it means for an object to be "locked", Lockable is only
an interface. It delegates the actual implementation to a subclass of the Lock interface,
using the Bridge pattern. (See Gamma et al.)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.13 manip.h File Reference 207

8.13 manip.h File Reference

Declares std::ostream manipulators useful with SQL syntax.

#include "common.h"

#include "datetime.h"

#include "myset.h"

#include "sql_string.h"

#include <iostream>

Namespaces

• namespace mysqlpp

Enumerations

• enum mysqlpp::quote_type0 { mysqlpp::quote }
• enum mysqlpp::quote_only_type0 { mysqlpp::quote_only }
• enum mysqlpp::quote_double_only_type0 { mysqlpp::quote_double_only }
• enum mysqlpp::escape_type0 { escape }
• enum mysqlpp::do_nothing_type0 { mysqlpp::do_nothing }
• enum mysqlpp::ignore_type0 { mysqlpp::ignore }

Functions

• SQLQueryParms & mysqlpp::operator<< (escape_type2 p, SQLString
&in)

Inserts a SQLString (p. ??) into a stream, escaping special SQL characters.

• template<class T> std::ostream & mysqlpp::operator<< (escape_type1 o,
const T &in)

Inserts any type T into a stream that has an operator<< defined for it.

• template<> std::ostream & mysqlpp::operator<< (escape_type1 o, const
std::string &in)

Inserts a C++ string into a stream, escaping special SQL characters.

• template<> ostream & mysqlpp::operator<< (escape_type1 o, const char
∗const &in)

Inserts a C string into a stream, escaping special SQL characters.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

208 MySQL++ File Documentation

• template<> std::ostream & mysqlpp::operator<< (escape_type1 o, const
ColData_Tmpl< std::string > &in)

Inserts a ColData into a stream, escaping special SQL characters.

• template<> std::ostream & mysqlpp::operator<< (escape_type1 o, const
ColData_Tmpl< const_string > &in)

Inserts a ColData with const string into a stream, escaping special SQL characters.

• template<> std::ostream & mysqlpp::operator<< (escape_type1 o, char
∗const &in)

Inserts a C string into a stream, escaping special SQL characters.

• std::ostream & mysqlpp::operator<< (escape_type1 o, char in[])
Inserts an array of char into a stream, escaping special SQL characters.

Variables

• bool mysqlpp::dont_quote_auto
Set (p. ??) to true if you want to suppress automatic quoting.

8.13.1 Detailed Description

Declares std::ostream manipulators useful with SQL syntax.

These manipulators let you automatically quote elements or escape characters that are
special in SQL when inserting them into an std::ostream. Since mysqlpp::Query
(p. ??) is an ostream, these manipulators make it easier to build syntactically-correct
SQL queries.

This file also includes operator<< definitions for ColData_Tmpl, one of the My-
SQL++ string-like classes. When inserting such items into a stream, they are automat-
ically quoted and escaped as necessary unless the global variable dont_quote_auto is
set to true. These operators are smart enough to turn this behavior off when the stream
is cout or cerr, however, since quoting and escaping are surely not required in that
instance.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.14 myset.h File Reference 209

8.14 myset.h File Reference

Declares templates for generating custom containers used elsewhere in the library.

#include "common.h"

#include "coldata.h"

#include "stream2string.h"

#include <iostream>

#include <set>

#include <vector>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Set< Container >

A special std::set derivative for holding MySQL data sets.

Functions

• template<class Container> std::ostream & mysqlpp::operator<<
(std::ostream &s, const Set< Container > &d)

Inserts a Set (p. ??) object into a C++ stream.

8.14.1 Detailed Description

Declares templates for generating custom containers used elsewhere in the library.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

210 MySQL++ File Documentation

8.15 mysql++.h File Reference

The main MySQL++ header file.

#include "connection.h"

#include "query.h"

#include "sql_types.h"

Namespaces

• namespace mysqlpp

Defines

• #define MYSQLPP_VERSION(major, minor, bugfix) (((major) << 16) |
((minor) << 8) | (bugfix))

Encode MySQL++ library version number.

• #define MYSQLPP_HEADER_VERSION MYSQLPP_VERSION(2, 3, 2)

Get the library version number that mysql++.h comes from.

Functions

• unsigned int mysqlpp::get_library_version ()

Get the current MySQL++ library version number.

8.15.1 Detailed Description

The main MySQL++ header file.

This file brings in all MySQL++ headers except for custom.h and custom-macros.h
which are a strictly optional feature of MySQL++.

There is no point in trying to optimize which headers you include, because the My-
SQL++ headers are so intertwined. You can only get trivial compile time benefits, at
the expense of clarity.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.15 mysql++.h File Reference 211

8.15.2 Define Documentation

8.15.2.1 #define MYSQLPP_HEADER_VERSION MYSQLPP_VERSION(2,
3, 2)

Get the library version number that mysql++.h comes from.

MySQL++ Version number that the mysql++.h header file comes from, encoded by
MYSQLPP_VERSION macro. Compare this value to what mysqlpp_lib_version() re-
turns in order to ensure that your program is using header files from the same version
of MySQL++ as the actual library you’re linking to.

8.15.2.2 #define MYSQLPP_VERSION(major, minor, bugfix) (((major) << 16)
| ((minor) << 8) | (bugfix))

Encode MySQL++ library version number.

This macro takes major, minor and bugfix numbers (e.g. 1, 2, and 3) and encodes them
like 0x010203.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

212 MySQL++ File Documentation

8.16 noexceptions.h File Reference

Declares interface that allows exceptions to be optional.

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::OptionalExceptions
Interface allowing a class to have optional exceptions.

• class mysqlpp::NoExceptions
Disable exceptions in an object derived from OptionalExceptions (p. ??).

8.16.1 Detailed Description

Declares interface that allows exceptions to be optional.

A class may inherit from OptionalExceptions, which will add to it a mechanism by
which a user can tell objects of that class to suppress exceptions. (They are enabled by
default.) This module also declares a NoExceptions class, objects of which take a ref-
erence to any class derived from OptionalExceptions. The NoExceptions constructor
calls the method that disables exceptions, and the destructor reverts them to the previ-
ous state. One uses the NoExceptions object within a scope to suppress exceptions in
that block, without having to worry about reverting the setting when the block exits.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.17 null.h File Reference 213

8.17 null.h File Reference

Declares classes that implement SQL "null" semantics within C++’s type system.

#include "exceptions.h"

#include <iostream>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::null_type
The type of the global mysqlpp::null (p. ??) object.

• struct mysqlpp::NullisNull
Class for objects that define SQL null in terms of MySQL++’s null_type (p. ??).

• struct mysqlpp::NullisZero
Class for objects that define SQL null as 0.

• struct mysqlpp::NullisBlank
Class for objects that define SQL null as a blank C string.

• class mysqlpp::Null< Type, Behavior >

Class for holding data from a SQL column with the NULL attribute.

Functions

• template<class Type, class Behavior> std::ostream & mysqlpp::operator<<
(std::ostream &o, const Null< Type, Behavior > &n)

Inserts null-able data into a C++ stream if it is not actually null. Otherwise, insert
something appropriate for null data.

Variables

• const null_type mysqlpp::null = null_type()

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

214 MySQL++ File Documentation

Global ’null’ instance. Use wherever you need a SQL null. (As opposed to a C++
language null pointer or null character.).

8.17.1 Detailed Description

Declares classes that implement SQL "null" semantics within C++’s type system.

This is required because C++’s own NULL type is not semantically the same as SQL
nulls.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.18 qparms.h File Reference 215

8.18 qparms.h File Reference

Declares the template query parameter-related stuff.

#include "sql_string.h"

#include <vector>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::SQLQueryParms
This class holds the parameter values for filling template queries.

• struct mysqlpp::SQLParseElement
Used within Query (p. ??) to hold elements for parameterized queries.

8.18.1 Detailed Description

Declares the template query parameter-related stuff.

The classes defined in this file are used by class Query when it parses a template query:
they hold information that it finds in the template, so it can assemble a SQL statement
later on demand.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

216 MySQL++ File Documentation

8.19 query.h File Reference

Defines a class for building and executing SQL queries.

#include "common.h"

#include "lockable.h"

#include "noexceptions.h"

#include "qparms.h"

#include "querydef.h"

#include "result.h"

#include "row.h"

#include "sql_string.h"

#include <deque>

#include <iomanip>

#include <list>

#include <map>

#include <set>

#include <sstream>

#include <vector>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Query

A class for building and executing SQL queries.

Defines

• #define MYSQLPP_QUERY_THISPTR ∗this

Helper macro used inside MySQL++ to work around a VC++ 2003 bug.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.19 query.h File Reference 217

Enumerations

• enum mysqlpp::query_reset { DONT_RESET, RESET_QUERY }
Used for indicating whether a query object should auto-reset.

8.19.1 Detailed Description

Defines a class for building and executing SQL queries.

8.19.2 Define Documentation

8.19.2.1 #define MYSQLPP_QUERY_THISPTR ∗this

Helper macro used inside MySQL++ to work around a VC++ 2003 bug.

This macro returns ’∗this’, either directly or upcast to Query’s base
class to work around an error in the overloaded operator lookup
logic in VC++ 2003. For an explanation of the problem, see:
http://groups.google.com/group/microsoft.public.vc.stl/browse_-
thread/thread/9a68d84644e64f15

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

218 MySQL++ File Documentation

8.20 resiter.h File Reference

Declares templates for adapting existing classes to be
iteratable random-access containers.

#include "common.h"

#include <iterator>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::const_subscript_container< OnType, ValueType,
ReturnType, SizeType, DiffType >

A base class that one derives from to become a random access container, which can
be accessed with subscript notation.

• class mysqlpp::subscript_iterator< OnType, ReturnType, SizeType, Diff-
Type >

Iterator that can be subscripted.

8.20.1 Detailed Description

Declares templates for adapting existing classes to be
iteratable random-access containers.

The file name seems to tie it to the mysqlpp::Result
(p. ??) class, which is so adapted, but these templates
are also used to adapt the mysqlpp::Fields (p. ??) and
mysqlpp::Row (p. ??) classes.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.21 result.h File Reference 219

8.21 result.h File Reference

Declares classes for holding SQL query result sets.

#include "common.h"

#include "exceptions.h"

#include "fields.h"

#include "field_names.h"

#include "field_types.h"

#include "noexceptions.h"

#include "resiter.h"

#include "row.h"

#include <map>

#include <set>

#include <string>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::ResUse
A basic result set class, for use with "use" queries.

• class mysqlpp::Result
This class manages SQL result sets.

• class mysqlpp::ResNSel
Holds the information on the success of queries that don’t return any results.

Functions

• void mysqlpp::swap (ResUse &x, ResUse &y)
Swaps two ResUse (p. ??) objects.

• void mysqlpp::swap (Result &x, Result &y)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

220 MySQL++ File Documentation

Swaps two Result (p. ??) objects.

8.21.1 Detailed Description

Declares classes for holding SQL query result sets.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.22 row.h File Reference 221

8.22 row.h File Reference

Declares the classes for holding row data from a result
set.

#include "coldata.h"

#include "exceptions.h"

#include "noexceptions.h"

#include "resiter.h"

#include "vallist.h"

#include <vector>

#include <string>

#include <string.h>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Row
Manages rows from a result set.

8.22.1 Detailed Description

Declares the classes for holding row data from a result
set.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

222 MySQL++ File Documentation

8.23 sql_string.h File Reference

Declares an std::string derivative that adds some things
needed within the library.

#include "common.h"

#include "null.h"

#include <stdio.h>

#include <string>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::SQLString
A specialized std::string that will convert from any valid MySQL type.

8.23.1 Detailed Description

Declares an std::string derivative that adds some things
needed within the library.

This class adds some flags needed by other parts of
MySQL++, and it adds conversion functions from any
primitive type. This helps in inserting these primitive
types into the database, because we need everything in
string form to build SQL queries.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.24 sql_types.h File Reference 223

8.24 sql_types.h File Reference

Declares the closest C++ equivalent of each MySQL column
type.

#include "common.h"

#include <string>

Namespaces

• namespace mysqlpp

8.24.1 Detailed Description

Declares the closest C++ equivalent of each MySQL column
type.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

224 MySQL++ File Documentation

8.25 stream2string.h File Reference

Declares an adapter that converts something that can be
inserted into a C++ stream into a string type.

#include <sstream>

Namespaces

• namespace mysqlpp

Functions

• template<class Strng, class T> Strng
mysqlpp::stream2string (const T &object)

Converts a stream-able object to any type that can be initialized from an
std::string.

8.25.1 Detailed Description

Declares an adapter that converts something that can be
inserted into a C++ stream into a string type.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.26 string_util.h File Reference 225

8.26 string_util.h File Reference

Declares string-handling utility functions used within
the library.

#include "common.h"

#include <ctype.h>

#include <string>

Namespaces

• namespace mysqlpp

Functions

• void mysqlpp::strip (std::string &s)
Strips blanks at left and right ends.

• void mysqlpp::escape_string (std::string &s)
C++ equivalent of mysql_escape_string().

• void mysqlpp::str_to_upr (std::string &s)
Changes case of string to upper.

• void mysqlpp::str_to_lwr (std::string &s)
Changes case of string to lower.

• void mysqlpp::strip_all_blanks (std::string &s)
Removes all blanks.

• void mysqlpp::strip_all_non_num (std::string &s)
Removes all non-numerics.

8.26.1 Detailed Description

Declares string-handling utility functions used within
the library.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

226 MySQL++ File Documentation

8.27 tiny_int.h File Reference

Declares class for holding a SQL tiny_int.

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::tiny_int
Class for holding an SQL tiny_int (p. ??) object.

8.27.1 Detailed Description

Declares class for holding a SQL tiny_int.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.28 transaction.h File Reference 227

8.28 transaction.h File Reference

Declares the Transaction class.

#include "common.h"

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Transaction
Helper object for creating exception-safe SQL transactions.

8.28.1 Detailed Description

Declares the Transaction class.

This object works with the Connection class to automate
the use of MySQL transactions. It allows you to express
these transactions directly in C++ code instead of
sending the raw SQL commands.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

228 MySQL++ File Documentation

8.29 type_info.h File Reference

Declares classes that provide an interface between the
SQL and C++ type systems.

#include "common.h"

#include <map>

#include <typeinfo>

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::mysql_type_info
Holds basic type information for ColData.

Functions

• bool mysqlpp::operator== (const mysql_type_info &a, const mysql_-
type_info &b)

Returns true if two mysql_type_info (p. ??) objects are equal.

• bool mysqlpp::operator!= (const mysql_type_info &a, const mysql_type_-
info &b)

Returns true if two mysql_type_info (p. ??) objects are not equal.

• bool mysqlpp::operator== (const std::type_info &a, const mysql_type_info
&b)

Returns true if a given mysql_type_info (p. ??) object is equal to a given C++ type_-
info object.

• bool mysqlpp::operator!= (const std::type_info &a, const mysql_type_info
&b)

Returns true if a given mysql_type_info (p. ??) object is not equal to a given C++
type_info object.

• bool mysqlpp::operator== (const mysql_type_info &a, const std::type_info
&b)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.29 type_info.h File Reference 229

Returns true if a given mysql_type_info (p. ??) object is equal to a given C++ type_-
info object.

• bool mysqlpp::operator!= (const mysql_type_info &a, const std::type_info
&b)

Returns true if a given mysql_type_info (p. ??) object is not equal to a given C++
type_info object.

8.29.1 Detailed Description

Declares classes that provide an interface between the
SQL and C++ type systems.

These classes are mostly used internal to the library.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

230 MySQL++ File Documentation

8.30 vallist.h File Reference

Declares templates for holding lists of values.

#include "manip.h"

#include <string>

#include <vector>

Namespaces

• namespace mysqlpp

Classes

• struct mysqlpp::equal_list_ba< Seq1, Seq2, Manip >

Holds two lists of items, typically used to construct a SQL "equals clause".

• struct mysqlpp::equal_list_b< Seq1, Seq2, Manip >

Same as equal_list_ba (p. ??), plus the option to have some elements of the equals
clause suppressed.

• struct mysqlpp::value_list_ba< Seq, Manip >

Holds a list of items, typically used to construct a SQL "value list".

• struct mysqlpp::value_list_b< Seq, Manip >

Same as value_list_ba (p. ??), plus the option to have some elements of the list
suppressed.

Functions

• template<class Seq1, class Seq2, class Manip>
std::ostream & mysqlpp::operator<< (std::ostream &o, const
equal_list_ba< Seq1, Seq2, Manip > &el)

Inserts an equal_list_ba (p. ??) into an std::ostream.

• template<class Seq1, class Seq2, class Manip> std::ostream &
mysqlpp::operator<< (std::ostream &o, const equal_list_b< Seq1,
Seq2, Manip > &el)

Same as operator<< for equal_list_ba (p. ??), plus the option to suppress insertion
of some list items in the stream.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.30 vallist.h File Reference 231

• template<class Seq, class Manip> std::ostream & mysqlpp::operator<<
(std::ostream &o, const value_list_ba< Seq, Manip > &cl)

Inserts a value_list_ba (p. ??) into an std::ostream.

• template<class Seq, class Manip> std::ostream & mysqlpp::operator<<
(std::ostream &o, const value_list_b< Seq, Manip > &cl)

Same as operator<< for value_list_ba (p. ??), plus the option to suppress insertion
of some list items in the stream.

• void mysqlpp::create_vector (size_t size, std::vector< bool > &v, bool t0,
bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Create a vector of bool with the given arguments as values.

• template<class Container> void mysqlpp::create_vector (const Container
&c, std::vector< bool > &v, std::string s0, std::string s1, std::string s2,
std::string s3, std::string s4, std::string s5, std::string s6, std::string s7,
std::string s8, std::string s9, std::string sa, std::string sb, std::string sc)

Create a vector of bool using a list of named fields.

• template<class Seq> value_list_ba< Seq, do_nothing_type0 >
mysqlpp::value_list (const Seq &s, const char ∗d=",")

Constructs a value_list_ba (p. ??).

• template<class Seq, class Manip> value_list_ba< Seq, Manip >
mysqlpp::value_list (const Seq &s, const char ∗d, Manip m)

Constructs a value_list_ba (p. ??).

• template<class Seq, class Manip> value_list_b< Seq, Manip >
mysqlpp::value_list (const Seq &s, const char ∗d, Manip m, const
std::vector< bool > &vb)

Constructs a value_list_b (p. ??) (sparse value list).

• template<class Seq, class Manip> value_list_b< Seq, Manip >
mysqlpp::value_list (const Seq &s, const char ∗d, Manip m, bool t0,
bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Constructs a value_list_b (p. ??) (sparse value list).

• template<class Seq> value_list_b< Seq, do_nothing_type0 >
mysqlpp::value_list (const Seq &s, const char ∗d, bool t0, bool t1=false,
bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

232 MySQL++ File Documentation

t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false)

Constructs a sparse value list.

• template<class Seq> value_list_b< Seq, do_nothing_type0 >
mysqlpp::value_list (const Seq &s, bool t0, bool t1=false, bool t2=false,
bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a sparse value list.

• template<class Seq1, class Seq2> equal_list_ba< Seq1, Seq2, do_nothing_-
type0 > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d=",", const char ∗e=" = ")

Constructs an equal_list_ba (p. ??).

• template<class Seq1, class Seq2, class Manip> equal_list_ba< Seq1, Seq2,
Manip > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, Manip m)

Constructs an equal_list_ba (p. ??).

• template<class Seq1, class Seq2, class Manip> equal_list_b< Seq1, Seq2,
Manip > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, Manip m, const std::vector< bool > &vb)

Constructs a equal_list_b (p. ??) (sparse equal list).

• template<class Seq1, class Seq2, class Manip> equal_list_b< Seq1, Seq2,
Manip > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, Manip m, bool t0, bool t1=false, bool t2=false, bool
t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b (p. ??) (sparse equal list).

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, bool t0, bool t1=false, bool t2=false, bool t3=false, bool
t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b (p. ??) (sparse equal list).

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool
t5=false, bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool
ta=false, bool tb=false, bool tc=false)

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

8.30 vallist.h File Reference 233

Constructs a equal_list_b (p. ??) (sparse equal list).

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, bool t0,
bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Constructs a equal_list_b (p. ??) (sparse equal list).

8.30.1 Detailed Description

Declares templates for holding lists of values.

Generated on Tue Oct 10 15:50:34 2017 for MySQL++ by Doxygen

