MySQL++ User Manual

Kevin Atkinson
Sinisa Milivojevic
Monty Widenius

Warren Young

Copyright © 1998-2001, 2005-2007 Kevin Atkinson (original
author)MySQL ABEducational Technology Resources

$Date: 2007-01-12 03:40:51 -0700 (Fri, 12 Jan 2007) $

Table of Contents

OO 1 oo [0 1o PSP 2
1.1. A Brief History of MYSOQL++ ..ouuiiiiiiiii e e e e e e e e e e e e e e e an e eeen 2
1.2, 1T YOU HaVve QUESHIONS... ..ovuiiiiiiiiiei e e e e e e e e e e e e e e e e e et e et e e et e e et e e eeenaes 2
B2 O Y= o= P 3
225 T I oY @00 g 0 ="ox v o 0 I o= ot 3
2.2. The QUENY OBJECE ...ceiieiiiiii e s e et e e e e e e e et e s e e e e e e e e et e e reeeaeeeaaane e aees 3
R A S (= U S = PP 3
(o= o 1 o YN 4
G 11 (o)1 - | PR 4
3.1 RUNNING the EXAMPIES ... e e e e e e e e e et e e eees 5
3.2. A SIMPIE EXAMPIE ..eniiiiie e 5
3.3. Examples ULility MOGUIEcouiiiiii e e e e e e aens 6
3.4. A More Complicated EXaMPIEuuiiiiiieiii e e 11
G (= o 1 o YN 12
3.6. QUOLING AN ESCAPING ...evvuiiinieiiii et e e et e e e e e e e e e e e e e e et e e st e e et e e e et e e et aaetnaes 13
3.7. SPeCialized SQL SITUCLUMES ... cevuiiii et e e e e e e e e et e et e e et e e et e e e eeaens 14
3.8. C++ Equivaents of SQL COlUMN TYPES ...uiiiniiiiiieiiiei i ee e e e e e e e e e e et e e eaanees 20
3.9. Handling SQL NUIISeee i e e e e e e e et e et e e ea e e et 20
3.10. Creating TranSaCliON SELSciuviiiii e e e e e e e e e e e e e e e e e e et e e et e e et e eeanaaeees 21
3.11. Which QUENY TYPE 10 USE? ...oviiiiiiiiiiie et e e e e e e e et e e et e et e e e eaens 23
3.12. Getting Field Meta-InfOrmationooiiiiiiiii e e e e e 24
3.13. Let's DO SOMEthing USEfULuiiiiiiiiic e e e e e e e aens 26
= 1T = (ST L= =< PN 30
4.1, Setting Up tEMPIALE QUENESiii et e e e e e e e e e e e e e e e aaneees 33
4.2, Setting the parameters at EXECULION tIMEu.iiii i e e e e e 34
e T U 1= T oo o (= = 1 | £ 34
4.4, CombINING thE TWO ...ouuiiiii i et e e e e e e e et e e et e e et e e e at e e et e eaanaes 34
I (o g =0T | o 35
5. SPeCializEd SQL SITUCIUIESviiiiii e et e e e e e e e e e e e et e et e et e e et e e et e e e eeanaas 35
LI o | [(== (= S 35
5.2. SSQLS Comparison and INItialiZafionceeeuieiiiiiiiee e ee e e e e e e 36
5.3. Retrieving @ Table SUDSELccuuiiiiicie e e 37
5.4. Additional Features of Specialized SQL SITUCIUIEScivvniiiiiiii e 38
5.5. Harnessing SSQLS INtEINAIScvuuiiiicii i e e e e e e e e e e et e eaanees 39
5.6. Alternate Creation METNOOSiiiiiiiiei e 42

MySQL++ User Manual

5.7. EXpanding SSQLS IMBCIOScvuuuiiiiiieiieei et e e e e e e e e e e e e et e e et e e et e e e e e et e e et e eanaeeees 42
5.8. Extending the SSQLS MEChANISMuuuiiiiiiiii e e e e e e e et e et e e aanaees 43
6. Using Unicode With MY SO+ ...u..iiiiiiiii i e e e e e e e e et e e et e e et eeaneeannaees 43
6.1. A Short History of UNICOOEccuuiiiiiiiiii e e e e e aa s 43
6.2. UNICOOE BN UNIX .ottt e e e e et e e e et e e e et s e e e et e e e eatneeas 44
6.3. UNICOAE 8N WINB2 ... e e e e et e e et e e r s 44
L o g\ o =) o 10 o PP 45
7. Incompatible Library Changescooiuiiiiiiiii e e e e e e e e e 45
A N o 0 o = 45
A N = B 0 o SR 47
S I Vo= 0 o PN 48
8.1. GNU Lesser General PUBIIC LICENSEiiiiii e 49
8.2. MySQL++ USer Manual LICENSEuuiiii i e e e e e e e e e e aeaas 56

1. Introduction

MySQL++ is a powerful C++ wrapper for MySQL's C API. Its purpose is to make working with queries as easy as
working with STL containers.

The latest version of MySQL ++ can be found at the official web site.

Support for MySQL ++ can be had on the mailing list. That page hosts the mailing list archives, and tells you how
you can subscribe.

1.1. A Brief History of MySQL++

MySQL ++ was created in 1998 by Kevin Atkinson. It started out MySQL -specific, but there were early effortsto try
and make it database-independent, and call it SQL++. Thisis where the old library name "sglplus’ came from. This
is also why the old versions prefixed some class names with "Mysgl" but not others: the others were supposed to be
the database-independent parts.

Then in 1999, Sinisa Milivojevic unofficialy took over maintenance of the library, releasing versions 1.0 and 1.1.
(All of Kevin's releases were pre-1.0 point releases.) Kevin gave over maintenance to Sinisa officially with 1.2, and
ceased to have any involvement with the library's maintenance. Sinisawent on to maintain the library through 1.7.9,
released in mid-2001. Since Sinisa is an employee of MySQL AB, it seems to be during this time that the dream of
multiple-database compatibility died.

With version 1.7.9, MySQL ++ went into a period of stasis, lasting over three years. During this time, Sinisa ran the
MySQL ++ mailing list and supported its users, but made no new releases. There were many patches submitted during
this period, some of which were ignored, others which were just put on the MySQL++ web site for people to try. A
lot of these patches were mutually-incompatible, and not all of them gave afully-functional copy of MySQL ++.

In early August of 2004, the current maintainer (Warren Y oung) got fed up with this situation and took over. He
released 1.7.10 later that month.

1.2. If You Have Questions...

If you want to email someoneto ask questions about thislibrary, we greatly prefer that you send mail to the MySQL ++
mailing list. The mailing list is archived, so if you have questions, do a search to see if the question has been asked
before.

You may find people's individual email addresses in various files within the MySQL ++ distribution. Please do not
send mail to them unless you are sending something that isinherently personal. Not all of the principal developers of

MySQL++ User Manual

MySQL ++ are till activein its devel opment; those who have dropped out have no wish to be bugged about MySQL ++.
Those of us still activein MySQL ++ development monitor the mailing list, so you aren't getting any extra"coverage"
by sending messages to additional email addresses.

2. Overview

MySQL ++ has devel oped into avery complex and powerful library, with many different waysto accomplish the same
task. Unfortunately, this means that figuring out how to perform asimple task can be frustrating for new users. In this
section we will provide an overview of the most important user-facing components of the library.

The overall process for using MySQL ++ is similar to that of most other database access APIs:
1. Open the connection

2. Form and execute the query

3. Iterate through the result set

4. Goto2:)

Thereis, however, alot of extrafunctionality along each step of the way.

2.1. The Connection Object

A Connection object manages the connection to the MySQL server. You need at least one of these objects to do
anything. Because the other MySQL++ objects your program will use often depend (at least indirectly) on the
Connect i on instance, the Connect i on object needsto live at least aslong asal other MySQL ++ objectsin your
program.

2.2. The Query Object

Most often, you create SQL queries using a Query object created by the Connect i on object.

Query issubclassed from st d: : st ri ngst r eamwhich means you can write to it like any other C++ stream to
form aquery. The library includes stream manipulators that make it easy to generate syntactically-correct SQL.

Y ou can also set up Template Querieswith this class. Template queries work something like C'spr i nt f () function:
you set up afixed query string with tags inside that indicate where to insert the variable parts. If you have multiple
queries that are structurally similar, you simply set up one template query, and use that in the various locations of
your program.

A third method for building queriesisto use Quer y with Specialized SQL Structures (SSQLS). Thisfeature presents
your results as a C++ data structure, instead of making you access the data through MySQL ++ intermediary classes.
It also reduces the amount of embedded SQL code your program needs.

2.3. Result Sets

The field data in a result set are stored in a special std: : string-like class called ColData. This class has
conversion operators that let you automatically convert these objects to any of the basic C data types. Additionally,
MySQL ++ defines classeslike DateTime, which you caninitializefrom aMySQL DATETI ME string. These automatic
conversions are protected against bad conversions, and can either set awarning flag or throw an exception, depending
on how you set the library up.

Asfor the result sets as awhole, MySQL ++ has a number of different ways of representing them:

MySQL++ User Manual

Queries That Do Not Return Data

Not all SQL queries return data. An example is CREATE TABLE. For these types of queries, thereis a special result
type (ResNSel) that simply reports the state resulting from the query: whether the query was successful, how many
rows it impacted (if any), etc.

Queries That Return Data: Dynamic Method

The easiest way to retrieve datafrom MySQL uses a Result object, which includes one or more Row objects. Because
theseclassesare st d: : vect or -like containers, you can treat the result set as atwo-dimensional array. For example,
you can get the 5thitem on the 2nd row by simply sayingr esul t . at (1) . at (4) . You can also accessrow elements
by field name, likethis.resul t.at (2)["price"].

An alternate way of accessing your query results is through a ResUse object. This class acts more like an STL input
iterator than a container: you walk through your result set one item at atime, always going forward. Y ou can't seek
around in the result set, and you can't know how many results are in the set until you find the end. This method is
more efficient when there can be arbitrarily many results, which could pose a memory allocation problem with the
previous technique.

Queries That Return Data: Static Method

The Specialized SQL Structures (SSQL S) feature method above defines C++ structures that match the table structures
in your database schema.

Wecall it the"static" method because thetable structureisfixed at compiletime. Indeed, some schemachangesrequire
that you update your SSQL S definitions and recompile, or else the program could crash or throw "bad conversion™
exceptions when MySQL++ tries to stuff the new data into an outdated data structure. (Not all changes require a
recompile. Adding acolumn to atableis safe, for instance, asthe program will ignore the new column until you update
the SSQL S definition.)

Theadvantage of thismethod isthat your program will require very little embedded SQL code. Y ou can simply execute
aquery, and receive your results as C++ data structures, which can be accessed just as you would any other structure.
The results can be accessed through the Row object, or you can ask the library to dump the results into a sequential
or set-associative STL container for you. Consider this:

vect or <mystruct > v;

Query q = connection. query();
g << "SELECT * FROM nytabl e";
g.storein(v);

for (vector<nystruct>::iterator it = v.begin(); it !=v.end(); ++it) {
cout << "Price: " << it->price << endl;

}

Isn't that slick?

2.4. Exceptions

By default, the library throws exceptions whenever it encounters an error. Y ou can ask the library to set an error flag
instead, if you like, but the exceptions carry more information. Not only do they include a string member telling you
why the exception was thrown, there are several exception types, so you can distinguish between different error types
withinasinglet r y block.

3. Tutorial

MySQL++ User Manual

Thistutorial ismeant to give you ajump start in using MySQL ++. Whileit isavery complicated and powerful library,
it's possible to make quite functional programs without tapping but afraction of its power. This section will introduce
you to the most useful fraction.

Thistutorial assumes you know C++ fairly well, in particuler the Standard Template Library (STL) and exceptions.

3.1. Running the Examples

All of the examples are complete running programs. They may or may not be built for you already, depending on
how you installed the library.

If you installed MySQL ++ from the source tarball on a Unixy system, the examples should have been built along with
thelibrary. If not, simply go into the examples directory and type make.

If you ingtalled the library via RPM, the examples are in the mysgl++-devel RPM. After installing that, the
examples are in / usr/ src/ nysql ++/ exanpl es. To build them, go into that directory and type make -
f Makefile.sinple.Seethefile/ usr/ share/ doc/ nysql ++- devel */ READVE. exanpl es for more
details.

If you are on a Windows system, the build process for the library should have built the examples as well. Where the
programs are depends on which compiler you're using. There should be a README.* file in the distribution specific
to your compiler with further instructions.

Once you have the examples building, you need to initialize the sample database by running ther eset db example.
The usage of resetdb is as follows:

resetdb [host [user [password [port]]]]

If you leave off host, localhost is assumed. If you leave off user, your current username is assumed. If you leave of
the password, it is assumed that you don't need one. And if you leave off the port, it will use the standard MySQL
port number.

The user you give resetdb needs to be an account with permission to create databases. Once the database is created
you can use any account that has full permission to the sample database mysql_cpp_data.

Y ou may also haveto re-run resetdb after running some of the other examples, as they change the database.

3.2. A Simple Example

The following example demonstrates how to open a connection, execute a simple query, and display the results. This
isexanpl es/ si npl el. cpp:

#i nclude "util.h"
#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>

usi ng namespace std;

i nt
mai n(int argc, char *argv[])

{

/1 Connect to the sanpl e database.

MySQL++ User Manual

nysgl pp: : Connecti on con(fal se);
if (!connect_to_db(argc, argv, con)) {
return 1,

}

/1l Retrieve a subset of the sanple stock table set up by resetdb
nysql pp: : Query query = con.query();

guery << "select itemfrom stock";

nysgl pp: : Result res = query.store();

/1 Display the result set

cout << "We have:" << endl;

if (res) {

char buf[100];

nysqgl pp: : Row r ow,

nysql pp: : Row. : si ze_type i;

for (i =0; row=res.at(i); ++i) {

cout << "\t' << utf8trans(row at(0), buf, sizeof(buf)) << endl;
}

}

el se {
cerr << "Failed to get itemlist: " << query.error() << endl;
return 1,

}

return O;

}

This example simply gets the entire "item" column from the example table, and prints those values out.

Notice that MySQL++ lets you store result sets in STL containers, such as st d: : vect or . We iterate through
the result set just as you would with any other STL container. The only tricky bit isthei t - >at (0) idiom. This
dereferences the iterator, which yields a Row object, on which we call theat () method to retrieve the first field.

The only thing that isn't explicitly handled in the code block above is that we delegate connection establishment to
connect _to_db() intheuti| module. We do this only because that function also handles the command line
parsing for the examples, so they have a consistent interface.

3.3. Examples' Utility Module

| referred to the ut i | module above. Following is the source for that module, which aso contains other functions
used by other examples. It isn't important to understand this module in detail, but understanding its outlines will make
the following examples more clear.

#i ncl ude "util.h"

#i ncl ude <i ostreant
#i ncl ude <i omani p>
#i ncl ude <stdlib. h>

/1 This include isn't needed by util nbdule. It's just a test of the
/1 new SSQS feature allow ng the structure to be defined in many
/1 nodul es without having a multiply-defined static variable error.

MySQL++ User Manual

/1 Don't do this for VC++ 2003: it doesn't support variadi c nacros,
/1 which this feature depends on.

#if ldefined(_MSC VER) || _MSC _VER >= 1400
define MYSQLPP_SSQ.S NO STATI CS

i ncl ude "stock. h"

#endi f

usi ng namespace std;

const char* kpcSanpl eDat abase = "nysqgl _cpp_data"

(00 aef8trans [/ HTTTETTEETEEP T rrrnn
/1 Converts a Unicode string encoded in UTF-8 form (which the MySQ

/1 database uses) to a formsuitable for outputting to the standard C++
/1 cout stream Functionality is platformspecific.

char*

utf8trans(const char* utf8_ str, char* out_buf, int buf_Ien)

{

#i f def MYSQLPP_PLATFORM W NDOWS

/1 1t's Wn32, so assume consol e out put, where output needs to be in
/1 local ANSI code page by default.

wchar _t ucs2_buf [100];

static const int ub_chars = sizeof(ucs2_buf) / sizeof(ucs2_buf[0]);

/1 First, convert UTF-8 string to UCS-2

if (MultiByteToW deChar(CP_UTF8, 0, utf8 str, -1
ucs2_buf, ub_chars) > 0) {

/1l Next, convert UCS-2 to | ocal code page.

CPI NFCEX cpi ;

Get CPI nf oEx(CP_OEMCP, 0, &cpi);

W deChar ToMul ti Byt e(cpi . CodePage, 0, ucs2 buf, -1
out _buf, buf_len, 0, 0);

return out buf;

}

el se {

int err = GetlLastError();

if (err == ERROR_NO_UNI CODE_TRANSLATI ON) {

cerr << "Bad data in UTF-8 string" << endl

}

el se {

cerr << "Unknown error in Unicode translation: " <<
Get LastError() << endl

}

return O;

}

#el se

/1 Assume a nodern Unixy platform where the systemis termnal 1/0
/1 code handles UTF-8 directly. (e.g. common Linux distributions
/1 since 2001 or so, recent versions of Mac OS X, etc.)
strncpy(out_buf, utf8_str, buf_len);

return out buf;

#endi f

MySQL++ User Manual

{111 print_stock_header [/[// 11111100 E0EE00EEEE 0 ni i nirrrn
/1 Display a header suitable for use with print_stock_rows().

voi d

print_stock_header (i nt rows)

{

cout << "Records found: " << rows << endl << endl

cout.setf(ios::left);

cout << setw(21) << "ltem <<
setw(10) << "Nunf <<
setw(10) << "Weight" <<
setw(10) << "Price" <<

"Date" << endl << endl

}

(11D print_stock_row /1111 1HTEEEEEEEEErr bbb rrrn
/1 Print out a row of data fromthe stock table, in a format conpati bl e
/1 with the header printed out in the previous function

voi d

print_stock_rowconst nysql pp::sqgl _char& item nysqgl pp::sql_bigint num
nysql pp: : sql _doubl e wei ght, nysql pp:: sql _doubl e pri ce,

const nysql pp:: sqgl _date& date)

{

/1 We do UTF-8 translation on itemfield because there is Unicode

/1 data in this field in the sanpl e database, and sone systens

/1 cannot handle UTF-8 sent directly to cout.

char buf[100];

cout << setw(20) << utf8trans(itemc_str(), buf, sizeof(buf)) << ' ' <<
setw(9) << num<< ' ' <<

setw(9) << weight << ' ' <<

setw(9) << price << ' ' <<

date << endl

}

(11D print_stock_row /11111 HTEEEEEEEEErrr b n bbb rrrn
/1 Take a Row fromthe exanple 'stock' table, break it up into fields,
/1 and call the above version of this function

voi d

print_stock_row const mnysql pp:: Row& row)

{

/1 The brief code belowillustrates several aspects of the library
/1 worth noting:

/1

/1 1. You can subscript a row by integer (position of the field in
/1l the row) or by string (name of field in the row. The former is
/1 nore efficient, while the latter trades sone efficiency for

/1 robustness in the face of schema changes. (Consider using SSQS

MySQL++ User Manual

/1 if you need a tradeoff in between these two positions.)

/1

/1 2. You can also get at a rows field s with Row:at(), which is
/1 much |ike Row :operator[](int). Besides the syntax difference,
/1 the only practical difference is that only at() can access field
[l 0: this is because '0' can be converted to both int and to const
/1 char*, so the conpiler rightly conplains that it can't decide

/1 which overload to call.

/1

/1 3. Notice that we nake an explicit tenporary copy of the first
/1 field, which is the only string field. W nust tolerate the

/1 inefficiency of this copy, because Row :operator[] returns a

/1 Col Dat a obj ect, which goes away after it is converted to sone

/1l other form So, while we could have made print_stock row()

/1 take a const char* argunent (as past versions mstakenly did!)
/1 this would result in a dangling pointer, since it points into the
/1 Col Data object, which is dead by the tine the pointer is

/1 evaluated in print_stock rowm). It will probably even work this
/1 way, but like any nenmory bug, it can weak subtle havoc.
std::string itemrow at(0));

print_stock rowmitem row "num'], row 2], row 3], row4]);

}

{111 print_stock_rows [/// /11T 0T EEE 0 r b nr bbb rrrnn
/1 Print out a number of rows fromthe exanple 'stock' table.

voi d
print_stock_rows(mnmysql pp:: Result& res)
{

print_stock_header(res.size());

/1 Use the Result class's read-only random access iterator to walk
/1 through the query results.

nysqgl pp: : Result::iterator i;

for (i =res.begin(); i !'=res.end(); ++i) {

/1 Notice that a dereferenced result iterator can be converted

/1 to a Row object, which nakes for easier elenment access.
print_stock_row(*i);

}

}

{111 get_stock_table //// /111 ITEIEEPTEEEE i rrrn
/1l Retreive the entire contents of the exanple 'stock' table.

voi d

get _stock_t abl e(nmysql pp: : Query& query, mysql pp:: Result& res)
{

/!l Reset the query object, in case we're re-using it.
query.reset();

/1 You can wite to the query object |ike you would any ostream
guery << "select * from stock";

MySQL++ User Manual

/1 Show the query string. |If you call preview), it nust be before
/1 you call execute() or store() or use().
cout << "Query: " << query.preview() << endl;

/1 Execute the query, storing the results in nenory.
res = query.store();

}

{111 print_stock_table ///71 111100 TEIEEEEEEEEEEE it rrrn
/1 Sinply retrieve and print the entire contents of the stock table.

voi d

print_stock_tabl e(nmysql pp:: Query& query)
{

nysgl pp: : Result res;

get _stock_t abl e(query, res);
print_stock_rows(res);

}

{111 connect _to_db [/ /111111 HTEEEIEEEEE bbb rrrnn
/1 Establishes a connection to a MySQL dat abase server, optionally

/1 attaching to database kdb. This is basically a conmand-I|ine parser
/1 for the exanples, since the exanple prograns’' argunents give us the
/1 information we need to establish the server connection

bool
connect _to_db(int argc, char *argv[], nysql pp::Connection& con
const char *kdb)

{

if (argc < 1) {

cerr << "Bad argunent count: " << argc << 'I' << endl
return false;

}

if ('kdb) {

kdb = kpcSanpl eDat abase;

}

if ((argc > 1) && (argv[1][0] == "-")) {

cout << "usage: " << argv[0] <<

[host] [user] [password] [port]" << endl
cout << endl << "\tConnects to database "
if (strlen(kdb) > 0) {

Cout << T << kdb << T
}

el se {

cout << "server";

}

cout << " on | ocal host using your user" << endl
cout << "\tname and no password by default."” << endl << endl
return fal se;

10

MySQL++ User Manual

}

if (argc == 1) {

con. connect (kdb);

}

else if (argc == 2) {

con. connect (kdb, argv[1]);

}

else if (argc == 3) {

con. connect (kdb, argv[1], argv[2]);

}

else if (argc == 4) {

con. connect (kdb, argv[1], argv[2], argv[3]);
}

else if (argc >= 5) {

con. connect (kdb, argv[1l], argv[2], argv[3], atoi(argv[4]));
}

if (con) {
return true

}

el se {
cerr << "Database connection failed: " << con.error() << endl
return fal se;

}
}

This is actually an abridged version of util.cpp, with the Unicode stuff removed. The interaction between MySQL,
MySQL++ and Unicode is covered in alater chapter, Using Unicode with MySQL ++.

3.4. A More Complicated Example

Thesi npl el example above was pretty trivial. Let's get alittle deeper. Hereisexanpl es/ si npl e2. cpp:

#i nclude "util.h"
#i ncl ude <nysql ++. h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>

usi ng namespace std;

i nt

mai n(i nt argc, char *argv[])

{

/1 Connect to the sanpl e database.
nysgl pp: : Connecti on con(fal se);

if (!connect_to_db(argc, argv, con)) {
return 1,

}

/1l Retrieve the sanple stock table set up by resetdb

11

MySQL++ User Manual

nysql pp: : Query query = con.query();
guery << "select * from stock";
nysql pp: : Result res = query.store();

/1 Display results

if (res) {

/1 Display header
cout.setf(ios::left);

cout << setw(21) << "ltem <<
setw(10) << "Nunf <<
setw(10) << "Weight" <<
setw(10) << "Price" <<

"Date" << endl << endl;

/1l Get each rowin result set, and print its contents
char buf[100];

nysqgl pp: : Row r ow,

nysql pp: : Row. : si ze_type i;

for (i =0; row=res.at(i); ++i) {

cout << setw(20) <<

utf8trans(row "itenf], buf, sizeof(buf)) << ' ' <<
setw(9) << row "nunf] << ' ' <<

setw(9) << row"weight"] << ' ' <<

setw(9) << row"price"] << ' ' <<

setw(9) << row "sdate"] <<

endl ;

}

}

el se {

cerr << "Failed to get stock table: " << query.error() << endl;
return 1,

}

return O;

}

This exampleillustrates several new concepts.

First, noticethat we storetheresult setin aResult object. Liketheast d: : vect or weusedinthesi npl el example,
Resul t is a container type, so iterating through it is straightforward. The main difference is that Resul t isless
distanced from the way the underlying MySQL C API works, so it is somewhat more efficient.

Second, we access each row's data indirectly through a Row object. This affords several nice features, such as the
ability to access afield by name. Y ou can also access fields by position, aswe did in the si npl el example, which
is more efficient, but makes your code less flexible.

3.5. Exceptions

By default, MySQL ++ uses exceptions to signal errors. Most of the examples have a full set of exception handlers.
Thisisworthy of emulation.

All of MySQL++'s custom exceptions derive from a common base class, Exception. That in turn derives from
the Standard C++ exception base class, st d: : excepti on. Since the library can indirectly cause exceptions

12

MySQL++ User Manual

to come from the Standard C++ Library, it's possible to catch all exceptions from MySQL++ by just catching
st d: : excepti on by reference. However, it's usually better to catch the all of the concret eexception typesthat you
expect, and add ahandler for Excepti on or st d: : except i on to act asa"catch-all" for unexpected exceptions.

Some of these exceptions are optional. When disabled, the object signals errors in some other way, typically by
returning an error code or setting an error flag. Classes that support this feature derive from Optional Exceptions.
Moreover, when such an object creates another object that also derives from this interface, it passes on its exception
flag. Since everything flows from the Connection object, disabling exceptions on it at the start of the program disables
all optional exceptions. Y ou can see thistechnique at work in the "simple" examples, which keeps them, well, simple.

Real-world code typically can't afford to lose out on the additional information and control offered by exceptions.
But at the same time, it is still sometimes useful to disable exceptions temporarily. To do this, put the section of
code that you want to not throw exceptions inside a block, and create a NoExceptions object at the top of that block.
When created, it saves the exception flag of the Opt i onal Except i ons derivative you passto it, and then disables
exceptionsonit. Whenthe NoExcept i ons object goesout of scope at the end of the block, it restoresthe exceptions
flag toits previous state. See exanpl es/ r eset db. cpp to seethistechnique at work.

When one Opt i onal Except i ons derivative creates another such object and passes on its exception flag, it passes
acopy of the flag. Therefore, the two objects' flags operate independently after the new oneis created. There's no way
to globally enable or disable this flag on existing objectsin asingle call.

There are afew classes of exceptions MySQL ++ can throw that are not optional:

» The largest set of non-optional exceptions are those from the Standard C++ Library. For instance, if your code
said"r ow] 21] " on arow containing only 5 fields, the st d: : vect or underlying the row object will throw an
exception. (It will, that is, if it conforms to the standard.) Y ou might consider wrapping your program's main loop
inatry block catching st d: : except i ons, just in case you trigger one of these exceptions.

e ColDatawill awaysthrow BadConversion when you ask it to do an improper type conversion. For example, you'll
get an exception if you try to convert "1.25" to i nt , but not when you convert "1.00" to i nt . In the latter case,
MySQL ++ knows that it can safely throw away the fractional part.

» If you use template queries and don't pass enough parameters when instantiating the template, Quer y will throw
a BadParamCount exception.

It's educational to modify the examples to force exceptions. For instance, misspell a field name, use an out-of-range
index, or change atypeto force a Col Dat a conversion error.

3.6. Quoting and Escaping

SQL syntax often requires certain data to be quoted. Consider this query:

SELECT * FROM stock WHERE item = ' Hot dog Buns'

Because the string "Hotdog Buns' contains a space, it must be quoted. With MySQL ++, you don't have to add these
guote marks manually:

string s = "Hotdog Buns";

Query q = conn. query();
g << "SELECT * FROM stock WHERE item = " << quote_only << s;

That code produces the same query string as in the previous example. We used the MySQL++ quot e_onl y
manipulator, which causes single quotes to be added around the next item inserted into the stream. This works for

13

MySQL++ User Manual

various string types, for any type of datathat can be converted to MySQL ++'s Col Data type, and for Specialized SQL
Structures. (The next section introduces the SSQL S feature.)

Quoting is pretty simple, but SQL syntax al so often requires that certain characters be "escaped”. Imagine if the string
in the previous example was "Frank's Brand Hotdog Buns' instead. The resulting query would be:

SELECT * FROM stock WHERE item = ' Frank's Brand Hot dog Buns'

That's not valid SQL syntax. The correct syntax is:

SELECT * FROM stock WHERE item = ' Frank''s Brand Hotdog Buns'

Asyou might expect, MySQL ++ provides that feature, too, through its escape manipulator. But here, we want both
quoting and escaping. That brings us to the most widely useful manipulator:

string s = "Frank's Brand Hotdog Buns";

Query q = conn. query();
g << "SELECT * FROM stock WHERE item = " << quote << s;

The quot e manipulator both quotes strings, and escapes any characters that are special in SQL.

3.7. Specialized SQL Structures

Retrieving data

The next example introduces one of the most powerful features of MySQL ++: Specialized SQL Structures (SSQLYS).
Thisisexanpl es/ cust oml. cpp:

#i ncl ude "stock. h"
#i ncl ude "util.h"

#i ncl ude <i ostreant
#i ncl ude <vector>

usi ng namespace std;

i nt

mai n(int argc, char *argv[])

{

/1 Wap all MySQL++ interactions in one big try block, so any
/1l errors are handl ed gracefully.

try {

/1 Establish the connection to the database server.

nysgl pp: : Connecti on con(mysgl pp: : use_exceptions);

if (!connect_to_db(argc, argv, con)) {

return 1,

}

/] Retrieve the entire contents of the stock table, and store
/1l the data in a vector of 'stock' SSQ.S structures.

nysql pp: : Query query = con.query();

14

MySQL++ User Manual

guery << "select * from stock";
vect or <st ock> res;
guery.storein(res);

/1 Display the result set
print_stock_header(res.size());
vector<stock>::iterator it;

for (it =res.begin(); it !'=res.end(); ++it) {
print_stock_rowit->item it->num it->weight, it->price,
it->sdate);

}

}

catch (const mysql pp:: BadQuery& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl

return -1;

}

catch (const mysql pp:: BadConversi on& er) {

/1 Handl e bad conversions; e.g. type msmatch popul ating 'stock'
cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<

", actual size: << er.actual _size << endl

return -1;

}

catch (const mysql pp:: Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl

return -1;

}

return O;
}
Here is the stock.h header used by that example, and many others:

#i ncl ude <nysql ++. h>
#i ncl ude <custom h>

#i ncl ude <string>

/1 The following is calling a very conplex macro which will create
/1 "struct stock", which has the menber variabl es:

/1

/1 sql _char item
/1 C

/1 sql _date sdate
/1

/1 plus nethods to hel p populate the class froma MySQ row. See the
/1 SSQS sections in the user manual for further details.

sqgl _create_5(stock,

1, 5, // The neaning of these values is covered in the user manua
nysgl pp: :sql _char, item

nysqgl pp: : sql _bi gint, num

15

MySQL++ User Manual

nysgl pp: : sql _doubl e, wei ght,
nysgl pp: : sql _doubl e, price,
nysql pp: : sql _date, sdate)

Asyou can see, SSQLS is very powerful. It alows you to have a C++ structure paralleling your SQL table structure
and useit easily with STL code.

Adding data
SSQL S can also be used to add datato atable. Thisisexanpl es/ cust on2. cpp:

#i ncl ude "stock. h"
#i ncl ude "util.h"

#i ncl ude <i ostreanp
usi ng namespace std;

i nt
mai n(int argc, char *argv[])
{

try {
/] Establish the connection to the database server.

nysgl pp: : Connecti on con(mysgl pp: : use_exceptions);
if (!connect_to_db(argc, argv, con)) {
return 1,

}

/1l Create and popul ate a stock object. W could al so have used
/1 the set() nenber, which takes the sane paranmeters as this

/1 constructor.

stock row"Hot Dogs", 100, 1.5, 1.75, "1998-09-25");

/1 Formthe query to insert the rowinto the stock table.

nysql pp: : Query query = con.query();
qguery.insert(row;

/1 Show the query about to be execut ed.
cout << "Query: " << query.preview() << endl;

/1l Execute the query. W use execute() because | NSERT doesn't
/1 return a result set.
guery. execute();

/1 Print the new table.

nysql pp: : Result res;

get _stock_t abl e(query, res);
print_stock_rows(res);

}

catch (const mysql pp:: BadQuery& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl;

16

MySQL++ User Manual

return -1;

}

catch (const mysql pp:: BadConversi on& er) {

/1 Handl e bad conversi ons

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: << er.actual _size << endl
return -1;

}

catch (const mysql pp:: Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl

return -1;

}

return O;

}

That's all thereistoit!

Thereisone subtlety: MySQL ++ automatically quotes and escapes the data when building SQL queriesusing SSQLS
structures. It's efficient, too: MySQL ++ is smart enough to apply quoting and escaping only for those data types that
actualy requireit.

Because this example modifies the sample database, you may want to run resetdb after running this program.
Modifying data
It almost as easy to modify datawith SSQLS. Thisisexanpl es/ cust onB. cpp:

#i ncl ude "stock. h"
#i ncl ude "util.h"

#i ncl ude <i ostreanp
usi ng namespace std;

i nt
mai n(int argc, char *argv[])
{

try {
/] Establish the connection to the database server.

nysgl pp: : Connecti on con(mysgl pp: : use_exceptions);
if (!connect_to_db(argc, argv, con)) {
return 1,

}

/1 Build a query to retrieve the stock itemthat has Uni code

/1 characters encoded in UTF-8 form

nysql pp: : Query query = con.query();

guery << "select * fromstock where item = \"Nirnberger Brats\"";

/1l Retrieve the row, throwi ng an exception if it fails.

17

MySQL++ User Manual

nysql pp: : Result res = query.store();

if (res.empty()) {

t hr ow nysql pp: : BadQuery("UTF-8 bratwurst itemnot found in
"table, run resetdb");

}

/1 Because there should only be one rowin the result set,

/1 there's no point in storing the result in an STL contai ner
/!l W can store the first rowdirectly into a stock structure
/'l because one of an SSQLS s constructors takes a Row object.
stock row = res. at(0);

/1l Create a copy so that the replace query knows what the
/1 original values are.
stock orig_row = row,

/1 Change the stock object's itemto use only 7-bit ASCII, and
/1 to deliberately be wider than normal colum w dths printed
/1 by print_stock_ table().

row.item = "Nuerenberger Bratwurst";

/1 Formthe query to replace the rowin the stock table.
guery. update(orig_row, row;

/1 Show the query about to be execut ed.
cout << "Query: " << query.preview() << endl;

/! Run the query with execute(), since UPDATE doesn't return a
/1 result set.
guery. execute();

/1 Print the new table contents.

get _stock_t abl e(query, res);
print_stock_rows(res);

}

catch (const mysql pp:: BadQuery& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl
return -1;

}

catch (const mysql pp:: BadConversi on& er) {

/1 Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: << er.actual _size << endl
return -1;

}

catch (const mysql pp:: Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl

return -1;

}

return O;

18

MySQL++ User Manual

When you run the example you will notice that in the WHERE clause only the 'item' field is checked for. Thisis
because SSQL S also a so less-than-comparable.

Don't forget to run resetdb after running the example.

Less-than-comparable

SSQL S structures can be sorted and stored in STL associative containers as demonstrated in the next example. This
isexanpl es/ cust on¥. cpp:

#i ncl ude "stock. h"
#i ncl ude "util.h"

#i ncl ude <i ostreanp
usi ng namespace std;

i nt
mai n(int argc, char *argv[])
{

try {
/] Establish the connection to the database server.

nysgl pp: : Connecti on con(mysgl pp: : use_exceptions);
if (!connect_to_db(argc, argv, con)) {
return 1,

}

/!l Retrieve all rows fromthe stock table and put themin an

/1 STL set. Notice that this works just as well as storing them
/1 in a vector, which we did in custonl.cpp. It works because
/1 SSQLS objects are | ess-than conparabl e.

nysql pp: : Query query = con.query();

guery << "select * from stock";

set <stock> res;

guery.storein(res);

/1l Display the result set. Since it is an STL set and we set up
/1 the SSQS to conpare based on the itemcolum, the rows wll
/1 be sorted by item

print_stock_header(res.size());

set<stock>::iterator it;

cout. preci sion(3);

for (it =res.begin(); it !'=res.end(); ++it) {

print_stock rowmit->temc_str(), it->num it->weight,
it->price, it->sdate);

}

/1 Use set's find nmethod to | ook up a stock itemby item namne.
/1 This also uses the SSQ.S conparison setup.

it = res.find(stock("Hotdog Buns"));

if (it I'=res.end()) {

19

MySQL++ User Manual

cout << endl << "Currently " << it->num <<
hotdog buns in stock." << endl;
}
el se {
cout << endl << "Sorry, no hotdog buns in stock." << endl;

}

}

catch (const mysql pp:: BadQuery& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl;
return -1;

}

catch (const mysql pp:: BadConversi on& er) {

/! Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<

", actual size: " << er.actual _size << endl;

return -1;

}

catch (const mysql pp:: Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;
return -1,

}

return O;

}

For more details on the SSQL S feature, see the Specialized SQL Structures chapter.

3.8. C++ Equivalents of SQL Column Types

In MySQL++ version 2.1, the new sql _t ypes. h header declares typedefs for all MySQL column types. These
typedefs all begin with sgl _ and end with a lowercase version of the standard SQL type name. For instance, the
MySQL ++ typedef corresponding to TI NYI NT UNSI GNEDismysql pp: : sql _tinyint _unsi gned. Youdo
not have to use these typedefs; you could usean unsi gned char hereif you wanted to. For that matter, you could
useaplaini nt in most cases; MySQL++ is quite tolerant of this sort of thing. The typedefs exist for style reasons,
for those who want their C++ code to use the closest equivalent type for any given SQL type.

Most of these typedefs use standard C++ data types, but afew are aliases for aMySQL ++ specific type. For instance,
the SQL type DATETI ME is mirrored in MySQL++ by nysql pp: : Dat eTi me. For consistency, sql _types. h
includes atypedef aliasfor Dat eTi ne caled mysql pp: : sql _dat eti ne.

3.9. Handling SQL Nulls

Thereis no equivalent of SQL's null in the standard C++ type system.

The primary distinction is one of type: in SQL, null is acolumn attribute, which affects whether that column can hold
a SQL null. Just like the 'const' keyword in the C++ type system, this effectively doubles the number of SQL data
types. To emulate this, MySQL ++ provides the Null template to allow the creation of distinct "nullable” versions of
existing C++ types. So for example, if you have a TI NY | NT UNSI GNED column that can have nulls, the proper
declaration for MySQL ++ would be:

20

MySQL++ User Manual

nysqgl pp: : Nul | <unsi gned char> nyfi el d;

Template instantiations are first-class types in the C++ language, on par with any other type. You can use Nul |
templateinstantiations anywhereyou'd usethe plain version of that type. (Y ou can seeacompletelist of Nul | template
instantiations for al column types that MySQL understands at thetop of | i b/ t ype_i nf 0. cpp.)

There's a secondary distinction between SQL null and anything available in the standard C++ type system: SQL null
isadistinct value, equal to nothing else. We can't use C++'s NULL for this because it is ambiguous, being equal to
0 ininteger context. MySQL ++ provides the global nul | object, which you can assignto aNul | template instance
to makeit equal to SQL null:

nyfield = nysql pp::null;

Thefinal aspect of MySQL ++'snull handling isthat, by default, it will enforce the uniqueness of the SQL null value. If
you try to convert a SQL null to aplain C++ datatype, MySQL ++ will throw a BadNull Conversion exception. If you
insert a SQL null into a C++ stream, you get "(NULL)". If you don't like this behavior, you can changeit, by passing a
different value for the second parameter to template Nul | . By default, this parameter is NullisNull, meaning that we
should enforce the uniqueness of the null type. To relax this distinction, you can instantiate the Nul | template with
adifferent behavior type: NullisZero or NullisBlank. Consider this code:

nysql pp: : Nul | <unsi gned char, nysql pp:: NullisZero> nyfield;

nyfield = nysql pp::null;
cout << nyfield << endl;

int x = nyfield;
cout << x << endl;

Thiswill print "0" twice. If you had used the default for the second Nul | template parameter, thefirst output statement
would have printed "(NULL)", and the second would have thrown aBadNul | Conver si on exception.

3.10. Creating Transaction Sets

MySQL ++ v2.1 added the Transaction class, which makes it easier to use transactions in an exception-safe manner.
Normally you createthe Tr ansact i on object on the stack before you issue the queriesin your transaction set. Then,
when all the queries in the transaction set have been issued, you call Tr ansact i on: : comi t () , which commits
the transaction set. If the Tr ansact i on object goes out of scope before you call comi t () , the transaction set is
rolled back. Thisensuresthat if some code throws an exception after thetransactionisstarted but beforeit iscommitted,
the transaction isn't left unresolved.

exanpl es/ xact i on. cpp illustrates this:

#i ncl ude "stock. h"
#i ncl ude "util.h"

#i ncl ude <transaction. h>
#i ncl ude <i ostreanp

usi ng namespace std;

21

MySQL++ User Manual

i nt
mai n(i nt argc, char *argv[])
{

try {
/] Establish the connection to the database server.

nysgl pp: : Connecti on con(mysgl pp: : use_exceptions);
if (!connect_to_db(argc, argv, con)) {
return 1,

}

/1l Show initial state

nysql pp: : Query query = con.query();
cout << "Initial state of stock table:
print_stock_tabl e(query);

<< endl;

/1l Insert a fewrows in a single transaction set

{

nysqgl pp: : Transacti on trans(con);

stock rowl("Sauerkraut", 42, 1.2, 0.75, "2006-03-06");
qguery.insert(rowl);

guery. execute();

query.reset();

stock row2("Bratwurst", 24, 3.0, 4.99, "2006-03-06");
guery.insert(row?2);

guery. execute();

query.reset();

cout << "\nRows are inserted, but not commtted." << endl
cout << "Verify this with another program (e.g. sinplel),
"then hit Enter." << endl

getchar () ;

cout << "\nCommitting transaction gives us:" << endl
trans.commt();

print_stock_tabl e(query);

}

/1 Now let's test auto-rollback

{

nysql pp: : Transaction trans(con);

cout << "\nNow addi ng catsup to the database..." << endl

stock row"Catsup", 3, 3.9, 2.99, "2006-03-06");
qguery.insert(row;

guery. execute();

query.reset();

}

cout << "\nNo, yuck! We don't |ike catsup. Rolling it back:"
endl|

print_stock_tabl e(query);

}

<<

22

MySQL++ User Manual

catch (const mysql pp:: BadQuery& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl
return -1;

}

catch (const mysql pp:: BadConversi on& er) {

/1 Handl e bad conversi ons

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: << er.actual _size << endl
return -1;

}

catch (const mysql pp:: Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl

return -1;

}

return O;

}

3.11. Which Query Type to Use?

There are three magjor ways to execute a query in MySQL++: Query: : execute(), Query::store(), and
Query: : use() . Which should you use, and why?

execut e() isfor queries that do not return data per se. For instance, CREATE | NDEX. You do get back some
information from the MySQL server, which execut e() returnsto its caller in a ResNSel object. In addition to the
obvious — a flag stating whether the query succeeded or not — this object also contains things like the number of
rows that the query affected. If you only need the success status, there's Quer y: : exec() , which just returns bool.

If your query does pull data from the database, the simplest option isst or e() . This returns a Result object, which
contains an in-memory copy of the result set. The nice thing about thisisthat Resul t isasequentia container, like
st d: : vect or, soyou can iterate through it forwards and backwards, access elements with subscript notation, etc.
Therearealsothest or ei n() methods, which actually put the result set into an STL container of your choice. The
downside of these methods is that a sufficiently large result set will give your program memory problems.

For these large result sets, the superior option isause() query. This returns a ResUse object, which is similar to
Result, but without all of the random-access features. Thisis because a"use" query tells the database server to send
the results back one row at atime, to be processed linearly. It's analogous to a C++ stream'sinput iterator, as opposed
to arandom-access iterator that a container like vector offers. By accepting this limitation, you can process arbitrarily
large result sets. Thistechnique is demonstrated in exanpl es/ si npl e3. cpp:

#i nclude "util.h"
#i ncl ude <nysql ++. h>

#i ncl ude <i ostreant
#i ncl ude <i omani p>

usi ng namespace std;

i nt

23

MySQL++ User Manual

mai n(i nt argc, char *argv[])

{

/1 Connect to the sanpl e database.
nysgl pp: : Connecti on con(fal se);

if (!connect_to_db(argc, argv, con)) {
return 1,

}

/1 Ask for all rows fromthe sanple stock table set up by resetdb.
/1 Unlike sinple2 exanple, we don't store result set in nmenory.
nysql pp: : Query query = con.query();

guery << "select * from stock";

nysgl pp: : ResUse res = query. use();

/!l Retreive result rows one by one, and display them
if (res) {

/1 Display header

cout.setf(ios::left);

cout << setw(21) << "ltem <<

setw(10) << "Nunf <<

setw(10) << "Weight" <<

setw(10) << "Price" <<

"Date" << endl << endl;

/1l Get each rowin result set, and print its contents
nysqgl pp: : Row r ow,

while (row = res.fetch_row()) {

cout << setw(20) << row"itenf] << ' ' <<

setw(9) << row"num'] << ' ' <<

setw(9) << row"weight"] << ' ' <<

setw(9) << row"price"] << ' ' <<

setw(9) << row "sdate"] <<

endl ;

}

return O;

}

el se {

cerr << "Failed to get stock item " << query.error() << endl;
return 1,

}
}

This example does the same thing as si npl e2, only with a"use" query instead of a "store" query. If your program
uses exceptions, you should instead look at exanpl es/ usequery. cpp, which does the same thing as si npl e,
but with exception-awareness.

3.12. Getting Field Meta-Information

The following example demonstrates how to get information about the fields in a result set, such as the name of the
field and the SQL type. Thisisexanpl es/ fi el di nf 1. cpp:

#i ncl ude "util.h"

24

MySQL++ User Manual

#i ncl ude <nysql ++. h>

#i ncl ude <i ostreant
#i ncl ude <i omani p>

usi ng namespace std;
usi ng nanespace nysql pp

i nt
mai n(int argc, char *argv[])
{

try {
Connection con(use_exceptions);

if (!connect_to_db(argc, argv, con)) {
return 1,

}

Query query = con. query();
guery << "select * from stock";
cout << "Query: " << query.preview() << endl;

Result res = query.store();
cout << "Records Found: " << res.size() << endl << endl

cout << "Query Info:\n";
cout.setf(ios::left);

for (unsigned int i = 0; i < res.nanes().size(); i++) {

cout << setw(2) << i

/1 this is the nane of the field

<< setw(15) << res.names(i).c_str()

/1 this is the SQ identifier name

/1 Result::types(unsigned int) returns a nysql _type_info which in many
/1 ways is like type_info except that it has additional sql type

/[l information init. (with one of the nethods being sql _nane())

<< setw(15) << res.types(i).sql_nane()

/1 this is the C++ identifier nanme which nost closely resenbl es

/1 the sql nane (its is inplenentation defined and often not very readabl e)
<< setw(20) << res.types(i).nane()

<< endl;

}

cout << endl

if (res.types(0) == typeid(string)) {

/1 this is denobnstrating how a nysql _type_info can be
/1 conpared with a C++ type_info.

cout << "Field "item is of an SQL type which nost "
"closely resenmbl es\nthe C++ string type\n";

}

if (res.types(1l) == typeid(longlong)) {
cout << "Field "num is of an SQ type which nost "

25

MySQL++ User Manual

"closely resenbl es\nC++ long long int type\n";

}

else if (res.types(1l).base_type() == typeid(longlong)) {
/1 you have to be careful as if it can be null the actua
/1 type is Null <TYPE> not TYPE. So you shoul d al ways use
/1 the base_type method to get at the underlying type.
/[l 1f the type is not null than this base type would be
/1 the same as its type.

cout << "Field "num base type is of an SQ type which
"most closel y\nresenbles the C++ long long int type\n";

}

}
catch (const BadQueryé& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl
return -1;

}

catch (const BadConversion& er) {

/! Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: << er.actual _size << endl
return -1;

}

catch (const Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl

return -1;

}

return O;

}

3.13. Let's Do Something Useful

These next few examples demonstrate just how powerful C++ can be, allowing you to do alot of work in few lines
of code without losing efficiency.

Sincethe codeis meant to bere-used as-is, constantsthat can differ from one case to another have been grouped in order
to simplify editing. Also, all of these examples have full error checking code, showing off the power of MySQL ++'s
exception handling features.

Loading binary file in a BLOB column
Since MySQL 3.23, BLOB columns have been available, but their use is sometimes not straightforward. Besides

showing how easy it can be with MySQL ++, this example demonstrates several features of MySQL ++. The program
requires one command line parameter, which isafull path to the binary file. Thisisexanpl es/ | oad_fil e. cpp:

#i ncl ude <nysql ++. h>
#i ncl ude <sys/stat. h>

#i ncl ude <fstreanp

26

MySQL++ User Manual

#i ncl ude <stdlib. h>

usi ng nanespace std;
usi ng nanespace nysql pp

const char My _DATABASE[] = "telcent"”;

const char MY_TABLE[] = "fax";

const char MY_HOST[] = "l ocal host";

const char MY_USER[] = "root";

const char MY _PASSWORD[] = "";

const char MY_FIELD] = "fax"; [/ BLOB field
i nt

mai n(int argc, char *argv[])

{

if (argc < 2) {

cerr << "Usage : load file full _file_path" << endl << endl
return -1;

}

Connection con(use_exceptions);

try {

con. connect (MY_DATABASE, My_HOST, MY_USER, MY_PASSWORD);
Query query = con. query();

ifstreamlIn(argv[1l], ios::in | ios::binary);

if (In) {

struct stat for_|en;

if (stat(argv[l], & or_len) < 0) {

cerr << "stat() failed for " << argv[1l] << '!' << endl
return -1,

}

unsigned int blen = for_len.st_size;
if (blen == 0) {

cerr << "Sorry, " << argv[l] << " is enpty; | won't "
"insert such a thing." << endl

return -1,

}

char* read_buffer = new char[bl en];
In.read(read_buffer, blen);

string fill(read_buffer, blen);
ostringstream strbuf;

strbuf << "INSERT INTO " << MY_TABLE << " (" << MY_FIELD <<
") VALUES(\"" << nysql pp::escape << fill << "\")" <<

ends;

qguery. exec(strbuf.str());

delete[] read_buffer

}

el se {

cerr << "Failed to open " << argv[1l] <<

}
}

<< endl;

27

MySQL++ User Manual

catch (const BadQueryé& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl
return -1;

}

catch (const BadConversion& er) {

/1 Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: << er.actual _size << endl
return -1;

}

catch (const Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl

return -1;

}

return O;

}

Notice that we used the es cape manipulator when building the INSERT query above. Thisis because we're not using
one of the MySQL ++ types that does automatic escaping and quoting.

Displaying images in HTML from BLOB column
This example is also a very short one, considering the function that it performs. Although all modern versions of
MySQL have a command that dumps data from a BLOB column to a binary file, this example shows how to do it in
your code instead, without requiring an temporary file on disk. Thisisexanpl es/ cgi _i nage. cpp:

#i ncl ude <nysql ++. h>

usi ng namespace std;
usi ng nanespace nysql pp;

#defi ne MY_DATABASE "tel cent"”

#define MY_TABLE "fax"

#defi ne My_HOST "l ocal host "

#defi ne My_USER "root"

#defi ne MY_PASSWORD ""

#defi ne MY_FI ELD "fax" /] BLOB field
#defi ne MY_KEY "datet" /1 PRI MARY KEY
i nt

mai n(int argc, char *argv[])

{

if (argc < 2) {
cerr << "Usage : cgi_imge primary_key val ue" << endl << endl;
return -1,

}

cout << "Content-type: image/jpeg" << endl;
Connection con(use_exceptions);

28

MySQL++ User Manual

try {
con. connect (MY_DATABASE, MY_HOST, MY_USER, MY_PASSWORD);

Query query = con. query();

query << "SELECT " << MY_FIELD << " FROM " << MY_TABLE << " WHERE "
<< MY_KEY << " =" << argv[1];

ResUse res = query.use();

Row row = res.fetch_row();

long unsigned int *jj = res.fetch_lengths();

cout << "Content-length: " << *jj << endl << endl;
fwite(row raw data(0), 1, *jj, stdout);

}

catch (const BadQueryé& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl;
return -1;

}

catch (const Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;
return -1;

}

return O;

}

DELETE or UPDATE from SELECT

MySQL's SELECT statement has more power to winnow out just the items of interest from the database than do
DELETE or UPDATE queries. Therefore, many people have wanted the ability to execute a SELECT statement that
in fact deletes or updates the rows matched, rather than returning them. This example implements that feature in just
afew linesof code. Itisexanpl es/ updel . cpp:

#i ncl ude <nysql ++. h>
#i ncl ude <string>

usi ng namespace std;
usi ng nanespace nysql pp;

#defi ne MY_DATABASE "tel cent"”

#define MY_TABLE "nazivi"
#defi ne My_HOST "l ocal host "
#defi ne My_USER "root"
#defi ne MY_PASSWORD ""

#define MY_FI ELD "nazi v"
#defi ne MY_QUERY "SELECT URL fromny_table as t1, ny_table as t2 where tl.field = t2.fi
i nt

mai n()

{

Connection con(use_exceptions);
try {

ostringstream strbuf;

29

MySQL++ User Manual

unsigned int i = 0;

con. connect (MY_DATABASE, My_HOST, MY_USER, MY_PASSWORD);

Query query = con. query();

query << MY_QUERY,

ResUse res = query.use();

Row r ow;

strbuf << "delete from" << MY_TABLE << " where " << MY_FIELD <<

"in ("

/1 for UPDATE just replace the above DELETE FROM wi t h UPDATE st at enent
for (; row=res.fetch_row); i++)

strbuf << row at(0) << ",";

if (i)

return O;

string output(strbuf.str());

out put . erase(out put.size() - 1, 1);

out put += ")";

guery. exec(out put);

[/ cout << output << endl

}

catch (const BadQueryé& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl
return -1;

}

catch (const BadConversion& er) {

/! Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<
", actual size: << er.actual _size << endl
return -1;

}

catch (const Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl
return -1;

}

return O;

}

Notice that the row values used in the IN clause aren't escaped or quoted. This is because row elements are ColData
types, so they have automatic escaping and quoting, as appropriate to the type being inserted. If you want to disable
thisfeature, it's easily done: click the ColData link for the details.

Users of this example should beware that one more check isrequired in order to run this query safely: in some extreme
cases, the size of the query might grow larger than MySQL's maximum allowed packet size. This check should be
added.

4. Template Queries

Another powerful feature of MySQL ++ is being able to set up template queries. These arekind of likeC'spri nt f ()
facility: you give MySQL ++ a string containing the fixed parts of the query and placeholders for the variable parts,
and you can later substitute in values into those placeholders.

30

MySQL++ User Manual

Thefollowing program demonstrateshow to usethisfeature. Thisisexanpl es/ r eset db. cpp, theprogramyou've
run afew times now if you've worked through all the examples:

#i nclude "util.h"

#i ncl ude <nysql ++. h>
#i ncl ude <i ostreanp

usi ng namespace std;
i nt

mai n(i nt argc, char *argv[])

{

/1 Connect to database server
nysgl pp: : Connecti on con;

try {

cout << "Connecting to database server..." << endl;
connect _to_db(argc, argv, con, "");

}

catch (exception& er) {

cerr << "Connection failed: " << er.what() << endl;
return 1,

}

/1l Create new sanpl e database, or re-create it. W suppress

/1 exceptions, because it's not an error if DB doesn't yet exist.
bool new_ db = fal se;

{

nysql pp: : NoExcepti ons ne(con);

nysql pp: : Query query = con.query();

if (con.select_db(kpcSanpl eDat abase)) {

/1 Toss old table, if it exists. |If it doesn't, we don't

/1 really care, as it'll get created next.
cout << "Dropping existing stock table..."
guery. execute("drop table stock");

}

el se {

/| Database doesn't exist yet, so create and select it.
i f (con.create_db(kpcSanpl eDat abase) &&

con. sel ect _db(kpcSanpl eDat abase)) {

new db = true;

}

el se {

cerr << "Error creating DB: " << con.error() << endl;
return 1,

}
}
}

<< endl;

/1l Create sanple data table within sanpl e database.
cout << "Creating new stock table..." << endl;

try {
/1 Send the query to create the table and execute it.

31

MySQL++ User Manual

nysql pp: : Query query = con.query();
query <<

"CREATE TABLE stock " <<

“(item CHAR(20) NOT NULL, " <<

" num BIG NT, " <<

" wei ght DOUBLE, " <<

" price DOUBLE, " <<

" sdate DATE) " <<

"ENG NE = | nnoDB " <<

" CHARACTER SET utf8 COLLATE utf8_general _ci";
guery. execute();

/1 Set up the tenplate query to insert the data. The parse()
/1 call tells the query object that this is a tenplate and

/1l not a literal query string.

guery << "insert into %:table values (%q, %q, %, %3, %q)";
query. parse();

/1l Set the tenplate query parameter "table" to "stock".
query.def["table"] = "stock";

/1 Notice that we don't give a sixth paraneter in these calls,
/1 so the default value of "stock"™ is used. Also notice that
/1 the first rowis a UTF-8 encoded Unicode string! Al you

/1 have to do to store Unicode data in recent versions of MySQ
/1 is use UTF-8 encoding.

cout << "Popul ating stock table..." << endl

guery. execut e(" Nurnberger Brats", 92, 1.5, 8.79, "2005-03-10");
guery. execute("Pickle Relish", 87, 1.5, 1.75, "1998-09-04");
guery. execute("Hot Mustard", 75, .95, .97, "1998-05-25");

guery. execut e("Hotdog Buns", 65, 1.1, 1.1, "1998-04-23");

cout << (new db ? "Created” : "Reinitialized") <<
" sanpl e database successfully."” << endl

}

catch (const mysql pp:: BadQuery& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl
return 1,

}

catch (const mysql pp:: BadConversi on& er) {

/! Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<

", actual size: << er.actual _size << endl
return 1,

}

catch (const mysql pp:: Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl

return 1,

}

return O;

32

MySQL++ User Manual

The line just before the call to query. par se() setsthe template, and the parse cal putsit into effect. From that
point on, you can re-use this query by calling any of several Query member functions that accept query template
parameters. In this example, wereusing Query: : execut e() .

Let'sdig into this feature a little deeper.

4.1. Setting up template queries

To set up a template query, you simply insert it into the Query object, using numbered placeholders wherever you
want to be able to change the query. Then, you call the parse() function to tell the Query object that the query string
isatemplate query, and it needs to parseit:

guery << "select (9:fieldl, 93:field2) fromstock where %.: wheref = %0q: what";
query. parse();

The format of the placeholder is:

YtH#(modi fier) (:name)(:)

Where '### is a number up to three digits. It is the order of parameters given to a SQL QueryParms object, starting
from 0.

'modifier' can be any one of the following:

% Print an actual "%"
Don't quote or escape no
matter what.

q This will quote and escape

the item using the MySQL
C API function mysql-escape-
string if it is a string or char
* or another MySQL -specific
type that needs to be quoted.

Q Quote but don't escape based
on the same rules as for
'g. This can save a bit of
processing time if you know
the strings will never need
quoting

r Always quote and escape even
if it isanumber.

R Always quote but don't escape
even if itisanumber.

":name" isfor an optional namewhich aidsinfilling SQL QueryParms. Name can contain any a pha-numeric characters
or the underscore. Y ou can have atrailing colon, which will be ignored. If you need to represent an actual colon after
the name, follow the name with two colons. The first one will end the name and the second one won't be processed.

33

MySQL++ User Manual

4.2. Setting the parameters at execution time

To specify the parameters when you want to execute a query simply use Query: : store(const SQ.Stri ng
&oarnD, [..., const SQString &parmll]). This type of multiple overload also exists for
Query: :use() and Query: : execut e() . 'parm0' corresponds to the first parameter, etc. You may specify up
to 25 parameters. For example:

Result res = query.store("Dinner Rolls", "itent, "itent, "price")

with the template query provided above would produce:

select (item price) fromstock where item= "Dinner Rolls"

The reason we didn't put the template parameters in numeric order...

select (%O:fieldl, %:field2) fromstock where 9%2:wheref = %3q: what
...will become apparent shortly.
4.3. Using defaults
You can also set the parameters one at a time by means of class Query's public data member def. To change the

values of the def, simply use the subscript operator. You can refer to the parameters either by number or by name.
The following two examples have the same effect:

query. def[0] "Di nner Rolls";

query.def[1] = "itent;

query.def[2] = "iten;

query.def[3] = "price";

and

query.def["what"] = "Dinner Rolls";
query. def["wheref"] = "itent;
query.def["fieldl"] = "itent;
query.def["field2"] = "price";

Once all the parameters are set Simply execute as you would have executed the query before you knew about template
gueries:

Result res = query.store()

4.4. Combining the two

Y ou can also combine the use of setting the parameters at execution time and setting them viathe def object by calling
Query::store() (oruse() orexecute()) without passing the full number of parameters that the template
supports:

MySQL++ User Manual

query.def["fieldl"] = "itent;
query.def["field2"] = "price";
Result resl = query.store("Hanburger Buns", "item');

Result res2 = query.store(1.25, "price");

Would store the query:

select (item price) fromstock where item = "Hanburger Buns"

for resl and

select (item price) fromstock where price = 1.25
for res2.

Now you see why we ordered the placeholdersin the template above as we did: we used positions 0 and 1 for the ones
we want to change frequently, and used 2 and 3 for the parameters that seldom change.

One thing to watch out for, however, isthat Query: : st ore(const char* q) isalso defined for executing the
query g. Therefore, whenyou call Query: : st ore() (oruse(),orexecut e())withonly oneitem and that item
isaconst char*, you need to explicitly convert it into a SQL String to get the right overload:

Result res = query.store(SQString("Hanmburger Buns"));

4.5. Error Handling

If for some reason you did not specify al the parameters when executing the query and the remaining parameters do
not have their values set via def, the query object will throw a BadParamCount object. If this happens, you can get an
explanation of what happened by checking the value of SQLQuer yNEPar ns: : st ri ng, like so:

query.def["fieldl"] "item';
query.def["fiel d2"] "price";
Result res = query.store(1.25);

Thiswould throw SQLQuer yNEPar ns because the wheref is not specified.

In theory, this exception should never be thrown. If the exception isthrown it probably alogic error in your program.

5. Specialized SQL Structures

The Specialized SQL Structure (SSQL S) featureletsyou easily define C++ structuresthat match the form of your SQL
tables. Because of the extra functionality that this feature builds into these structures, MySQL ++ can popul ate them
automatically when retrieving data from the database; with queries returning many records, you can ask MySQL ++ to
populate an STL container of your SSQL S records with the results. When updating the database, MySQL ++ can use
SSQL S structures to match existing data, and it can insert SSQL S structures directly into the database.

You define an SSQLS using one of several macros. (These are in the file custom.h, and in the file that it includes,
custom-macros.h.) There are a bunch of different macros, for different purposes. The following sections will discuss
each macro type separately, beginning with the easiest and most generally useful.

5.1. sql_create

35

MySQL++ User Manual

Thisisthe most basic sort of SSQL S declaration:

sql _create 5(stock, 1, O,
string, item

int, num

doubl e, wei ght,

doubl e, pri ce,
nysql pp: : Date, date)

This creates a C++ structure called st ock containing five member variables (i t em num wei ght, pri ce and
dat e), along with some constructors and other member functions useful with MySQL ++.

One of the generated constructors takes a reference to amysglpp::Row object, allowing you to easily populate avector
of stocks like so:

vect or <st ock> result;
query.storein(result);

That's al there is to it. The only requirements are that the table structure be compatible with the SSQLS's member
variables, and that the fields are in the same order.

The general format of this set of macrosis:

sql _create_#(NAME, COVPCOUNT, SETCOUNT, TYPE1l, |TEML, ... TYPE#, |TEMY)

Where # is the number of member variables, NAME is the name of the structure you wish to create, TYPEX isthe type
of amember variable, and | TEMK isthat variable's name.

The COVPCOUNT and SETCOUNT arguments are described in the next section.

5.2. SSQLS Comparison and Initialization

sql _creat e_xaddsmember functions and operatorsto each SSQL Sthat allow you to compare one SSQL Sinstance
to another. These functions compare the first COMPCOUNT fieldsin the structure. In the exampl e above, COVPCOUNT
is1, soonly thei t emfield will be checked when comparing two st ock structures.

This feature works best when your table's "key" fields are the first onesin the table schemaand you set COVPCOUNT
equal to the number of key fields. That way, a check for equality between two SSQLS structures in your C++ code
will give the same results as a check for equality in SQL.

COVPCOUNT must be at least 1. The current implementation of sql _cr eat e_x cannot create an SSQL S without
comparison member functions.

Because our st ock structure is less-than-comparable, you can use it in STL agorithms and containers that require

this, such as STL's associative containers:

std::set<stock> result;
query.storein(result);
cout << result.lower_bound(stock("Hanburger"))->item << endl

Thiswill print the first item in the result set that begins with "Hamburger".

36

MySQL++ User Manual

The third parameter to sgl _cr eat e_x is SETCOUNT. If this is nonzero, it adds an initialization constructor and
aset () member function taking the given number of arguments, for setting the first N fields of the structure. For
example, you could change the above example like so;

sqgl _create_5(stock, 1, 2,
string, item

int, num

doubl e, wei ght,

doubl e, price,

nmysql pp: : Date, date)

stock foo("Hotdog", 52);

In addition to this 2-parameter constructor, thisversion of the st ock SSQLSwill have asimilar 2-parameter set ()
member function.

The COMPCOUNT and SETCOUNT values cannot be equal. If they are, the macro will generate two initialization
constructors with identical parameter lists, which isillegal in C++. Why does this happen? It's often convenient to be
ableto say something likex == st ock(" Hot dog") . Thisrequiresthat there be a constructor taking COVPCOUNT
arguments to create the temporary st ock instance used in the comparison. It is easy to work around this limitation.
Using our st ock example structure, if you wanted comparisons to consider all 5 fields and also be able to initiaize
all 5 fields at once, you would pass 5 for COMPCOUNT and 0 for SETCOUNT. You would still get a 5-parameter
initialization constructor and a 5-parameter set () function.

5.3. Retrieving a Table Subset

It's not necessary to retrieve an entire table row using SSQLS, as long as the fields you want are grouped together at
the start of the table schema. exanpl es/ cust on6. cpp illustratesthis:

#i ncl ude "util.h"

#i ncl ude <nysql ++. h>
#i ncl ude <custom h>

#i ncl ude <i ostreanp
#i ncl ude <i omani p>
#i ncl ude <vector>

usi ng namespace std;

/!l To store a subset of a row, we define an SSQ.S containing just the
/1 fields that we will store. There are conplications here that are
/1 covered in the user manual .

sql _create_1(stock_subset,

1, 0,

string, item

i nt
mai n(int argc, char *argv[])
{

try {
/] Establish the connection to the database server.

nysgl pp: : Connecti on con(mysgl pp: : use_exceptions);

37

MySQL++ User Manual

if (!connect_to_db(argc, argv, con)) {
return 1,

}

/! Retrieve a subset of the stock table, and store the data in
/1l a vector of 'stock _subset' SSQLS structures.

nysql pp: : Query query = con.query();

guery << "select itemfrom stock";

vect or <st ock_subset > res;

guery.storein(res);

/1 Display the result set
cout << "We have:" << endl;
vector<stock _subset>::iterator it;

for (it =res.begin(); it !'=res.end(); ++it) {
cout << '"\t' << it->tem<< endl;

}

}

catch (const mysql pp:: BadQuery& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl;

return -1;

}

catch (const mysql pp:: BadConversi on& er) {

/1 Handl e bad conversions; e.g. type msmatch popul ating 'stock'

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<

", actual size: " << er.actual _size << endl;

return -1;

}

catch (const mysql pp:: Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions
cerr << "Error: " << er.what() << endl;
return -1,

}

return O;

}

(Seethe simplel example in the Tutoria for another way to accomplish the same thing.)

This example illustrates an important point: you could not use the 5-member st ock structure in this example. The
reason is, when you assign a Row object to an SSQL S, the function that copies the row's data into the structure expects
to see as many fields in the row as are in the SSQLS. Y our program will crash when the code tries to access fields
beyond those that exist in the Row object. The converse is not true, however: if you change the SELECT statement
above so that it retrieves more than one column, the code will still work, because the extra fields in each row will
simply be ignored.

Realize that the second and third parametersto sql _cr eat e_1 can't be anything other than 1 and O, respectively.
Asdiscussed above, the second parameter must be at least 1, but since there is only onefield in the structure, it cannot
be higher than 1. Since the third parameter cannot be equal to the second, only 0 works there.

5.4. Additional Features of Specialized SQL Structures

38

MySQL++ User Manual

Up to this point, we haven't been using al of the features in the SSQL S structures we've been generating. We could
haveused thesql _creat e _basi ¢_* macrosinstead, which would have worked just as well for what we've seen
so far, and the generated code would have been smaller.

Why isit worth ignoring the "basic” variants of these macros, then? Consider this:

query.insert(s);

This does exactly what you think it does: it inserts 's' into the database. This is possible because a standard SSQLS
has functions that the query object can call to get the list of fields and such, which it uses to build an insert query.
query: :update() and query::replace() aso rely on this SSQLS feature. A basic SSQLS lacks these
functions.

Another feature of standard SSQL Ses you might find ause for is changing the table name used in queries. By defaullt,
the table in the MySQL database is assumed to have the same name as the SSQLS structure type. But if this is
inconvenient, you can globally change the table name used in queries like this:

stock::table() = "MyStockData";

5.5. Harnessing SSQLS Internals

Continuing the discussion in the previous section, there isafurther set of methods that the non-"basic" versions of the
sql _cr eat e macros define for each SSQL S. These methods are mostly for use within the library, but some of them
are useful enough that you might want to harness them for your own ends. Here is some pseudocode showing how the
most useful of these methods would be defined for the st ock structure used in all the cust ont. cpp examples:

/1 Basic form

templ at e <cl ass Mani p>

stock_val ue_l i st<Mani p> value_list(cchar *d = ",",
Mani p m = nysql pp: : quote) const;

templ at e <cl ass Mani p>
stock _field_|list<Manip> field_list(cchar *d = ",",
Mani p m = nysql pp: : do_not hi ng) const;

tenpl ate <cl ass Mani p>
stock_equal _li st<Mani p> equal _list(cchar *d = ",",
cchar *e =" =", Manip m = nysql pp: : quot e) const

/1 Bool ean argument form

templ at e <cl ass Mani p>

stock_cus_val ue_li st <Mani p> value_list([cchar *d, [Manip m]]
bool i1, bool i2 =false, ... , bool i5 = false) const;

/1 List form

templ at e <cl ass Mani p>

stock_cus_val ue_li st <Mani p> value_list([cchar *d, [Manip m]]
stock_enumil, stock _enumi2 = stock NULL, ...,

stock_enumi5 = stock_NULL) const;

/1 Vector form

39

MySQL++ User Manual

templ at e <cl ass Mani p>
stock_cus_val ue_l i st <Mani p> value_list([cchar *d, [Manip m]]
vect or <bool > *i) const;

...Plus the obvious equivalents for field_|list() and equal _list()

Rather than try to learn what all of these methods do at once, let's ease into the subject. Consider this code:

stock s("Dinner Rolls", 75, 0.95, 0.97, "1998-05-25");

cout << "Value list: " << s.value_list() << endl;
cout << "Field list: " << s.field_list() << endl;
cout << "Equal list: " << s.equal _list() << endl;

That would produce something like:

Value list: 'Dinner Rolls',75,0.95,0.97,' 1998-05- 25
Field list: itemnum weight, price, date
Equal list: item= "Dinner Rolls',num= 75 weight = 0.95, price = 0.97,date = '1998-05-25'

That is, a"value list" isalist of data member values within a particular SSQL S instance, a"field list" isalist of the
fields (columns) within that SSQLS, and an "equal list" isalist in the form of an SQL equals clause.

Just knowing that much, it shouldn't surprise you to learn that Query: : i nsert () isimplemented more or less
likethis:

*this << "INSERT INTO " << v.table() << " (" << v.field list() <<
") VALUES (" << v.value_ list() << ")";

where 'v' isthe SSQL S you're asking the Query object to insert into the database.

Now let's look at a complete example, which uses one of the more complicated forms of equal _|i st (). This
exampl e builds a query with fewer hard-coded strings than the most obvious technique requires, which makesit more
robust in the face of change. Hereisexanpl es/ cust onb. cpp:

#i ncl ude "stock. h"
#i ncl ude "util.h"

#i ncl ude <i ostreanp
#i ncl ude <vector>

usi ng namespace std;

i nt

mai n(i nt argc, char *argv[])

{

try {

nysgl pp: : Connecti on con(mysgl pp: : use_exceptions);
if (!connect_to_db(argc, argv, con)) {

return 1,

}

/Il Get all the rows in the stock table.

40

MySQL++ User Manual

nysql pp: : Query query = con.query();
guery << "select * from stock";
vect or <st ock> res;
guery.storein(res);

if (res.size() > 0) {

/1 Build a select query using the data fromthe first row
/1 returned by our previous query.

query.reset();

guery << "select * fromstock where " <<

res[0].equal _list(" and ", stock weight, stock_price);

/1 Display the finished query.

cout << "Custom query:\n" << query.preview) << endl;
}

}

catch (const mysql pp:: BadQuery& er) {

/! Handl e any query errors

cerr << "Query error: " << er.what() << endl

return -1;

}

catch (const mysql pp:: BadConversi on& er) {

/! Handl e bad conversions

cerr << "Conversion error: " << er.what() << endl <<
"\tretrieved data size: " << er.retrieved <<

, actual size: " << er.actual _size << endl

return -1;

}

catch (const mysql pp:: Exception& er) {

/1 Catch-all for any other MySQ.++ exceptions

cerr << "Error: " << er.what() << endl

return -1;

}

return O;

}

Thisexampleusesthelistformof equal _| i st () .Theargumentsst ock_wei ght andst ock_pri ce areenum
values equal to the position of these columns withinthe st ock table. sql _cr eat e_x generates this enum for you
automatically.

The boolean argument form of that equal | i st () call would look likethis:

guery << "select * fromstock where " <<
res[0].equal list(" and ", false, false, true, true, false);

It'salittle more verbose, as you can see. And if you want to get really complicated, use the vector form:

vect or <bool > v(5, false);

v[stock_weight] = true

v[stock_price] = true;

guery << "select * fromstock where " <<

41

MySQL++ User Manual

res[0].equal _list(" and ", v);
This form makes the most sense if you are building many other queries, and so can re-use that vector object.

Many of these methods accept manipulators and custom delimiters. The defaults are suitable for building SQL queries,
but if you're using these methods in a different context, you may need to override these defaults. For instance, you
could use these methods to dump datato atext file using different delimiters and quoting rules than SQL.

At this point, we've seen al the major aspects of the SSQLS feature. The final sections of this chapter look at some
of the peripheral aspects.

5.6. Alternate Creation Methods

If for some reason you want your SSQL S data members to have different names than used in the MySQL database,
you can do so likethis:

sql _create_c_nanes_5(stock, 1, 5,
string, item "itent,

int, num "quantity",

doubl e, weight, "weight",

doubl e, price, "price"
nysql pp: : Date, date, "shipnent")

If you want your SSQLS to have its data members in a different order from those in the MySQL table, you can do
it likethis:

sql _create_c_order_5(stock, 2, 5,
nysql pp: : Date, date, 5,

doubl e, price, 4,

string, item 1,

int, num 2,

doubl e, weight, 3)

Y ou can combine the custom names and custom ordering like this:

sql _create_conpl ete_5(stock, 2, 5,
nysql pp: : date, date, "shipnent", 5,
doubl e, price, "price", 4,

string, item "iten', 1,

int, num "quantity", 2,

doubl e, weight, "weight", 3)

All three of these macro types have "basic" variants that work the same way. Again, basic SSQL Ses lack the features
necessary for automatic insert, update and replace query creation.

5.7. Expanding SSQLS Macros

If you ever need to see the code that agiven SSQL S declaration expands out to, usethe utility doc/ ssql s-pretty,
like so:

ssqgl s-pretty < myprog.cpp |l ess

42

MySQL++ User Manual

This locates the first SSQLS declaration in that file and uses the C++ preprocessor to expand that macro. Y ou may
have to change the script to tell it where your MySQL ++ header files are.

5.8. Extending the SSQLS Mechanism

The SSQLS headers — custom.h and custom-macros.h — are automatically generated by the Perl script custom.pl.
Although it is possible to change this script to get additional functionality, it's usually better to do that through
inheritance.

A regular user may find it helpful to change the the limit on the maximum number of SSQL S data members allowed.
It's 25 out of the box. A smaller value may speed up compile time, or you may require a higher value because you
have more complex tables than that. Simply change the max_dat a_menber s variable at the top of custom.pl and
say 'make’. The limit for Visual C++ is 31, according to one report. There doesn't seem to be a practical limit with
GCC 3.3 at least: | set the limit to 100 and the only thing that happened is that custom-macros.h went from 1.3 MB
to 18 MB and the build time for exanpl es/ cust om * got alot longer.

6. Using Unicode with MySQL++
6.1. A Short History of Unicode

...with a focus on relevance to MySQL++

In the old days, computer operating systems only dealt with 8-bit character sets. This only gives you 256 possible
characters, but the modern Western languages have more characters combined than that by themselves. Add in all the
other lanauges of the world, plus the various symbols people use, and you have areal mess! Since no standards body
held sway over things like international character encoding in the early days of computing, many different character
sets were invented. These character sets weren't even standardized between operating systems, so heaven help you if
you needed to move localized Greek text on a Windows machine to a Russian Macintosh! The only way we got any
international communication done at all wasto build standards on the common 7-bit ASCII subset. Either people used
approximations like a plain "c" instead of the French "¢", or they invented things like HTML entities ("ç" in
this case) to encode these additional characters using only 7-bit ASCII.

Unicode solves this problem. It encodes every character in the world, using up to 4 bytes per character. The subset
covering the most economically valuable cases takes two bytes per character, so most Unicode-aware programs deal
in 2-byte characters, for efficiency.

Unfortunately, Unicode came about two decades too late for Unix and C. Converting the Unix system call interface to
use multi-byte Unicode characters would break all existing programs. The SO lashed a wide character sidecar onto
Cin 1995, but in common practice Cis till tied to 8-bit characters.

As Unicode began to take off in the early 1990s, it became clear that some sort of accommodation with Unicode was
needed in legacy systemslike Unix and C. During the development of the Plan 9 operating system (akind of successor
to Unix) Ken Thompson invented the UTF-8 encoding. UTF-8 is a superset of 7-bit ASCII and is compatible with C
strings, since it doesn't use 0 bytes anywhere as multi-byte Unicode encodings do. As a result, many programs that
deal in text will cope with UTF-8 data even though they have no explicit support for UTF-8. (Follow the last link
above to see how the design of UTF-8 allows this.)

The MySQL database server comes out of the Unix/C tradition, so it only supports 8-bit characters natively. All
versions of MySQL could store UTF-8 data, but sometimes the server actually needs to understand the data; when
sorting, for instance. To support this, explicit UTF-8 support was added to MySQL in version 4.1.

Because MySQL ++ does not need to understand the text flowing through it, it neither has nor needs explicit UTF-8
support. C++'sst d: : st ri ng stores UTF-8 data just fine. But, your program probably does care about the text it
gets from the database via MySQL ++. The remainder of this chapter covers the choices you have for dealing with
UTF-8 encoded Unicode datain your program.

43

MySQL++ User Manual

6.2. Unicode and Unix

Modern Unicessupport UTF-8 natively. Red Hat Linux, for instance, has had system-wide UTF-8 support sinceversion
8. This continues in the Enterprise and Fedora forks of Red Hat Linux, of course.

On such a Unix, the terminal 1/0 code understands UTF-8 encoded data, so your program doesn't require any special
code to correctly display a UTF-8 string. If you aren't sure whether your system supports UTF-8 natively, just run
the simplel example: if the first item has two high-ASCII characters in place of the "U" in "NUrnberger Brats’, you
know it's not handling UTF-8.

If your Unix doesn't support UTF-8 natively, it likely doesn't support any form of Unicode at all, for the historical
reasons | gave above. Therefore, you will have to convert the UTF-8 data to the local 8-hit character set. The
standard Unix function i conv() can help here. If your system doesn't have thei conv() facility, thereis afree
implementation available from the GNU Project. Another library you might check out is IBM's ICU. This is rather
heavy-weight, so if you just need basic conversions, i conv() should suffice.

6.3. Unicode and Win32

Each Win32 API function that takes a string actually has two versions. One version supports only 1-byte "ANSI"
characters (a superset of ASCII), so they end in 'A'. Win32 also supports the 2-byte subset of Unicode called UCS-
2. Some call these "wide" characters, so the other set of functions end in 'W'. The MessageBox() API, for
instance, is actually a macro, not areal function. If you define the UNI CODE macro when building your program, the
MessageBox() macro evaluatesto MessageBox W) ; otherwise, to MessageBoxA() .

Since MySQL uses UTF-8 and Win32 uses UCS-2, you must convert data going between the Win32 API
and MySQL++. Since there's no point in trying for portability — no other OS I'm aware of uses UCS-2 —
you might as well use native Win32 functions for doing this trandation. The following code is distilled from
utf8 to win32 ansi() inexanpl es/util.cpp:

void utf8 to wi n32_ansi(const char* utf8 str, char* ansi_str, int ansi_|en)
{

wchar _t ucs2_ buf[100];

static const int ub_chars = sizeof(ucs2 buf) / sizeof(ucs2 buf[O0]);

Mul ti Byt eToW deChar (CP_UTF8, 0, utf8 str, -1, ucs2 buf, ub_chars);
CPI NFOEX cpi ;

Get CPI nf oEX(CP_OEMCP, 0, &cpi);

W deChar ToMul ti Byt e(cpi . CodePage, 0, ucs2 buf, -1,

ansi _str, ansi_len, 0, 0);

}

The examples use this function automatically on Windows systems. To see it in action, run simplel in a console
window (a.k.a. "DOS box"). Thefirst item should be "Nurnberger Brats'. If not, see the last paragraph in this section.

utf8_to_w n32_ansi () convertsut f 8_str from UTF-8 to UCS-2, and from there to the local code page.
"Waitaminnit," you shout! "I thought we were trying to get away from the problem of local code pages!" The console
isone of the few Win32 facilitiesthat doesn't support UCS-2 by default. It can be put into UCS-2 mode, but that seems
like more work than we'd like to go to in a portable example program. Since the default code page in most versions of
Windows includes the "" character used in the sample database, this conversion works out fine for our purposes.

If your program isusing the GUI to display text, you don't need the second conversion. Provethisto yourself by adding
thefollowingtout f 8_t o_wi n32_ansi () aftertheMul ti Byt eToW deChar () cal:

MySQL++ User Manual

MessageBox(0, ucs2_buf, "UCS-2 version of Iltent, MB OK);

All of thisassumesyou'reusing WindowsNT or one of itsdirect descendants: Windows 2000, Windows X P, Windows
2003 Server, and someday Windows Vista. Windows 95/98/ME and Windows CE do not support UCS-2. They still
have the 'W' APIs for compatibility, but they just smash the data down to 8-bit and call the'A' version for you.

6.4. For More Information

The Unicode FAQs page has copious information on this complex topic.

When it comes to Unix and UTF-8 specific items, the UTF-8 and Unicode FAQ for Unix/Linux is a quicker way to
find basic information.

7. Incompatible Library Changes

This chapter documents those library changes since the epochal 1.7.9 release that break end-user programs. You can
dig this stuff out of the Changel og, but the Changel. og focuses more on explaining and justifying the facets of each
change, while this section focuses on how to migrate your code between these library versions.

Since pure additions do not break programs, those changes are still documented only in the Changel og.

7.1. APl Changes

This section documents files, functions, methods and classes that were removed or changed in an incompatible way.
If your program uses the changed item, you will have to change something in your program to get it to compile after
upgrading to each of these versions.

v1.7.10

Removed Row: :operator[]() overloads except the one for size_ type, and added
Row: : | ookup_by_nane() toprovidethe"subscript by string” functionality.#In practical terms, thischange means
that ther ow{ "fi el d"] syntax nolonger works; you must use the new | ookup_by_name method instead.

Renamed the generated library on POSIX systemsfrom| i bsql pl us tol i bnysql pp.

v1.7.19

Removed SQLQuery: : oper at or =(), and the same for its Quer y subclass. Use the copy constructor instead, if
you need to copy one query to another query object.

v1.7.20

The library used to have two names for many core classes: a short one, such as Row and a longer one, Mysqgl Row.
The library now uses the shorter names exclusively.

All symbols within MySQL++ are in the mysql pp namespace now if you use the new nysqgl ++. h header. If you
use the older sql pl us. hh or nysqgl ++. hh headers, these symbols are hoist up into the global namespace. The
older headers cause the compiler to emit warnings if you use them, and they will go away someday.

v2.0.0

Connection class changes

45

MySQL++ User Manual

Connection::create_db() anddrop_db() returntrue on success. They returned f al se in v1.7.x!
This change will only affect your code if you have exceptions disabled.

Renamed Connecti on: : real _connect () to connect (), made several more of its parameters default,
andremovedtheoldconnect () method, asit'snow astrict subset of the new one. The only practical consequence
isthat if your programwasusingr eal _connect (), you will haveto changeittoconnect ().

Replaced Connecti on: : read_opti on() withnew set _opti on() mechanism. In addition to changing
the name, programs using this function will have to use the new Connect i on: : Opt i on enumerated values,
accept at r ue return value as meaning successinstead of 0, and use the proper argument type. Regarding the latter,
read_option() took aconst char* argument, but because it was just a thin wrapper over the MySQL C
API function mysqgl-options, the actual value being pointed to could be any of several types. This new mechanism
is properly type-safe.

Exception-related changes

Classes Connect i on, Query, Resul t , ResUse, and Row now derive from Optional Exceptions which gives
these classes a common interface for disabling exceptions. In addition, almost all of the per-method exception-
disabling flags were removed. The preferred method for disabling exceptions on these objects is to create an
instance of the new NoEXxceptions class on the stack, which disables exceptionson an Opt i onal Except i ons
subclass aslong asthe NoExcept i ons instance isin scope. You can instead call di sabl e_excepti ons()

on any of these objects, but if you only want them disabled temporarily, it's easy to forget to re-enable them later.

In the previous version of MySQL ++, those classes that supported optional exceptions that could create instances
of other such classes were supposed to pass this flag on to their children. That is, if you created a Connect i on
object with exceptions enabled, and then asked it to create aQuer y object, the Quer y object also had exceptions
disabled. The problem is, this didn't happen in all cases where it should have in v1.7. This bug is fixed in v2.0.
If your program begins crashing due to uncaught exceptions after upgrading to v2.0, thisis the most likely cause.
The most expeditious fix in this situation is to use the new NoExcept i ons feature to return these code paths to
the v1.7 behavior. A better fix isto rework your program to avoid or deal with the new exceptions.

All custom MySQL ++ exceptions now derive from the new Exception interface. The practical upshot of thisis
that the variability between the various exception types has been eliminated. For instance, to get the error string,
the BadQuer y exception had a string member called er r or plus a method called what () . Both did the same
thing, and the what () method is more common, so the error string was dropped from the interface. None of the
example programs had to be changed to work with the new exceptions, so if your program handles MySQL ++
exceptions the same way they do, your program won't heed to change, either.

Renamed SQLQuer yNEPar ans exception to BadPar amCount to match style of other exception names.

Added BadOption, ConnectionFailed, DBSelectionFailed, EndOfResults, EndOfResultSets, LockFailed, and
ObjectNotlnitialized exception types, to fix overuse of BadQuer y. Now the latter is used only for errors on query
execution. If your program has a "catch-all" block taking a st d: : excepti on for each try block containing
MySQL ++ statements, you probably won't need to change your program. Otherwise, the new exceptionswill likely
show up as program crashes due to unhandled exceptions.

Query class changes

In previous versions, Connecti on had a querying interface similar to class Quer y's. These methods were
intended only for Quer y's use; no example ever used this interface directly, so no end-user code is likely to be
affected by this change.

A more likely problem arising from the above change is code that tests for query success by calling the
Connect i on object's success() method or by casting it to bool . This will now give misleading results,
because queries no longer go through the Connect i on object. Class Quer y has the same success-testing
interface, so useit instead.

46

MySQL++ User Manual

e Query now derivesfromst d: : ost reaminstead of st d: : stri ngstream

Result/ResUse class changes
 Renamed ResUse: : mysqgl result() toraw resul t () soit'sdatabase server neutral.

* Removed ResUse: : eof (), asit wrapped the deprecated and unnecessary MySQL C API function mysgl-eof.
Seethesi npl e3 and usequer y examplesto see the proper way to test for the end of aresult set.

Row class changes
» Removed "field name" form of Row: : fi el d_Ii st (). Itwaspointless.

» Row subscripting works more like v1.7.9: one can subscript a Row with a string (e.g. row "myfi el d"]), or
with an integer (e.g. r ow{ 5]). | ookup_by_nanme() was removed. Because r ow| 0] isambiguous (O could
mean the first field, or be a null pointer to const char *), thereis now Row: : at (), which can look up any
field by index.

Miscellaneous changes

* Where possible, all distributed Makefiles only build dynamic libraries. (Shared objects on most Unices, DLLs on
Windows, etc.) Unless your program islicensed under the GPL or LGPL, you shouldn't have been using the static
libraries from previous versions anyway.

» Removed the backwards-compatibility headers sql pl us. hh and nysql ++. hh. If you were still using these,
you will have to changeto nysql ++. h, which will put al symbolsin nanespace nysqgl pp.

e Canno longer use arrow operator (- >) on theiteratorsinto the Fi el ds, Resul t and Row containers.

7.2. ABI Changes

This section documents those library changes that require you to rebuild your program so that it will link with the new
library. Most of the items in the previous section are also ABI changes, but this section is only for those items that
shouldn't require any code changesin your program.

If you were going to rebuild your program after installing the new library anyway, you can probably ignorethis section.

v1.7.18

The Quer y classes now subclassfrom st r i ngst r eaminstead of the deprecated st r st r eam

v1.7.19

Fixed several const -incorrectnessesin the Quer y classes.

v1.7.22

Removed "reset query” parameters from several Query class members. This is not an APl change, because the
parameters were given default values, and the library would ignore any value other than the default. So, any program
that tried to make them take another value wouldn't have worked anyway.

v1.7.24

Some freestanding functions didn't get moved into nanmespace nysql pp when that namespace was created. This
release fixed that. It doesn't affect the API if your program's C++ source filessay usi ng nanespace nysql pp
within them.

47

MySQL++ User Manual

v2.0.0

Removed Connecti on: : i nfoo(). (I'd cal thisan API change if | thought there were any programs out there
actualy using this...)

Collapsed the Connect i on constructor taking a bool (for setting the throw_exceptions flag) and the default
constructor into a single constructor using a default for the parameter.

Classes Connect i on and Query are now derived from the Lockabl e interface, instead of implementing their
own lock/unlock functions.

In several instances, functions that took objects by value now take them by const reference, for efficiency.
Merged SQLQuer y classs membersinto classQuery.
Merged RowTenpl at e classs membersinto class Row.

Reordered member variable declarations in some classes. The most common instance is when the private section was
declared before the public section; it is now the opposite way. This can change the object's layout in memory, so a
program linking to the library must be rebuilt.

Simplified the date and time class hierarchy. Date used to derive from nysql _dat e, Time used to derive from
nmysql _ti nme, and DateTime used to derive from both of those. All three of these classes used to derive from
nmysql _dt _base. All of the nysql _* classes functionality and data has been folded into the leaf classes, and
now the only thing shared between them is their dependence on the DThase template. Since the leaf classes' interface
has not changed and end-user code shouldn't have been using the other classes, this shouldn't affect the API in any
practical way.

nysgl _type_i nf o now awaysinitializes its private nummember. Previously, this would go uninitialized if you
used the default constructor. Now there is no default ctor, but the ctor taking one argument (which sets num has a
default.

8. Licensing

The primary copyright holders on the MySQL ++ library and its documentation are Kevin Atkinson (1998), MySQL
AB (1999 through 2001) and Educational Technology Resources, Inc. (2004 through the date of thiswriting). Thereare
other contributors, who also retain copyrights on their additions; see the ChangelL og filein the MySQL ++ distribution
tarball for details.

The MySQL ++ library and its Reference Manual are released under the GNU Lesser General Public License (LGPL),
reproduced below.

The MySQL ++ User Manual — excepting some example code from thelibrary reproduced within it — isoffered under
alicense closely based on the Linux Documentation Project License (LDPL) v2.0, included below. (The MySQL ++
documentationisn't actually part of the Linux Documentation Project, so themain changesareto L DP-rel ated language.
Also, generic language such as "author's (or authors)" has been replaced with specific language, because the license
applies to only this one document.)

These licenses basicaly state that you are free to use, distribute and modify these works, whether for personal or
commercial purposes, as long as you grant the same rights to those you distribute the works to, whether you changed
them or not. See the licenses below for full details.

48

MySQL++ User Manual

8.1. GNU Lesser General Public License
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA#02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[Thisisthefirst released version of the Lesser GPL. It also counts as the successor of the GNU Library Public License,
version 2, hence the version number 2.1.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public Licenses are intended to guarantee your freedom to share and change free software--to make sure the
softwareisfreefor al its users.

This license, the Lesser General Public License, applies to some specially designated software packages--typically
libraries--of the Free Software Foundation and other authors who decide to useit. You can useit too, but we suggest
you first think carefully about whether this license or the ordinary General Public Licenseis the better strategy to use
inany particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our Genera Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service if
you wish); that you receive source code or can get it if you want it; that you can change the software and use pieces
of it in new free programs; and that you are informed that you can do these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to ask you
to surrender these rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients al the
rights that we gave you. Y ou must make sure that they, too, receive or can get the source code. If you link other code
with the library, you must provide complete object files to the recipients, so that they can relink them with the library
after making changesto thelibrary and recompiling it. And you must show them these terms so they know their rights.

We protect your rights with atwo-step method: (1) we copyright the library, and (2) we offer you this license, which
gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also, if the
library is modified by someone else and passed on, the recipients should know that what they have is not the origina
version, so that the original author's reputation will not be affected by problems that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure that a
company cannot effectively restrict the users of afree program by obtaining arestrictive license from a patent holder.
Therefore, weinsist that any patent license obtained for aversion of thelibrary must be consistent with the full freedom
of use specified in thislicense.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. Thislicense,
the GNU Lesser General Public License, appliesto certain designated libraries, and is quite different from the ordinary
General Public License. We use thislicense for certain librariesin order to permit linking those libraries into non-free
programs.

When a program is linked with alibrary, whether statically or using a shared library, the combination of the two is
legally speaking a combined work, a derivative of the original library. The ordinary General Public License therefore

49

MySQL++ User Manual

permits such linking only if the entire combination fits its criteria of freedom. The Lesser General Public License
permits more lax criteriafor linking other code with the library.

We call this license the "Lesser" General Public License because it does Less to protect the user's freedom than the
ordinary General Public License. It also provides other free software developers Less of an advantage over competing
non-free programs. These disadvantages are the reason we use the ordinary General Public License for many libraries.
However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain library,
so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use the library. A more
frequent caseisthat afreelibrary doesthe samejob aswidely used non-freelibraries. In this case, thereislittleto gain
by limiting the free library to free software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of peopleto usea
large body of free software. For example, permission to use the GNU C Library in non-free programs enables many
more people to use the whole GNU operating system, as well asits variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users freedom, it does ensure that the user of
aprogram that is linked with the Library has the freedom and the wherewithal to run that program using a modified
version of the Library.

The precisetermsand conditionsfor copying, distribution and modification follow. Pay close attention to the difference
between a "work based on the library” and a "work that uses the library”. The former contains code derived from the
library, whereas the latter must be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program which contains a notice placed by the
copyright holder or other authorized party saying it may be distributed under the terms of this Lesser General Public
License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work which has been distributed under these terms.#A
"work based on the Library" meanseither the Library or any derivative work under copyright law: that isto say, awork
containing the Library or aportion of it, either verbatim or with modifications and/or translated straightforwardly into
another language. (Hereinafter, trandation is included without limitation in the term "modification".)

"Source code" for awork means the preferred form of the work for making modificationsto it. For alibrary, complete
source code means all the source code for all modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope.

The act of running a program using the Library is not restricted, and output from such a program is covered only if its
contents constitute awork based on the Library (independent of the use of the Library in atool for writing it).#Whether
that is true depends on what the Library does and what the program that uses the Library does.

1. Y ou may copy and distribute verbatim copies of the Library's complete source code asyou receiveit, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and distribute a
copy of this License along with the Library.

Y ou may charge afeefor the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for afee.

50

MySQL++ User Manual

2. Y ou may modify your copy or copies of the Library or any portion of it, thus forming awork based on the Library,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

a) The modified work must itself be a software library.

b) Y ou must cause the files modified to carry prominent notices stating that you changed the files
and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the
terms of this License.

d) If afacility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in alibrary to compute square roots has a purpose that is entirely well-
defined independent of the application. Therefore, Subsection 2d requires that any application-
supplied function or table used by this function must be optional: if the application does not supply
it, the square root function must still compute square roots.)

These requirements apply to the modified work as awhole. If identifiable sections of that work are not derived from
the Library, and can be reasonably considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is awork based on the Library, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every
part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather,
the intent isto exercise the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with awork based on the
Library) on avolume of astorage or distribution medium does not bring the other work under the scope of thisLicense.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to agiven copy
of the Library. To do this, you must ater all the notices that refer to this License, so that they refer to the ordinary
GNU Genera Public License, version 2, instead of to this License#(If a newer version than version 2 of the ordinary
GNU Genera Public License has appeared, then you can specify that version instead if you wish.) Do not make any
other change in these notices.

Oncethis changeis madein agiven copy, itisirreversible for that copy, so the ordinary GNU General Public License
appliesto all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not alibrary.

4.Y oumay copy and distributethe Library (or aportion or derivativeof it, under Section 2) in object code or executable
form under the terms of Sections 1 and 2 above provided that you accompany it with the complete corresponding
machine-readable source code, which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent
accessto copy the source code from the same place satisfies the requirement to distribute the source code, even though
third parties are not compelled to copy the source aong with the object code.

51

MySQL++ User Manual

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by
being compiled or linked with it, is called a"work that uses the Library". Such awork, inisolation, is not a derivative
work of the Library, and therefore falls outside the scope of this License.

However, linking a"work that usesthe Library" with the Library creates an executablethat isaderivative of theLibrary
(because it contains portions of the Library), rather than a "work that uses the library". The executable is therefore
covered by this License. Section 6 states terms for distribution of such executables.

When a"work that usesthe Library" uses material from aheader filethat is part of the Library, the object code for the
work may be a derivative work of the Library even though the source code is not. Whether thisis true is especially
significant if the work can be linked without the Library, or if the work is itself alibrary. The threshold for this to
betrueis not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small
inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is
legally a derivative work. (Executables containing this object code plus portions of the Library will still fall under
Section 6.)

Otherwise, if the work is aderivative of the Library, you may distribute the object code for the work under the terms
of Section 6. Any executables containing that work also fall under Section 6, whether or not they are linked directly
with the Library itself.

6. Asan exception to the Sections above, you may also combine or link a"work that usesthe Library" with the Library
to produce a work containing portions of the Library, and distribute that work under terms of your choice, provided
that the terms permit modification of the work for the customer's own use and reverse engineering for debugging such
modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and
its use are covered by this License. You must supply a copy of this License. If the work during execution displays
copyright notices, you must include the copyright notice for the Library among them, as well as areference directing
the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changeswere used in the work (which must be distributed under Sections
1and 2 above); and, if thework isan executable linked with the Library, with the compl ete machine-
readable "work that usesthe Library", as object code and/or source code, so that the user can modify
the Library and then relink to produce a modified executable containing the modified Library. (It
is understood that the user who changes the contents of definitions files in the Library will not
necessarily be able to recompile the application to use the modified definitions.)

b) Use asuitable shared library mechanism for linking with the Library. A suitable mechanismisone
that (1) uses at run time a copy of the library already present on the user's computer system, rather
than copying library functions into the executable, and (2) will operate properly with a modified
version of thelibrary, if the user installs one, aslong asthe modified version isinterface-compatible
with the version that the work was made with.

¢) Accompany the work with a written offer, valid for at least three years, to give the same user
the materials specified in Subsection 6a, above, for a charge no more than the cost of performing
this distribution.

d) If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

€) Verify that the user has already received a copy of these materials or that you have already sent
this user a copy.

52

MySQL++ User Manual

For an executable, the required form of the "work that uses the Library" must include any data and utility programs
needed for reproducing the executable from it. However, asaspecial exception, the materialsto be distributed need not
include anything that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself accompanies
the executable.

It may happen that thisrequirement contradictsthelicenserestrictionsof other proprietary librariesthat do not normally
accompany the operating system. Such a contradiction means you cannot use both them and the Library together in
an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with
other library facilities not covered by this License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilities is otherwise permitted, and provided
that you do these two things:

a) Accompany the combined library with acopy of the samework based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it isawork based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights, from
you under this License will not have their licenses terminated so long as such parties remain in full compliance.

9. You arenot required to accept thisLicense, sinceyou have not signed it. However, nothing el se grantsyou permission
to modify or distribute the Library or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and al its terms and conditions for copying, distributing or modifying the
Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives
a license from the original licensor to copy, distribute, link with or modify the Library subject to these terms and
conditions. Y ou may not impose any further restrictions on the recipients exercise of the rights granted herein. Y ou
are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so asto
satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Library at all. For example, if a patent license would not permit royalty-free redistribution
of the Library by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section isintended to apply, and the section as awhole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system which isimplemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section isintended to make thoroughly clear what is believed to be a consequence of the rest of this License.

53

MySQL++ User Manual

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public License from
timeto time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns.

Each version is given adistinguishing version number. If the Library specifies aversion number of this License which
appliesto it and "any later version”, you have the option of following the terms and conditions either of that version
or of any later version published by the Free Software Foundation. If the Library does not specify a license version
number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision
will be guided by the two goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY ISWITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGESARISING OUT OF THE USE OR INABILITY TO
USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN |IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop anew library, and you want it to be of the greatest possible use to the public, we recommend making it
free software that everyone can redistribute and change. Y ou can do so by permitting redistribution under these terms
(or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at |east the "copyright" line and
apointer to where the full noticeis found.

<onelineto givethe library's name and a brief idea of what it does.>

Copyright © <year> <name of author>

54

MySQL++ User Manual

This library is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

Y ou should have received a copy of the GNU Lesser General Public License along with thislibrary;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your schoal, if any, to sign a "copyright
disclaimer” for the library, if necessary. Here is a sample; ater the names:

Y oyodyne, Inc., hereby disclaims all copyright interest in the library “Frob' (alibrary for tweaking
knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That's all thereistoit!

55

MySQL++ User Manual

8.2. MySQL++ User Manual License
|. COPYRIGHT

The copyright to the MySQL++ User Manual is owned by its authors.

[I. LICENSE

The MySQL++ User Manua may be reproduced and distributed in whole or in part, in any medium physical or
electronic, provided that this license notice is displayed in the reproduction. Commercial redistribution is permitted
and encouraged. Thirty days advance notice viaemail to the authors of redistribution is appreciated, to give the authors
time to provide updated documents.

A. REQUIREMENTS OF MODIFIED WORKS

All modified documents, including trandations, anthologies, and partial documents, must meet the following
requirements.

1. Themodified version must be labeled as such.

2. The person making the modifications must be identified.

3. Acknowledgement of the original author must be retained.

4. Thelocation of the original unmodified document be identified.

5. Theorigina authors names may not be used to assert or imply endorsement of the resulting document without
the original authors' permission.

In addition it is requested that:
1. Themodifications (including deletions) be noted.

2. Theauthors be notified by email of the modification in advance of redistribution, if an email addressis provided
in the document.

Mere aggregation of the MySQL ++ User Manual with other documents or programs on the same media shall not cause
this license to apply to those other works.

All trandations, derivative documents, or modified documents that incorporate the MySQL++ User Manual may not
have more restrictive license terms than these, except that you may require distributors to make the resulting document
available in source format.

56

